
STUDY PROTOCOL Open Access

Fast and high temperature hyperthermia
coupled with radiotherapy as a possible
new treatment for glioblastoma
Giovanni Borasi1*, Alan Nahum2, Margarethus M. Paulides7, Gibin Powathil3, Giorgio Russo4, Laura Fariselli5,
Debora Lamia4, Roberta Cirincione4, Giusi Irma Forte4, Cristian Borrazzo8, Barbara Caccia6, Elisabetta di Castro8,
Silvia Pozzi6 and Maria Carla Gilardi9

Abstract

Background: A new transcranial focused ultrasound device has been developed that can induce hyperthermia in a
large tissue volume. The purpose of this work is to investigate theoretically how glioblastoma multiforme (GBM) can
be effectively treated by combining the fast hyperthermia generated by this focused ultrasound device with external
beam radiotherapy.

Methods/Design: To investigate the effect of tumor growth, we have developed a mathematical description of GBM
proliferation and diffusion in the context of reaction–diffusion theory. In addition, we have formulated equations describing
the impact of radiotherapy and heat on GBM in the reaction–diffusion equation, including tumor regrowth by
stem cells. This formulation has been used to predict the effectiveness of the combination treatment for a realistic
focused ultrasound heating scenario.
Our results show that patient survival could be significantly improved by this combined treatment modality.

Discussion: High priority should be given to experiments to validate the therapeutic benefit predicted by our model.
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Background
Glioblastoma (GBM) is a highly aggressive tumor of the
central nervous system, corresponding to grade IV of
the World Health Organization’s histological classifica-
tion [1]. High-grade gliomas are the most common
primary brain tumors in adults, with an incidence of 3.1
per 100,000 person-years in USA and with a median sur-
vival time of 14.6 months after diagnosis [2] and
11.9 months after first resection [3]. Because of their
invasive nature, GBMs recur in more than 90% of
patients, generally centrally [4] even if marginal and distant
failures are reported [5]. The current standard treatment
includes external beam radiotherapy (EBRT), maximal
surgery, and chemotherapy with temozolomide (TMZ).
The standard treatments for GBM that include EBRT

result in a significant increase in patient survival [6].

Dose escalation studies have demonstrated survival im-
provements up to an overall dose of 60 Gy [7, 8], gener-
ally with a dose fractionation of 2 Gy/day, 5 days a week,
for a total of 6 weeks for the whole treatment. Beyond
this dose, there is only a minimal increase in survival for
severely increased toxicity [5, 9].
The study by Elaimy et al. [10] supports the use of

stereotactic radiosurgery (SRS). SRS is used either to
boost EBRT treatment or to treat small-volume recur-
rences. The addition of bevacizumab (BEV) after SRS
was shown to lower the rate of tumor progression and
radio-toxicity [11, 12]. The potential advantages of
combining high-intensity focused ultrasound (HIFU)
and radiotherapy (RT) in oncology were recently
reviewed [13].
In a recent paper, Coluccia et al. [14] described the

first successful non-invasive thermal ablation of a brain
tumor with transcranial magnetic resonance-guided
focused ultrasound (TcMRgFUS) [15]. This paper
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reported a tumor recurrence in the left thalamic and
subthalamic region after surgery for a posteromedial
temporal lobe GBM. A total of 25 sonications was
applied (17 over the heat ablative threshold); the total
sonication time was more than 3 h and about one tenth
(0.7 cm3) of the total enhancing tumor volume (6.5 cm3)
was ablated with an Insightec MRgFUS Exablate Neuro
system [15].
The main aim of this paper is to demonstrate theoret-

ically, as a “proof of principle”, how the use of
TcMRgFUS to generate “fast” hyperthermia (HT), com-
bined with 6 weeks’ EBRT therapy (one or two sessions
per week, 1 h each), could have resulted in a successful
treatment of the whole tumor. Our approach requires
minimal or no modification of the commercially avail-
able brain sonication system [15].

Methods/Design
Radiotherapy and radiobiology stem cells and the new
hypothesis
Several studies have been carried out in order to evalu-
ate the radiation response of human glioma cells. The
most recent and complete study on the radiobiological
parameters comes from Ferrandon et al. [16]. They ana-
lyzed the photon (and carbon ion) response of eleven
human-derived glioblastoma cell lines, from the most
radio-resistant (T-98G with α = 0.022 Gy−1, β = 0.025 Gy−2,
α/β = 0.9 Gy) to the most sensitive (U-251 with α =
0.630 Gy−1, β = 0.019 Gy−2, α/β = 35 Gy). Of course, differ-
ent tumors can have a different cellular composition. Two
quite recent papers [17, 18], using different data sets and
methodologies, still showed similar data ([17]: α =
0.06 Gy−1 ± 0.05 Gy−1, α/β = 10 ± 15.1 Gy, while Jones
et al. [19] derive the following median values: α =
0.077 Gy−1, β = 0.009 Gy−2, α/β = 9.32 Gy). Elaborating
data from Walker et al. [7], a lower sensitivity (α =
0.027 Gy−1, β = 0.0027 Gy−2, α/β = 10 Gy) was obtained
[20]. Extracted from nine clinical studies, Pedicini et al. [21]
obtained quite higher best estimates (α = 0.12 Gy−1, β =
0.015 Gy−2, α/β = 8 Gy). Note that these latter data include
the effect of old and new drugs, such as carmustine (bis-
chloroethylnitrosourea (BCNU)) and TMZ.
All these radiobiological data demonstrate the high

resistance of glioblastoma to radiation. Still, the data are
not sufficient to explain the unsatisfactory clinical results
mentioned. In fact, like other tumors, glioblastoma ex-
hibit the capability of an “adaptive response”: the effect
of radiation on tumor cells is not only low but becomes
increasingly lower as the treatment progresses [22].
There is increasing evidence that solid tumors are hier-
archically organized and contain a small population of
cancer stem cells (CSCs) [23, 24]. The subpopulation of
CSCs has the capability of self-renewal, an unlimited
capability of proliferation and a tendency to recur [25],

differing from non-stem cells (CDCs). In vitro and in
animal experiments showed that the glioma CSCs were
significantly more resistant than normal, differentiated
cells [26].

Mathematical modeling of GBM grow and EBRT effect
Around the late 90s [27–30], researchers recognized that
the proliferative–infiltrative nature of GBM could be
described mathematically by the reaction–diffusion
equation [31, 32]. The possibilities offered by MR im-
aging confirmed the value of this description and dem-
onstrated the significance of the two major parameters
in the basic equation, namely proliferation and diffusion
[33–35]. The effect of chemotherapy was introduced
into the basic equation in 2003 [36] and EBRT in 2007
[20]. Several authors have considered the effects of radi-
ation [37–43]; these approaches all considered only one
tissue (i.e., cancer) diffusing into a medium (i.e., healthy
brain), without any modification of the environment.
Starting with Gatenby and Gawlinsky [44], the tissues
(and basic equations) became twofold, representing the
tumor and the environment. Their model predicted a
previously unrecognized hypocellular interstitial gap at
the tumor–host interface that was demonstrated both in
vivo and in vitro. To solve this gap, more detailed
models, with five or more equations describing the main
tumor elements (such as normal, necrotic and hypoxic
tumor cells, vascularity, nutrients, etc.) were subse-
quently proposed [45–51].

The (Fisher–Kolmogorov) reaction–diffusion equation and
tumor growth
A realistic description of GBM evolution involves two
phases: first, the cells proliferate to form a small and
dense lesion, then they become more diffuse and the
reaction–diffusion equation can be applied [27].
The reaction–diffusion equation, including the effect

of EBRT, can be written as:

∂ x; tð Þ
∂t

¼ ∇⋅ D xð Þ∇c x; tð Þ½ � þ ρ⋅c x; tð Þ⋅ 1−
c x; tð Þ
cmax

� ��
þ R⋅c x; tð Þ

ð1Þ
where c (x, t) denotes the cell density at position x and
time t. If B is the domain in which Eq. (1) is solved, the
zero flux at the anatomic boundaries implies:

n⋅∇⋅ D xð Þ∇c x; tð Þ½ � ¼ 0 f or x on ∂B ð2Þ
where n is the unit vector perpendicular to the elemen-
tary surface. To solve Eq. (1), an initial condition must
be assumed, i.e., c(0, x) = co (x). D(x) is the diffusion
coefficient [l2t−1] and cmax is the maximum bearable cell
concentration in the tumor. A value of cmax = 4.2 × 108

cells/cm3 can be assumed [52], but an order of
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magnitude of variation in cmax has been reported [34,
35]. If D(x) is known in a 3D volume (by using MR and/
or positron emission tomography), Eqs. (1) and (2) can
be solved numerically at each point of the domain. The
cell-killing effect of EBRT is included through the term
R [t−1], which represents the relative change of cell con-
centration per unit time, at time t. For simplicity, we
apply the linear-quadratic (LQ) model [53–56]; a deriv-
ation of the R-term, compatible with this model, is
reported in a recent paper [57].
Considering D and R in Eq. (4) constants, the equation

depends on one single scalar radial coordinate (r). In the
Results section, the curves 1 and 4–6 are obtained by
solving this equation in one radial dimension. The
tumor proliferation parameter ρ is assumed to be 1.2 ×
10−2, which corresponds to a volume doubling time of
2 months (exponential growth). For the diffusion param-
eter D, a value of 5.83 × 10−3 cm2/day was previously
proposed [20], which is between the values for white
matter (Dw = 1.3 × 10−3) and gray matter (DG = 5 ×Dw)
[30]. This equation is solved using the PDEPE function
in MATLAB (version R2010a; MathWorks, Natick, MA,
USA), which applies an adaptive time-step routine. The
relative and absolute tolerances for a stable solution of
the equation solver are 10−6 and 10−9, respectively.

HIFU and hyperthermia to treat GBM
The present paper builds on the experience gained in
the 70s and 90s with the development of the technology
of, and the understanding of, the biological aspects ob-
tained with “scanned ultrasound hyperthermia” [58–80]
and in particular on “fast/high temperature ultrasound
hyperthermia” [67, 73, 76, 79]. This latter technology
may have important advantages over standard clinical
hyperthermia (1 h at 42.5 °C), such as reduced depend-
ence on perfusion and tumor inhomogeneity and a
superior treatment of the tissue near large blood vessels.
However, at the time, it failed to find a relevant clinical
application. Our tentative explanation is that, in that
period, tumor-selective visualization was not available,
and the difference in the response of normal versus can-
cerous tissue was over-emphasized. At higher tempera-
tures, hyperthermia-enhanced perfusion is blocked so
that the best discriminating temperature was found to
be 42–43 °C [81–83]. However, in the context of heat–
radiation synergy, the tumor hyperthermia-enhanced
perfusion is a minor effect with respect to other higher
temperature cell-killing mechanisms, such as simultan-
eous or sequential blocking of DNA repair and aerobic
and hypoxic direct cell killing [84–88]. The results of
four trials [70, 74, 78, 89] of clinical HT are given in
Additional file 1.
Two complete reviews on technology for hyperthermia

are found in [90] and [91].

TcMRgFUS application is a promising non-invasive
modality for neurosurgical intervention, but transmis-
sion of ultrasound through the skull constitutes a
considerable obstacle, as already shown in the early ex-
periments in 1950s [56]. The previously discussed ex-
perience of scanned HT demonstrated the usefulness of
a new skull-specific-transduced geometry, helmet-like,
with an f value (radius/diameter) of about 0.5. Substan-
tial research [92–97], including the advent of MR
thermography [98–100] and phased-array transducers
[101–103], led to the first pilot clinical trial of GBM
ablation [15, 104]. While the temperature distribution in
the brain was clearly detectable with MRI, it was impos-
sible to reach ablation because of the limited power pro-
vided by the device. Improvements in power output
have enabled ablative temperatures to be achieved, but
only in a small part of the tumor [14].
In Figure five of Coluccia et al. [14], two sonication

pulses with maximum temperatures of 55 °C and 58 °C,
respectively, are reported as examples. For both pulses,
the length of the “beam on” interval is about 13 s. The
first one (Tmax = 55 °C) remained under the ablation
threshold (Tmax > 55 °C), while the second one (Tmax =
58 °C) is considered to be an ablative pulse. Both
pulses are fitted with Parker’s equation for the pencil
beam [105, 106], using a nonlinear least squares
method (Leveberg–Marquardt) as explained in the
section Additional file 2.
In Fig. 1, we show the two pulse shapes mentioned by

Coluccia et al. [14] and a proposed HT pulse shape. In
Table 1, fitted values are reported for the following
parameters: the instant of maximum temperature (tmax),
the maximum temperature (Tmax), and the calculated
equivalent thermal dose, expressed as cumulative
equivalent minutes at 43 °C (CEM43). C and D are the
Parker’s model fitted constants.

Radiation plus hyperthermia response
The three human glioma cell lines (U-87MG, U-138MG,
U-373MG) have a large capacity to recover from poten-
tially lethal radiation damage. Since hyperthermia causes
radiosensitization and inhibition of recovery from radi-
ation damage, its combination with radiotherapy creates
a potent combination for treating human brain tumors
[22, 107–109]. In addition, Li et al. [110] and Raaphorst
et al. [111] showed that HT has a greater effect on the
inhibition of recovery when applied after irradiation with
X-rays (RX) compared to before irradiation. In Fig. 2, we
report data from Raaphorst et al. [108], in which the sur-
viving fractions (SF) of the U-87MG cells are compared
(8-h plating). Two sets of treatment were applied to the
cells, radiation only (treatment A) and radiation followed
by either 15 min of HT (treatment B1, CEM43 = 60 min)
or 60 min. HT (Treatment B2, CEM43 = 240 min).
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In both cases, the HT was administered 5 min after the
end of the irradiation. For comparison, we have added the
carbon ion curve from Ferrandon et al. [16].
As is well known, carbon ions are more effective than

RX (the carbon ion RBE at 10% survival is 2.57), but
Fig. 2 shows that HT + RT is an extraordinarily effective
combination.
Focusing on the RX plus HT 15-min curve (B1 treat-

ment, CEM43 = 60 min), we hypothesize, as a first
choice, a treatment with 3 Gy per session (SF = 0.167),
two sessions per week, 6 weeks of total treatment time,
with a total dose of 36 Gy. Each EBRT session should be
followed, as soon as possible, by an HT treatment of the
whole tumor. From Fig. 5 of Raaphorst et al. [108] and
from the chosen protocol, we estimated a decrease of
the sensitization effect of about 10%, for a delay of 1 h
between the end of EBRT and the beginning of HT. In
agreement with Raaphorst et al., we conclude that due
to the greater repair capacity of cancer cells, the HT
effect is expected to be more effective on tumor than on
normal cells. The choice of the proposed protocols is
dictated by the desire to maximize the therapeutic ratio
of the treatment: reduction of healthy tissue damage but
maximization of tumor effect.

Note for the proposed protocols (B1 and B2) the
following six points:

1. The total EBRT dose and fractionation should be
acceptable, since α and β as previously given will
lead to a lower biological effective dose than the
“standard protocol” (2 Gy per session, five sessions
per week, 6 weeks total treatment time. Maximum
total dose is 60 Gy)

2. Exploiting the time interval of 2–3 days between the
treatments, the phenomenon of thermo-resistance
due to heat shock proteins (HSP) that can reduce
the treatment effect, is avoided [112]

3. The induction of the immunogenic tumor cells and
direct tumor cell killing by HT in combination with
EBRT can contribute to immune activation against
the tumor [113]

4. Thanks to the nearly constant sensitivity to RX plus
HT of CSCs and CDCs found for the cell lines
evaluated [114], the problem of resistant sub-
populations should be avoided

5. The effect of (mild) HT on hypoxic tumor regions is
well known [115, 116], and there are several
indications that this effect is similar or stronger at
higher temperatures [117, 118]

6. In treatment B2, only one session per week is
required, given the increased dose (4.4 Gy × 6)

Clearly, the main limitation of the treatment described
in Coluccia et al. [14] is the time required to alleviate
the pain to the brain of the patient, requiring long cool-
ing intervals between the sonication. This pain is mainly
due to the heat energy absorbed by the bone (30–60
times more than by the soft tissue [119]). With the

Fig. 1 Different HIFU pulses. Red square: ablation pulse (Tmax = 58 °C, CEM43 > 240 min); purple triangles: non-ablation pulse (Tmax = 55 °C,
CEM43 < 240 min); dotted curve: proposed HT pulse (Tmax = 53.7 °C, CEM43 = 60 min)

Table 1 Fitted parameters corresponding to the different HIFU
pulses: the instant of maximum temperature (tmax), maximum
temperature (°Cmax), and the calculated equivalent thermal dose
CEM43. C and D are the Parker’s fitted constants (see Additional file 2)

Label tmax (s) Tmax (°C) CEM43 C D

58 °C 13.01 57.6 1503.0 3.002 0.168

55 °C 13.14 55.0 199.6 2.287 0.127

HT 8.08 53.7 60.0 3.002 0.127
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proposed HT pulses, the warming of the whole T1w-
enhancing tumor would require 163 pulses, for a total
time of 1.27 h (each pulse consisting of 8.1 s of beam on
and 20 s of “beam off”, i.e., cooling down time). The
cooling down interval has been here calculated on the
basis of HIFU ablative literature [14, 120, 121] and still
requires experimental verification. Let us consider
another example: a tumor with an equivalent radius of
2.3 cm (volume of 51 cm3) of which about 92% of the
volume was removed by surgery. The residual tumor,
i.e., our target, is therefore 4.2 cm3. This requires about
105 sonications with 8.1 s of beam on time. The total
treatment time would be less than 1 h (49.2 min).

Results
In this section, we compare the tumor cell survival
corresponding to the different treatments (Table 2
and Fig. 3).
Note that the “standard” treatment (2 Gy × 30, N.1 in

Table 1, dash-dotted orange line in Fig. 3) is calculated
neglecting the stem cell effect (only EBRT–RX). Due to
the presence of cancer stem cells, this treatment should
be considered unrealistic.
Curves 2 and 3 (solid and dotted blue lines, respect-

ively, in Fig. 3) include the effect of the CSC cells [122].
The exceptional resistance of CSCs and the interplay of
these cells with CDC progressively reduces the rate of
decrease of the cancer cells (“adaptive response”). The
clinical data are reproduced reasonably well by the LQ
model when assuming lower α and β values (curve 4,
solid green line, in Fig. 3). This model is applied to both

CSCs and CDCs. The fraction of CSCs in the total cell
number (F) is assumed to be 1.6 × 10−2. Curve 4 was
previously calculated [20] using Eq. (4) and clinical
radiobiological data [7]. It is interesting to note that this
curve, by assuming very low values for α and β, repro-
duces quite well the “time to offset” (i.e., the time for the
tumor volume to grow back to its initial volume) of the
previous curves that are based on the effect of CSCs.
Curves 5 and 6 in Table 2 (purple solid and red dotted
lines in Fig. 3) show the effect of the new RX + HT
treatments. Curve 5 corresponds to protocol B1, with
two sessions a week (for example, Monday and Thursday),
in which, after conformal RT with a maximum dose of
3 Gy, HT is administered with a CEM43 of 60 min. Curve
6 corresponds to protocol B2: one session a week with a
larger radiation dose (4.7 Gy) and the same thermal dose
(CEM43 = 60 min). Curves n. 5 and 6 are calculated with
1-h delay between the end of RT and the beginning of HT.
Curves 7 and 8 are calculated respectively as curves n. 5
and 6, but with 2-h delay between the end of RT and the
beginning of HT.

Discussion and conclusions
As is clear from Table 2 and Fig. 3, the proposed proto-
cols with RX + HT easily outperform the traditional
ones; they lead to a low survival level of tumor cells and
a long offset time such that the patient is effectively
cured, in contrast to glioblastoma treatment today where
cure is never achieved. At very low levels of cell survival,
the immune system may also play an important role
[123]. To our knowledge, the proposed methodology is

Fig. 2 Surviving fraction of U-87MG cells for different radiation qualities. Yellow crosses: RX alone (treatment A); purple line: carbon ions (curve drawn from
Ferrandon et al. [16]); green triangles: RX + HT 15 min (treatment B1); blue diamonds: RX + HT 60 min (treatment B2).
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the only one capable of achieving curative outcomes. In
addition, we wish to emphasize that we used the CEM43

concept [124] to establish an equivalence, in terms of
the total cell-killing effect, between the Raaphorst data
[108] obtained at 45 °C and the hypothesized HT pulse
shape of Fig. 1. This choice doesn’t take into account ra-
diation–heat synergy. In this regard, Law [125] found
that for heat combined with X-rays, the time required to
produce a given level of radiodermatitis was reduced by
a factor of three for a rise in temperature of 1° (in com-
parison with the Sapareto and Dewey [124] law, which
predicts a factor of two). Even if the law result was
obtained in a different tissue, our data could be an
underestimation, and a pulse shape with a lower HT
maximum temperature and/or a lower time length can
be possible in practice. Of course, on this point, direct
experimental data are required. In any case, the

illustrated results can be obtained without significant
modification of the present system. Regarding the two
proposed protocols, only experience will help to choose
between them: B2 is easier to execute in clinical practice
(just one session a week) but it is not clear if we would
have the same benefits from the clinical point of view
(oxygenation and immune system stimulation).
It is important to emphasize that the equivalent doses

[56] of the two proposed treatments are more than 35%
lower than the “reference” dose of 60 Gy, given in 2 Gy
fractions, five days a week for a total time of 6 weeks.
This very important consequence of the proposed sched-
uling would reduce drastically the radiation damage to
surrounding healthy tissues, evaluated in terms of nor-
mal tissue complication probabilities [126]. To achieve a
uniform treatment of the target volume, as for ablation,
the HT spots can be spaced in a raster by superimposing

Fig. 3 Comparison of relative glioblastoma cell survival by using different treatments, as illustrated in Table 2

Table 2 Parameter values along with bibliographic references of the curves shown in Fig. 3. “Time to offset” is the time for the tumor to
come back to the initial value. Curves n. 5 and 6 are calculated with 1-h delay between the end of RT and the beginning of HT. Curves 7
and 8 are calculated with 2-h delay between the end of RT and the beginning of HT

Number Title α (Gy−1) β (Gy−2) Minimum survival value Time to offset Reference

1 Only RX (unrealistic) 5.4 × 10−2 4.2 × 10−2 3.61 × 10−4 2.29 years [108]

2 Yu 2 Gy × 30–CSCs 1 × 10−2 1.25 × 10−1 1.77 × 10−7 2.8 × 10−2 1.66 × 10−2 210 days [122]

3 Yu–Extrapolated 1 × 10−2 1.25 × 10−1 1.77 × 10−7 2.8 × 10−2 – – Extrapolation of
the previous SF

4 Powathil 2 Gy × 30 2.7 × 10−2 2.7 × 10−3 1.89 × 10−1 226 days [20]

5 RX + HT 3 Gy × 12–1 h 3.36 × 10−1 8.7 × 10−2 2.897 × 10−8 4.61 years [108]

6 RX + HT 4.7 Gy × 6–1 h 3.36 × 10−1 8.7 × 10−2 4.986 × 10−8 4.48 years [108]

7 RX + HT 3 Gy × 12–2 h 3.36 × 10−1 8.7 × 10−2 3.286 × 10−7 4.02 years [108]

8 RX + HT 4.7 Gy × 6–2 h 3.36 × 10−1 8.7 × 10−2 4.986 × 10−7 3.91 years [108]
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the isolines (or, better, isosurfaces) 50% of the thermal
dose. There is no reason for the 50% isolines of our HT
to have a different shape or location compared to the
ablation treatment (Additional file 3).
The main limitation of our proposed treatment is that

the tumor volume assumed in our modeling only mea-
sures about 4–6 cm3. However, in the light of the
groundbreaking results described in this paper, max-
imum effort must be made to extend the size of the
tumor mass that we can cure. It can be noted that we
haven’t considered methods for drastically lowering the
frequency (220 kHz) to open the blood–brain barrier
(BBB) and improve drug delivery [127–130], with the
use of microbubbles [131, 132], nanoparticles [133–135],
or contrast media [136]. Such a strategy is highly prob-
lematic [137, 138].
The proposed treatment can increase the treated

region by using at least two different techniques.
Firstly: in the presence of radiation, the Sapareto–

Dewey law [124] may no longer be valid, and a different
model should be used to establish the time–temperature
equivalence. If we follow the Law [125] expression (for
every 1° increase, one third (not a half ) of the time
required for the same effect), the maximum temperature
of the HT pulse in Fig. 1 would be less than 50 °C, and
the useful impulse length would be about 6 s instead of
about 8 s (for the same effect). In addition, a lower
temperature HT pulse would require a lower ultrasonic
(US) intensity, which means a lower pressure. In turn, a
lower pressure on the skull would allow, at the same
level of safety with respect to a possible cavitation event,
a lower frequency. This latter would give a better US
transmission and a lower temperature on the skull,
thereby reducing the cooling time and allowing a larger
target volume to be treated.
Secondly: making better use of the heat that flows,

inside the target, from higher to lower temperature re-
gions. In this regard, different methods are described in
the literature of covering the tumor volume [139–143]
more efficiently than the point-by-point strategy adopted
here for simplicity.
In addition, it is important to consider correctly the

evolution of GBM. All the three more complete GBM
models mentioned in the text [47, 48, 51] predict that in
the evolution of the disease, the biologically active region
(proliferating and infiltrating) is pushed toward the
periphery of the tumor, while the central part becomes
progressively larger and necrotic. Therefore, it seems
reasonable to concentrate in this peripheral region both
radiation and HT. This would change radically the GBM
treatment planning and would reduce significantly the
region to be heated (and irradiated) [144].
In light of the above, there is significant room for im-

provement of the proposed technique.

As has been emphasized in relation to the results ob-
tained, these new implementations also require careful
experimental validation, but the door is open for a truly
effective and, possibly, life-saving GBM treatment.
Addendum: this paper is dedicated, in particular, to

our friends Mario Granata and Luciano Andreucci, who
died from this devastating disease.

Additional files

Additional file 1: Reports the results of four trials of clinical HT. (DOCX 18 kb)

Additional file 2: Reports US pulses fitted with the Parker's equation,
using nonlinear least squared method. (DOCX 21 kb)

Additional file 3: Location of isolines in ablative and HT US pulses.
(DOCX 19 kb)
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