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Abstract 

Cardiovascular complications are the major cause of the marked morbidity and mortality associated with chronic 
kidney disease (CKD). The classical cardiovascular risk factors such as diabetes and hypertension undoubtedly play 
a role in the development of cardiovascular disease (CVD) in adult CKD patients; however, CVD is just as prominent 
in children with CKD who do not have these risk factors. Hence, the CKD-specific pathophysiology of CVD remains 
incompletely understood. In light of this, studying children with CKD presents a unique opportunity to analyze CKD-
associated mechanisms of CVD more specifically and could help to unveil novel therapeutic targets.

Here, we comprehensively review the interaction of the human gut microbiome and the microbial metabolism of 
nutrients with host immunity and cardiovascular end-organ damage. The human gut microbiome is evolutionary 
conditioned and modified throughout life by endogenous factors as well as environmental factors. Chronic diseases, 
such as CKD, cause significant disruption to the composition and function of the gut microbiome and lead to disease-
associated dysbiosis. This dysbiosis and the accompanying loss of biochemical homeostasis in the epithelial cells of 
the colon can be the result of poor diet (e.g., low-fiber intake), medications, and underlying disease. As a result of 
dysbiosis, bacteria promoting proteolytic fermentation increase and those for saccharolytic fermentation decrease 
and the integrity of the gut barrier is perturbed (leaky gut). These changes disrupt local metabolite homeostasis in the 
gut and decrease productions of the beneficial short-chain fatty acids (SCFAs). Moreover, the enhanced proteolytic 
fermentation generates unhealthy levels of microbially derived toxic metabolites, which further accumulate in the 
systemic circulation as a consequence of impaired kidney function. We describe possible mechanisms involved in the 
increased systemic inflammation in CKD that is associated with the combined effect of SCFA deficiency and accumu-
lation of uremic toxins. In the future, a more comprehensive and mechanistic understanding of the gut–kidney–heart 
interaction, mediated largely by immune dysregulation and inflammation, might allow us to target the gut microbi-
ome more specifically in order to attenuate CKD-associated comorbidities.
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CKD‑associated cardiovascular disease in children 
and adolescents
The prevalence of chronic kidney disease (CKD) in chil-
dren continues to increase worldwide. The reported case 
numbers range between 10.7 and 74.7 per million of the 
age-related population [1–3]. Despite ongoing efforts to 
improve treatment, mortality is high among patients with 
CKD, primarily due to cardiovascular diseases (CVD) 
and progression to end-stage kidney disease (ESKD) [4, 
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5]. Thus, there is an urgent need to identify extra-renal 
comorbidities at an early stage and to assess patients’ risk 
factors in order to effectively modify therapeutical inter-
ventions and therefore reduce mortality in children with 
CKD [6].

The lifespan of pediatric patients with ESKD is 30–40 
years below that of healthy children [7]. While CVD is 
absent in healthy children, cardiovascular events account 
for 40–45% of deaths in children with ESKD [7–9]. The 
relevance of CVD in CKD has been highlighted in a 
statement by the American Heart Association, which 
classifies CKD patients in the highest cardiovascular risk 
stratification alongside individuals with homozygous 
familial hypercholesterolemia, diabetes mellitus type 1, 
heart transplants, or coronary aneurysms due to Kawa-
saki disease [4, 8, 10].

Adult CKD patients also have a drastic increase in car-
diovascular morbidity [5]. In adults, the CVD is mainly 
driven by the primary courses of CKD: diabetes and 
arterial hypertension. However, these comorbidities 
and underlying diseases are usually absent in children 
with CKD. Thus, in the absence of confounding classical 
risk factors, cardiovascular mortality is expected to be 
induced largely by CKD-specific mechanisms.

This hypothesis is underlined by the observation that 
unlike in the aging population, pediatric patients with 
CKD rarely show symptomatic atherosclerosis classi-
cally associated with a consecutive calcification of the 
tunica intima of arteries [11]. By contrast, current data 
suggest the early occurrence of endothelial dysfunction 
in ESKD with diffuse nonocclusive medial calcification, 
known as Mönckeberg’s arteriosclerosis [12–14]. Medial 
calcification leads to arterial wall stiffening and thus 
reduces the compliance and elasticity of arteries result-
ing in increased systolic pressure and cardiac workload. 
Subsequently, the development of endothelial dysfunc-
tion and vascular calcification results in left ventricular 
hypertrophy and myocardial fibrosis, which can lead to 
sudden cardiac death by arrhythmia or cardiac failure [9, 
15]. Recently, studies have focused on translating these 
morphologic findings into clinical surrogate parameters 
indicating the progression of CVD. In fact, a prospective 
observational study in more than 700 European children 
identified key criteria for the development of CVD such 
as carotid intima-media thickness (cIMT), pulse wave 
velocity (PWV), left ventricular mass (LVM), and vas-
cular calcification [16–18]. Highly significant is the fact 
that vascular remodeling, myocardial adaptation, and 
arterial stiffening are clinically detectable in many chil-
dren at early times when symptoms of CVD may still be 
absent [19].

The hypothesis of arteriosclerosis being an inflamma-
tory disease was first postulated by Ross et  al. in 1999 

[20]. More recently, approaches using anti-inflammatory 
therapy directed against prominent cytokines, namely 
canakinumab against interleukin 1 beta, in the secondary 
prevention of arteriosclerosis have further highlighted 
the pivotal role of inflammation in the pathophysiol-
ogy of cardiovascular complications [21]. In fact, plasma 
concentrations of pro-inflammatory cytokines are con-
sistently elevated in CKD and oxidative stress is linked 
to inflammation by activating the nuclear factor “kappa-
light-chain-enhancer” of activated B-cells (NF-κB) and 
inducing pro-inflammatory cytokines [22].

As it became clear that chronic inflammation consti-
tutes one of the main risk factors of CVD [20], increas-
ing attention has been paid to the intestinal microbiome, 
its metabolism, and its interaction with host inflamma-
tory status. Although data is limited on the inflamma-
tory status of pediatric patients with CKD, results from 
studies with adult patients and animal experiments high-
light the interaction of the gut microbiome, kidneys, and 
immune system as a crucial contributor to CVD pathol-
ogy [23–31].

In this review, we provide an overview of the mecha-
nisms involved in CKD-associated alterations of the gut 
microbiome, the microbially produced metabolites, and 
their relation to the development of CVD. Particularly, 
we focus on bacterial and host metabolism of amino 
acids, such as tryptophan (TRP) and tyrosin (TYR), as 
well as the influence of short-chain fatty acids (SCFAs). 
While of limited epidemiological importance, research 
in pediatric CKD patients enables the investigation of 
CVD mechanisms specific to kidney disease independent 
of other risk factors and therefore can extend our patho-
physiological understanding of CVD in CKD. Further-
more, we discuss novel therapeutic approaches based on 
the understanding of the microbiome and its metabolites 
that could help lower the enormous burden of cardiovas-
cular morbidity and mortality in patients suffering from 
CKD.

The intestinal microbiome and microbiome–host 
interactions in health and CKD
The microbiome is defined not only by a community of 
microorganisms living in a defined environment (micro-
biota), but also by the whole spectrum of molecules pro-
duced by the microorganisms (including nucleic acids 
and metabolites) and the surrounding environment [32].

In 2007, the Human Microbiome Project was launched 
to improve the understanding of the enormous diver-
sity of microbial flora. Most strikingly, it refuted the 
assumption that humans share a large core of microbial 
taxa, sprinkled with a few lineages that make each indi-
vidual unique. Quite the contrary, interindividual differ-
ences are substantially greater than previously expected 
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[33–37]. This observation was consolidated by the 
European Union project METAgenomics of the Human 
Intestinal Tract (MetaHIT). This study showed that a 
microbial species found with up to 10% abundance in one 
individual can be as rare as one cell in 1000 in another 
participant within the cohort. In summary, these find-
ings indicate an extraordinarily complex and dynamic 
consortium of bacteria residing in the human gut which 
consistently responds to internal and external stimuli 
[38–40]. Despite substantial differences in the abundance 
of microbial species in the human gut microbiota, a 
larger overlap of genes encoding for metabolic functions 
exists [41]. Taken together, healthy microbiomes may dif-
fer significantly in species abundance, but the metabolic 
potential of the gut microbiome from different individu-
als share common overlapping features.

Bacteria–host interaction: how the gut microbiome 
is shaped throughout life
During the human lifetime, the intestinal flora under-
goes dynamic changes with the most substantial altera-
tions occurring during childhood [42, 43]. Recently, it 
has been shown that meconium before birth is indeed 
sterile; however, contrary to a widespread assumption, 
newborns are not sterile at birth. In fact, the vaginal 
flora evolves throughout pregnancy to provide the new-
born with beneficial microbes, such as Lactobacillus 
and Prevotella which are transmitted to the child dur-
ing birth [44–46]. These maternally provided micro-
bial communities occupy niches and protect newborns 
from the colonization of pathogens. Interestingly, while 
children born through vaginal delivery share a signifi-
cant proportion of 16S rRNA sequences with their bio-
logical mother for up to 2 years, the gut residing in the 
gut of children born via cesarean section (C-section) 
is more similar to the hospital environment and the 
mother’s skin. This may contribute to the 64–82% higher 
risk to sustain skin infections with methicillin-resistant 
Staphylococcus aureus in the case of neonates deliv-
ered via C-section compared to vaginal birth. Although 
not proven yet because of the high risk of confounding 
factors, the altered composition of gut microbiota that 
results from C-section births may be associated with an 
increased risk of obesity, atopic diseases like asthma, and 
Crohn’s disease in later life [47–52].

Despite the mode of birth, breastfeeding is among the 
most influential perinatal factors shaping the intesti-
nal microbiome composition, partly by providing both a 
source of beneficial commensals, including Staphylococci, 
Streptococci, lactic acid bacteria, and Bifidobacteria [53], 
and human milk oligosaccharides as an energy source 
for beneficial gut bacteria [54]. In the neonatal period, 
the composition of the gut microbiome is very dynamic, 

starting at low levels of distinguishable taxa, dominated 
by Proteobacteria and Actinobacteria and successively 
changing toward a more diverse population with Fir-
micutes and Bacteroidetes emerging and dominating the 
local environment in older individuals [36, 55]. These life 
changes are reflected in a noticeable difference in the Fir-
micutes/Bacteroidetes ratio between infants and adults 
(ratio 0.4 and 10.9, respectively). Interestingly, ratios in 
the elderly tend toward values more similar to those in 
infants [56–58].

However, the relationship between the gut microbi-
ome and health and disease is complex. Our knowledge 
of variation in the intestinal microbiome composition 
across the human lifetime remains, at best, superficial.

Whereas large cohort studies provided in-depth data 
to generate a microbiome profile in the adult population, 
much less is known about the microbiome of children 
and adolescents [59]. A recent study involving 16S rRNA 
sequencing of microbiome fecal samples from 2111 chil-
dren in the age range of 9 to 12 years revealed a signifi-
cantly lower Shannon diversity than the adult control 
group suggesting that the immature microbiome funda-
mentally differs from that of adults. Metagenome analysis 
provided additional information showing that these com-
positional differences also reflect in functional metabolic 
disparities including the overrepresentation of vitamin B 
biosynthesis pathways (riboflavin: B2, pyridoxine: B6, and 
folate: B9) and a predominance of catabolic amino acid 
metabolism (Valin, Leucin, and Isoleucin) in children 
[59, 60]. Once established, the human gut microbiome 
remains relatively stable over time. However, a plethora 
of factors can impact the gut microbiome: medication, 
which is not limited to antibiotics [50, 61–63], but also 
includes proton pump inhibitors [64, 65] and laxatives; 
diet (fiber, artificial sweeteners, and sodium chloride 
intake) [66–68]; chronic autoimmune, inflammatory, 
metabolic, and neurodegenerative diseases [69–72]; 
genetics [73]; stress [74]; exercise [75]; surgeries [76]; 
geography [77]; and aging itself [78, 79]. In summary, it 
is commonly accepted that many influences shape the gut 
microbiome over time.

The benefits of symbiosis in the gut microbiome 
of healthy individuals
The host–microorganism relationship can generally be 
defined as symbiotic as the respective partners not only 
coexist without detriment but benefit from each other. 
The resident bacteria metabolize dietary components, 
which are otherwise inaccessible for humans, such as 
fiber. The microbiota is not only beneficial in the diges-
tion of complex polysaccharides but also a key player in 
amino acid homeostasis (lysine and threonine), absorp-
tion of vitamins (vitamin K and B groups), metabolism 
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of bile acids, and integrity of the intestine barrier and 
protecting against pathogens [31, 80–84]. In addition, 
the gut microbiome is crucial for host immune system 
maturation. This has been clearly demonstrated in animal 
studies, whereby mice devoid of a gut microbiota have an 
immature immune system phenotype with low lympho-
cyte counts and diminished cytokine production, which 
could be reversed within 3 weeks by restoring normal 
flora [85, 86].

Recent technological advances enabling functional 
readouts provide an in-depth understanding of the physi-
ological state of an organism via genomics, proteomics, 
and metabolomics approaches by detecting small mole-
cule substrates and intermediates of metabolism. In addi-
tion, the use of germ-free animal models complements 
the multi-omics approaches and provides insights into 
fundamental mechanisms of host–microbiome interac-
tions [87]. Despite the advances in understanding micro-
bial taxonomic composition, we are just beginning to 
assemble the necessary experimental and computational 
tools to understand the functional metabolic capacities 
of the gut microbiome. The bacterial genome of the gut 
vastly exceeds the complexity of the human genome, with 
many levels of potential further diversity resulting from 
branching and combinations of compounds like lipids 
and oligosaccharides. Thus, thanks to rapid advances in 
technology, we are at the leading edge of understanding 
the interplay of gut microbiota, metabolic changes, and 
the immune system [39, 88].

Saccharolytic and proteolytic fermentation processes
Were it not for bacterial fermentation by the gut micro-
biota humans would not be able to extract nutrients and 
healthy beneficial compounds from dietary fiber [89].

There are two main pathways of bacterial fermentation: 
saccharolytic and proteolytic fermentation. Saccharolytic 
fermentation takes place primarily in the proximal colon 
[90] and involves the extraction of energy from complex 
oligosaccharides (α-glucans and non-α-glucan oligosac-
charides) and polysaccharides (resistant starch, inulin, 
pectin, and cellulose), all of which are characterized by 
beta-glycosidic links that cannot be processed by human 
enzymes.

The saccharolytic fermentation of complex carbohy-
drates produces SCFAs. The most abundant with 60% 
being acetate—consisting of two carbon molecules (C2), 
followed by propionate (C3) at 25%, and butyrate (C4) 
at 15% [91–94]. SCFAs are naturally produced in small 
quantities in the liver; however, the proximal colon is 
their primary site of production [95]. A growing body 
of evidence suggests numerous mechanisms whereby 
SCFAs facilitate effects on gut health, including nutri-
ent supply [96], gut motility [97], barrier function of 

colonocytes [31, 98], and “competitive exclusion” (para-
phrasing the limited access of pathogenic bacteria to 
the gut epithelium due to expanding commensal bacte-
ria [99]). Over and above this, numerous studies suggest 
that SCFAs modulate an individual’s inflammation state 
by affecting recruitment, trans-migration, and cytokine 
production of immune cells [31, 100–104]. However, the 
functional effects of these gut-derived metabolites on 
endothelial and immune cells within the intestine remain 
elusive [104, 105].

Whereas the major proportion acetate and propion-
ate are rapidly absorbed and utilized by colonocytes or 
metabolized by the liver [96, 99, 105, 106], a compara-
tively low concentration of butyrate is found in the sys-
temic circulation. Commonly, this is explained by the fact 
that the four-carbon molecule is a major energy substrate 
of colonocytes, thus being primarily utilized locally [96]. 
The dependence of colonocytes on bacterial-derived 
SCFAs was elegantly demonstrated in a study by Dono-
hoe et  al. who showed an impaired metabolic state in 
the colon of germ-free mice as measured by ATP deple-
tion and autophagy in gut epithelial cells, which could be 
reversed by butyrate supplementation [107].

Proteolytic fermentation, as its name implies, is the 
breakdown of protein in the absence of oxygen, mainly 
within the distal part of the colon. It has been shown that 
several metabolites resulting from peptides that escape 
digestion in the small intestine are precursors of harm-
ful toxins including ammonia as well as thiols, phenols, 
and indoles [31, 99]. Consequently, it was postulated that 
a saccharolytic fermentation pattern is more favorable 
and that an imbalance toward more proteolytic bacterial 
activity could indeed be a pathophysiologic contributor 
in various diseases such as CKD.

CKD‑associated alterations in the gut microbial 
composition: dysbiosis
It was proposed that the accumulation of uremic tox-
ins profoundly changes the biochemical environment 
in the gut and exerts a selection pressure that may favor 
microbes capable of using these substrates [108–110]. 
Vaziri et  al. were the first to describe quantitative and 
qualitative alterations in the composition of gut micro-
biota in patients with CKD [69]. Since then, significant 
differences in the abundance of several bacterial spe-
cies have been demonstrated in patients with CKD and 
their adverse consequences gained increasing attention. 
There is a general consensus that expansion of proteolytic 
bacteria with urease, p-cresol-producing enzymes, and 
indole-forming enzymes contributes to the production of 
nitrogen-containing compounds and, consequently, the 
accumulation of uremic toxins in CKD. Relevant proteo-
lytic bacterial families include Ruminococcacae (phylum 
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Firmicutes), Enterobacteriaceae (phylum Proteobacte-
ria), and Pseudomonadaceae (phylum Proteobacteria). In 
addition, saccharolytic bacteria with enzymes essential 
for SCFA production, i.e., Roseburia (phylum Firmicutes), 
Bifidobacterium (phylum Actinobacteria), Prevotellaceae 
(phylum Bacteroidetes), and Lactobacillaceae (phylum 
Firmicutes), are depleted in patients with ESKD in com-
parison to healthy controls [26, 69, 108, 111–114]. In 
conclusion, these findings indicate a shift toward a pro-
teolytic fermentation pattern that further contributes to 
the accumulation of uremic toxins fueling inflammation 
and eventually resulting in CVD and disease progression.

While adaptions of the intestinal flora to CKD-charac-
teristic micro-environmental changes have been exten-
sively reviewed in adult populations, to the best of our 
knowledge, only two small cohort studies exist that focus 
on alterations of the intestinal flora in children with CKD.

In 2015, the Midwest Pediatric Nephrology Consor-
tium study highlighted a significant decrease in bacterial 
diversity in peritoneal dialysis (PD) patients when com-
pared to healthy controls. Additionally, the composition 
of bacterial communities showed marked separations 
between pediatric CKD patients and healthy controls. 
Whereas at a family level the relative abundance of Pro-
teobacteria and Enterobacteriaceae was increased, Bifi-
dobacteria decreased in PD and transplant patients. Both 
findings are generally in line with results in adult micro-
biome studies in CKD [115, 116]. Pediatric PD patients 
exhibit an increase in the relative abundance of proteo-
lytic Proteobacteria and, at a family level, Enterobacte-
riaceae. Furthermore, evidence for depleted amounts 
of beneficial SCFA-producing bacteria, including Act-
inobacteria and Bifidobacteriacae, has been presented at 
least at the RNA level [115, 116].

Factors contributing to dysbiosis
There are numerous factors contributing to intestinal 
dysbiosis, which are also summarized in Fig. 1 [80, 117]. 
Diet is perhaps the most significant environmental fac-
tor affecting the gut microbiota in both diseased and 
healthy individuals. In CKD, dietary restrictions are 
invariably imposed to prevent fluid overload, hyperka-
liemia, and oxalate overload. Most significant with regard 
to gut health and the microbiome is the low consump-
tion of fruit and vegetables and dietary fiber among CKD 
patients. This restricted intake of complex carbohydrates 
reduces the abundance of bacterial phyla capable of uti-
lizing these substrates. Consequently, the normal sym-
biotic relationship is disturbed, markedly affecting the 
composition, function, and metabolism of gut microbiota 
and conferring the potential to significantly alter the bio-
chemical milieu in the CKD population [31, 69, 108].

Moreover, constipation is highly prevalent in CKD. It 
has been shown that in states where dietary fiber intake 
is low, as it holds true in CKD, the expansion of prote-
olytic bacteria may lead to a degradation of the goblet 
cell-derived mucin 2 (MUC-2) layer, which under nor-
mal circumstances facilitates the nutritional transit by 
lubricating the gut’s surface. A slower transit time affects 
uremic toxin generation by increasing the availability of 
amino acids to be fermented by proteolytic bacteria [118, 
119]. The accumulation of these toxins in turn exacer-
bates intestinal dysmotility via intestinal inflammation, 
thereby forming a vicious cycle of constipation coupled 
with enhanced uremic toxin production, which again 
increases transit time [97, 120, 121].

In addition, muscle wasting is common in CKD, fur-
ther exacerbating the advancing issue of uremia, which 
ultimately leads to increases in colonic pH and dysbiotic 
alterations. Generally, protein catabolism creates prob-
lems in terms of nitrogen elimination and requires con-
version to urea within the ornithine cycle in the liver in 
order to reduce toxicity. The intestinal microbiota can 
further utilize urea to produce the sulfate-containing 
amino acids lysine and threonine and thus play a key role 
in nitrogen recycling [89]. However, in CKD, the rise in 
retention solute concentrations in the body fluids leads to 
its massive influx into the gut lumen. Within the intesti-
nal tract, urea is hydrolyzed by microbial urease leading 
to the formation of ammonia [CO(NH2)2 + H2O → CO2 
+ 2NH3]. Ammonia is, in turn, converted to ammonium 
hydroxide [NH3+ H2O → NH4OH] which elevates the 
gut’s luminal pH and causes mucosal damage and entero-
colitis [109, 122]. Accordingly, it has been proposed that 
the accumulation of uremic toxins profoundly changes 
the biochemical environment in the gut and drives a 
selection pressure that favors microbes capable of using 
these uremic toxins as substrates by proteolytic instead 
of saccharolytic fermentation [108–110]. Indeed, data in 
adults revealed a relative increase in microbes with ure-
ase, uricase, and indole- and p-cresyl-forming enzymes 
[108, 113, 114]. Interestingly, it has been demonstrated 
that once returned to the typical pH of 5.5 from abnor-
mal high pH levels (6.8), the production of gut-derived 
uremic acids could be reduced by approximately 33%. 
Remarkably, this effect was doubled (60% reduction) in 
the presence of fermentable carbohydrates [123–125].

In addition, pharmaceuticals are known to have an 
important impact on dysbiosis in CKD. Antibiotics are 
frequently prescribed in CKD to treat inter alia vascular 
access infection and account for a considerable loss in 
key bacteria taxa [61, 62, 126].

Finally, iron-containing phosphate binders to pre-
vent secondary hyperparathyroidism are associated 
with increased production of uremic toxins and cIMT, 
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which may be due to an iron-dependent expansion of 
the phylum Proteobacteria and a general decrease in the 
abundance of beneficial saccharolytic species such as 
Lactobacillus and Bifidobacterium [108, 126–128].

Crosstalk between the gut microbiome and target 
organs in CKD via microbially derived metabolites
Microbially derived uremic toxins as drivers 
of cardiovascular disease
In CKD, the uremic syndrome is attributed to the pro-
gressive loss of excretory function, which inevita-
bly results in the retention of a variety of substances. 
These retention solutes are found to exert toxicity that 
affects numerous biological functions, hence referred 
to as uremic toxins [129]. According to the European 
Uremic Toxin (EUTox) Work Group, they can be clas-
sified into three physicochemical categories based on 
the molecular weight and kinetic behavior during dialy-
sis. Besides small water-soluble molecules (molecular 
weight (MW) ≤ 500 Da—i.e., urea and phosphorus) and 
middle-sized molecules (MW ≥ 500 Da—i.e., parathy-
roid hormone and β2-microglobulin), the third group 
consists of plasma-bound compounds like indoxyl sul-
fate (IS) and p-cresol sulfate (PCS). The latter have long 
been neglected with respect to their pathophysiological 
importance despite their tendency to accumulate during 
dialysis due to being mostly albumin bound and there-
fore not filtered out [27, 130, 131].

Uremic toxins mainly result from proteolytic fermen-
tation of amino acids in the intestine. Therefore, the 
generation of these toxins depends mainly on nutri-
tional intake and on microbial dysbiosis in CKD, favor-
ing proteolytic fermentation as described above. The 
role of the microbiota in the generation of uremic toxins 

has been emphasized in a study of hemodialysis patients 
who received a colectomy. The authors demonstrated 
the absence of more than 30 uremic toxins in this study 
group highlighting the colon microbes as a prime con-
tributor to the uremic milieu present in CKD patients 
[132].

Among the metabolic pathways associated with ure-
mic toxicity, tryptophan (TRP) metabolism has been the 
focus of numerous studies (Fig. 1). Although tryptophan 
is an essential amino acid, less than 1% is used for pro-
tein synthesis. The vast majority serves as a biosynthetic 
precursor for distinct microbial metabolization path-
ways generating serotonin, melatonin, kynurenine, and 
indoles [133]. Approximately 95% of TRP is converted to 
kynurenine (KYN) by the enzymes tryptophan 2,3-dioxy-
genase (TDO) and indoleamine 2,3-dioxygenase (IDO). 
In adult CKD, metabolites of the KYN pathway such as 
kynurenic acid and xanthurenic acid have been linked to 
chronic inflammation [134, 135], mineral bone disease 
[136], thrombosis [137, 138], and cognitive impairment 
[135]. A variable portion of dietary TRP is catabolized to 
indole metabolites by intestinal bacteria, which express 
enzymes such as tryptophanase [139]. Indoles are further 
metabolized by gut microbiota and the liver to indoxyl-
sulfate (IS), the prototype of microbially derived uremic 
toxins [140].

The accumulation of uremic toxins in adult CKD 
patients has been repeatedly described and is associated 
with the progression of kidney disease and its comorbidi-
ties, first and foremost CVD [141–143]. Subsequently, 
pediatric nephrologists started to pay attention to these 
gut-derived uremic toxins and their impact on CKD-
associated comorbidities. Initial studies showed that hip-
puric acid (HA), indole acetic acid (IAA), IS, and PCS 

Fig. 1  Schematic overview of CKD-specific conditions that influence the local biochemical milieu in the colon (A) and contribute to alterations 
in the composition and metabolism of the gut microbiome (B) leading to disruption of the epithelial barrier function (leaky gut), inflammation, 
and cardiovascular end-organ damage (C). A In healthy individuals, the biochemical balance in the colon is maintained through a diet rich in fiber 
providing an energy source for colonocytes and stabilizing local pH as well as downstream metabolism of intestinal microbiota. In contrast, in 
CKD, several circumstances contribute to a disturbance of biochemical hemostasis. Dietary restrictions (low-fiber diet), oral intake of medications 
(e.g., antibiotics and phosphate binders), and muscle wasting promote an accumulation of peptides in the gut. Additionally, urea is converted by 
bacterial-derived urease to ammonium hydroxide which increases the gut pH. Lastly, constipation promotes a prolonged transit time of these 
metabolites exerting selection pressure on intestinal bacteria. B Under normal circumstances, humans benefit from the symbiotic relationship 
with their gut microbiota by saccharolytic fermentation of complex carbohydrates resulting in the production of SCFA namely acetate, propionate, 
and butyrate. Whereas butyrate is mainly used by epithelial cells as a nutrient source, acetate and propionate enter the systemic circulation. 
Generally, SCFAs promote gut epithelial integrity and balance systemic regulation of adaptive immunity and modulate inflammation response. In 
CKD, dysbiotic changes are characterized by a shift in the fermentation pattern of bacteria from a health-promoting saccharolytic to a proteolytic 
fermentation. This alteration not only leads to a decrease in local and systemic SCFA concentration but also promotes fermentation of amino 
acid tryptophan and tyrosine to uremic acid precursors indoles and cresols respectively. C Intestinal barrier dysfunction (leaky gut), enforced 
by dysbiosis and local metabolite imbalance, promotes paracellular migration of bacteria and uremic toxins. Renal excretion decline inevitably 
induces accumulation of these bacterial-derived metabolites. Moreover, lymphocytes infiltrate the colonocytes’ lamina propria and enter systemic 
circulation resulting in a state of chronic low-grade inflammation. All these factors finally promote endothelial calcification and cardiovascular 
disease. CKD chronic kidney disease, Tyr tyrosine, Trp tryptophane, Phe phenylalanine, SCFA short-chain fatty acid, VSMC vascular smooth muscle 
cell

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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were indeed elevated in pediatric CKD patients [131, 
144]. Recently, further investigations provided insights 
into the clinical implications of elevated serum levels of 
uremic toxins in pediatric CKD. Our work has demon-
strated that IS concentration not only inversely correlates 
with the estimated glomerular filtration rate (eGFR) but 
also associates with disease progression and cardiovas-
cular morbidity, independent of other known risk factors 
like proteinuria or blood pressure [127, 145].

While not yet shown in children, detailed mechanisms 
of the accumulation of uremic toxins leading to CVD in 
adult CKD patients have been demonstrated [27, 141, 
146–149]. In brief, the uremic milieu provokes endothe-
lial production of reactive oxygen species (ROS) lead-
ing to a pro-inflammatory state in which the NOD-like 
receptor proteins (NLRP3) of the inflammasome are 
activated and downstream cytokine production pro-
moted (e.g., IL-6). The downstream transcription of sev-
eral adhesion molecules ultimately results in endothelial 
dysfunction [150]. IS is perhaps the best characteristic of 
the gut-derived uremic toxins and recent work focusing 
on this metabolite suggests its interfering role regarding 
oxidative stress levels as it was shown to stimulate the 
generation of free radicals by activation of NADPH oxi-
dase [151]. Moreover, IS induces vascular smooth mus-
cle cell (VSMC) proliferation, reduces endothelial repair, 
and promotes vascular calcification via its binding to the 
nuclear aryl hydrocarbon receptor (AhR) and activation 
of the NF-κB signaling pathway [152–154]. In the clinical 
context, studies point toward an association of serum IS 
levels with surrogate markers of CVD, namely cIMT and 
PWV [127].

Decrease of SCFA induces a pro‑inflammatory 
and proatherogenic milieu in CKD
The reduced abundance of SCFA-producing bacteria 
in the gut of CKD patients is coupled with a marked 
decrease in SCFA in the blood (Fig.  1) [31]. SCFAs are 
key regulators of inflammation via a number of interac-
tions. They can modify the transcription of genes respon-
sible for leukocyte rolling and subsequent adhesion and 
migration of immune cells. Additionally, they play an 
essential role in controlling the production of pro-inflam-
matory cytokines. The binding of SCFA to different intra-
cellular and extracellular receptors is discussed below, 
and potential mechanistic insights into the link between 
gut-derived metabolites and their potential to control 
immune function are highlighted [105].

SCFAs, particularly butyrate and propionate, are shown 
to be effective non-competitive inhibitors of the histone 
deacetylase (HDAC) enzyme in a millimolar range, which 
lays within the physiologic concentration of SCFA in 
the lumen of the colon (from 20–70 mmol/l proximally 

to 70–140 mmol/l distally) [94, 155, 156]. Interestingly, 
evidence shows that these two SCFAs can modulate 
endothelial and immune cell inflammation by inhibition 
of HDAC [99, 105, 157, 158]. Recent studies revealed the 
potential of SCFAs to lower levels of LPS-induced TNFα 
production in mononuclear cells via inhibition of NF-κB 
[159]. In detail, deacetylation of p65, a subunit of NF-κB, 
enhances its binding to the inhibiting molecule IκBα in 
the nucleus and may result in the export of NF-κB com-
plexes back to the cytoplasm, where it cannot deploy its 
transcriptional pro-inflammatory activity [160]. Impor-
tantly, the order of potency for NF-κB suppression 
butyrate > propionate > acetate coincides with the order 
of HDAC suppression activity [161, 162].

It has been observed that HDAC inhibitors induce 
IL-10 gene expression in regulatory T cells (Tregs) and 
elevate suppression capacity of Tregs thereby provid-
ing further mechanistic insights explaining SCFA’s 
anti-inflammatory capacity, as colonic Tregs limit prolif-
eration of effector CD4+ T cells (Teff) and thus control 
inflammation [163]. More specifically, Clostridia species 
known as high butyrate producers are the most potent 
inducers of de novo generation of inducible colonic Tregs 
(iTregs) in the large intestine [164–166]. In germ-free 
mice, SCFAs, in particular propionate (C3), increase both 
the absolute count and the proportion of Tregs and aug-
ment their immune suppressive function [104]. Current 
data reveal the potential of SCFA to induce the produc-
tion of anti-inflammatory cytokines such as IL-10 and 
the repression of pro-inflammatory molecules IL-12, 
TNFα, IL-1β, and NO by inhibiting NF-κB activity 
[101, 103, 155, 159]. Moreover, the most potent inhibi-
tor of HDACs butyrate (80% inhibitory efficiency) pro-
tects against vascular inflammation and atherosclerosis, 
thereby modulating oxidative stress and endothelial func-
tion [167, 168]. Still, the broad spectrum of HDACs with 
pleiotropic and even divergent effects on transcriptional 
responses should be kept in mind, bearing future topics 
of research, e.g., if and by which pathways different types 
of HDAC mediate the effects of SCFAs on colonocytes 
and immune cells.

SCFA may also act through binding to specific mem-
brane-bound receptors. In this context, two free fatty 
acid receptors (FFA-R) are discussed in more detail. In 
both cases, the carbon molecule chain length dictates 
their respective activation potential. SCFAs acetate and 
propionate bind to FFA2-R (G protein-coupled recep-
tor, GPR43) that is primarily expressed on neutrophils, 
eosinophils, dendritic cells, and monocytes suggesting 
their role in inflammatory responses [169]. Activation 
of FFA2-R results in an attenuated NF-κB response with 
downregulated release of pro-inflammatory cytokines, 
including IL-6 and IL-1beta. This effect may be mediated 
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by β-arrestin—a regulator of G protein-coupled recep-
tors, as demonstrated by restored cytokine production 
upon β-arrestin-2 knockout [170]. Conversely, FFA3 
receptors (GPR41) are most efficiently activated by 
C3-C4 SCFAs; thus, propionate and butyrate present 
the main activators [171, 172]. FFA3 receptors are infre-
quently expressed on immune cells but rather on the 
surface of the pancreas, spleen, and adipose tissue [172]. 
Their implications in obesity and metabolic disorder are 
widely recognized [172]. Despite the lower abundance of 
FFA3 receptors on immune cells, studies still suggest an 
anti-inflammatory potential of butyrate and propionate. 
In short, activation of the FFA3 receptor decreased LPS-
induced TNFα expression as well as MCP-1, IL-6, and 
inducible nitric oxide synthase (iNOS) levels naturally 
released by monocytes and neutrophils [105, 155, 173].

At the same time, data from recent studies emerged 
pointing toward a pro-inflammatory effect of FFA2-R and 
FFA3-R activation accompanied by increased production 
of IL-6, CXCL1, and CXCL2 [99].

Data on SCFAs and their influence on immune cell 
migration are sometimes contradictory. While some 
research shows induction of neutrophil recruitment by 
SCFAs followed by migration to the cite of inflammation 
via binding to FFA2-R following MAPK activation, other 
studies demonstrate the capacity of butyrate to suppress 
the expression of adhesion molecules such as VCAM-
1, ICAM-1, lymphocyte function-associated antigen-3 
(LFA-3), and L-selectin [100, 102, 155, 174, 175] via inhi-
bition of histone acetylation and NF-κB-suppression. As 
this may lead to a lower incidence of adhesion and migra-
tion of macrophages to vascular lesion areas, it is tempt-
ing to speculate the potential of SCFAs as an influential 
mediator in the prevention of arteriosclerosis [176].

Concerning vascular inflammation, another 
GPR109A also known as hydroxyl-carboxylic acid 2 
(HCA2) has been reported to decrease cytokine secre-
tion of TNFα, IL-6, and MCP-1 and, as a result, allevi-
ate the effect on the progression of arteriosclerosis. Of 
the main SCFAs, butyrate shows the highest potential 
for GPR109A activation and is shown to inhibit ROS 
production [105, 177, 178].

To conclude, inflammatory regulation properties of 
SCFA on endothelial and inflammatory cells within the 
human gut are complex. A growing body of evidence sug-
gest their potential to modulate inflammation, cytokine 
production, and immune cell migration likely medi-
ated through binding of extracellular G protein-coupled 
receptors and inhibition of histone deacetylases which 
regulate gene transcription, which is summarized in 
Fig.  2. However, due to the pleiotropic effects of SCFA, 
which are summarized in Table 1, the exact mechanisms 
by which they promote or inhibit inflammation and con-
sequently CVD remain elusive.

Vicious cycle of uremia, loss of gut symbiosis, 
and disrupted barrier functions (leaky gut)
The intestinal epithelium is at the center of interac-
tions between the immune system and luminal con-
tent of the gut including microbes, microbial products, 
and dietary compounds. Hence, its primary role is to 
maintain balance whereby invasion of pathogens is pre-
vented and simultaneously provide selective perme-
ability allowing immune stimulation and nutritional 
uptake. Disruption of epithelial integrity leads to local 
and systemic inflammation and is intensively discussed 
to modulate the initiation and progression of several 
diseases [179].

(See figure on next page.)
Fig. 2  Overview on the effect of SCFAs, LPS, and TNFα on gene transcription of inflammatory cytokines and adhesion factors involved in immune 
cell activation and promotion of endothelial dysfunction. LPS and TNFα bind to their receptor and activate downstream MAPK and NF-κB 
signaling through phosphorylation and subsequent ubiquitination of I-κB (inhibitory subunit of NF-κB) resulting in its degradation thus inducing 
gene transcription of pro-inflammatory molecules. SCFA pleotropic effects on inflammation are mediated through binding of extracellular G 
protein-coupled receptors as well as its potential to inhibit histone deacetylation. Acetate and propionate primarily bind to FFA2-R/GPR43 which are 
expressed on immune cells and may inhibit proteasomal degradation of I-κB via β-arrestin attenuating NF-κB response. Additionally, contrary effects 
of FFA2-R/GPR43 activation are shown as SCFA binding initiates downstream MAPK signaling. SCFA butyrate dictates activation of G protein-coupled 
receptor FFA3-R/GPR41 and GPR109 which decreases LPS-induced expression of TNFα, MCP-1, IL-6, and inducible nitric oxide synthase (iNOS). 
Confliction to its anti-inflammatory effect butyrate is also shown to enhance MAPK signaling via its binding to extracellular G protein-coupled 
receptor FFA3-R/GPR41. Despite receptor signaling, SCFAs are potential non-competitive inhibitors of histone deacetylases (HDACs). These enzymes 
facilitate a decrease in the interaction of histones to the DNA, hence promoting gene transcription. Furthermore, HDAC enhances acetylation status 
and thus inhibitory interaction potential of MKP-1 to MAPK and in this way attenuates downstream pro-inflammatory gene transcription. Lastly, 
SCFAs may decrease proteasome activity through HDAC and inhibit TNFα-induced NF-κB activation normally mediated by the degradation of 
I-κB. GPR G protein-coupled receptor, LPS lipopolysaccharides, TNFa tumor necrosis factor a, cAMP cyclic adenosine monophosphate, PKA protein 
kinase A, PI3K phosphoinostide 3-kinase, MAPK mitogen-activated protein kinase, MEK mitogen-activated protein kinase kinase, aMKP acetylated 
mitogen-activated protein kinase phosphatase, HDAC histone deacetylase, NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells, 
I-κB inhibitor of nuclear factor kappa B, MCP-1 monocyte chemoattractant protein-1, ICAM intercellular adhesion molecule, VCAM vascular adhesion 
molecule, iNOS inducible nitric oxide synthase, CXCL chemokine ligand
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Fig. 2  (See legend on previous page.)
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As paracellular transport is generally more permeable 
than a transcellular pathway, structural components, par-
ticularly the tight junction proteins occludin and claudin, 
are principal determinants of gut integrity and prevent 
unregulated passing of nutritional antigens and microbes 
[31, 180, 181]. In uremic CKD patients, barrier dysfunc-
tion is common and there is mounting evidence for its 
pivotal role in the pathogenesis of systemic low-grade 
inflammation as well as its contribution to end-organ 
damage. Leaky gut facilitates endotoxemia with no clini-
cal signs of infection and massive infiltration of mononu-
clear leukocytes in the lamina propria accompanied by a 
marked thickening of the colonic wall [182]. Further evi-
dence for the leaky gut phenotype in CKD includes the 
detection of bacteria DNA fragments in the intestinal wall 
[26, 183, 184], reduced transepithelial electrical resistance 
in vitro following incubation with a pre-dialysis plasma of 
ESKD patients which can be rescued with post-dialysis 
plasma [185], and depletion of transcellular and intracel-
lular protein constituents of the tight junction [31].

Several mechanisms are likely to mediate the progres-
sive breakdown of the apical junctional complex. Firstly, 
as SCFA production declines, the colonic epithelia are 
effectively starved of the essential nutrition that jeopard-
izes the health of the mucosal cells. Secondly, alterations 
in the biochemical milieu are associated with an accumu-
lation of urea-derived NH3 and ammonium hydroxide. 
In fact, twelve of the 19 microbial families (63%) with the 
greater abundances in ESKD patients were among the 
urease-possessing families. Recent studies demonstrated 
their potential to be a caustic compound capable of dis-
solving proteins, which subsequently weakens their abil-
ity to seal the intercellular space. Hence, it allows a now 
unrestricted transport of large solutes like dietary anti-
gens and bacterial lipopolysaccharides thus aggravating 
systemic inflammation [185–187].

Furthermore, fluid overload, generalized edema, and 
congestive heart failure are common complications in 
CKD all of which can aggravate endotoxemia and con-
tribute to a disturbance in mucosal barrier function [188, 
189]. In addition, aggressive ultrafiltration or gener-
ous use of diuretics can lead to hypotension and bowel 
ischemia impacting the intestinal epithelia [190]. As the 
microbial flora is highly sensitive to any changes in the 
iron concentration, gastrointestinal micro-bleeding fol-
lowed by uremic platelet dysfunction and high incidence 
of angiodysplasia and systemic anticoagulation disrupt 
the barrier function [191].

The molecular events that cause increased permeabil-
ity are poorly defined. Recent work suggests that myosin 
light chain kinase (MLCK) plays a central role in epithe-
lial barrier hemostasis, which is disrupted by chronic 
inflammation both in vivo and in vitro [192].

Of note, inflammation and disruption of the epithe-
lial tight junction in CKD is associated with an impaired 
anti-oxidative system demonstrated by a decrease in the 
key antioxidant enzymes catalase and Cu-Zn superoxide 
dismutase on the one hand, and increased plasma level 
of nitric oxide synthase, monocyte chemotactic protein 1, 
and COX-2 on the other. These oxidative stress mediators 
induce the depletion of epithelial tight junction proteins, 
i.e., ZO-1, occludin, and claudin-1 [193].

In summary, leaky gut is an important hallmark in CKD 
pathophysiology, causally linked to dysbiosis and a loss of 
local metabolite hemostasis, being itself aggravating the 
detrimental interaction between the gut microbiota and 
the host by means of a vicious cycle (Fig. 1).

Conclusions and outlook: targeting the gut 
microbiome to attenuate CVD and progression 
of CKD in children
A novel additional approach in the treatment strategy 
of CKD could target gut health rather than the primary 
diseased organ [194]. In light of all the mechanistic evi-
dence described here, a logical next phase in improving 
health outcomes for CKD patients would be to treat the 
gut microbiome dysbiosis, reduce bacterial production 
of uremic toxins, and boost SCFA production. Potential 
exists for dietary strategies to mitigate the downstream 
consequences of microbiome dysbiosis that drive disease 
progression in CKD, such as the gut barrier dysfunction, 
systemic low-grade inflammation, and accumulating ure-
mic toxins [77, 195, 196].

A large-scale epidemiological study with CKD patients 
has recently identified a diet low in fruits and vegetables 
as a significant risk factor for ESKD [197]. Fiber short-
ens intestinal transit time and promotes the growth of 
saccharolytic bacteria. The particular benefit of this for 
CKD patients is by reducing the time for absorption of 
the metabolites of proteolytic fermentation and most 
significantly by increasing SCFAs to support a healthy 
intact epithelial barrier. Fiber deficiency is common in 
CKD patients, who tend to avoid fruits and vegetable in a 
misguided attempt to prevent diet-induced hyperkalemia 
that can have severe consequences for patients with 
impaired renal function [198].

Therefore, in the simplest terms, more fruits, vegeta-
bles, and dietary fiber should be included in the typical 
CKD diet, but caution should be implemented due to 
the risk of hyperkalemia. Individualized dietary plans are 
required with restriction to low potassium vegetables and 
fruits when appropriate.

Furthermore, pre- and probiotic supplementation 
could potentially help to improve gut health in CKD 
as well as other chronic diseases. Prebiotics have been 
defined as “substrates that are selectively utilized by 
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host microorganisms conferring a health benefit” [199]. 
Indeed, a small trial in hemodialytic adults showed a 
significant reduction in circulating indoxyl sulfate and 
p-cresyl sulfate levels following oligofructose-inulin or 
resistant starch supplementation [200, 201]. However, 
attempts to restore the desired saccharolytic bacteria by 
introducing favorable microorganisms (probiotics) failed 
to reduce plasma concentrations of uremic solutes. The 
lack of benefit with probiotics may be partially explained 
by a persistence of uremia-induced biochemical milieu; 
thus, attempts with probiotic formulations without 
simultaneously improving the biochemical environment 
in the gut will be of no avail [31, 202]. The use of pre- 
and probiotics in patients with CKD has been reviewed 
recently confirming these contradictory findings [203].

Another promising approach is the use of oral adsor-
bents. AST-120, a highly potent charcoal that is widely 
known as a decontaminant, has been shown to mark-
edly reduce the plasma concentration of indoxyl sulfate 
and p-cresol sulfate [204]. In animals, the adsorbent 
partially restored expression of tight junction proteins 
in the colon, reduced monocyte activation, and low-
ered inflammatory markers such as endotoxin, IL-6, 
and TNF-α [187]. However, AST-120 had no significant 
effect in terms of slowing CKD progression [205, 206].

To the best of our knowledge, no large-scale inter-
ventional studies have investigated the use of pre- or 
probiotic supplementation in children with CKD. Nev-
ertheless, a small observational study in children with 
CKD revealed an inverse association between fiber 
consumption and serum concentrations of several 
protein-bound uremic toxins such as indoxyl sulfate, 
p-cresyl sulfate, indole acetic acid, and p-cresyl glucuro-
nide [202]. In the absence of other contributing diseases 
which are commonly seen in adults, pre- or probiotic 
supplementation and improved, individualized nutrition 
seem to be a very promising treatment to slow CKD 
progression and prevent CKD-associated comorbidities.
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