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The quest for fragile X biomarkers
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Abstract

Background: Fragile X is the most common form of inherited intellectual disability and the leading known genetic
cause of autism. There is currently no cure or approved medication for fragile X although various drugs target
specific disease symptoms and a large number of therapeutics are in various stages of clinical development.
Multiple recent clinical trials have failed on their primary endpoints indicating that there is a compelling need for
validated biomarkers and outcome measures in fragile X.

Findings: There are currently no validated blood-based biomarkers to assess disease severity or to monitor drug
efficacy in fragile X syndrome. Herein, we review candidate blood protein biomarkers including extracellular-regulated
kinase, phosphoinositide 3-kinase, matrix metalloproteinase 9, amyloid-beta and amyloid-beta protein precursor.

Conclusions: Bench-to-bedside plans for fragile X syndrome are severely limited by the lack of validated
outcome measures. The reviewed candidate biomarkers are at early stages of validation and deserve further
investigation.
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Introduction
A biomarker is a measurable and quantifiable biological
characteristic that can serve as an indicator of healthy or
pathological processes. For example, HDL and LDL are
biomarkers for cardiovascular health and autoantibodies
are biomarkers for autoimmune disease. Biomarkers
are extremely useful in evaluating the clinical benefit of
pharmaceutical interventions. A good biomarker assay
will be sensitive, specific, rapid, simple to perform, inex-
pensive and applicable to easily obtained sample mater-
ial. There is an urgent need to develop such biomarkers
for fragile X syndrome (FXS).
Fragile X syndrome
FXS is the most common form of inherited mental
retardation with a frequency of 1 in 2,500 births [1].
FXS results from a mutation in the fragile X mental
retardation-1 (FMR1) gene, which was discovered by
Drs. Ben Oostra, David Nelson and Stephen Warren in
1991. The FMR1 gene codes for fragile X mental retard-
ation protein (FMRP), an RNA binding protein that
plays a critical role in dendrite development. Thus, the
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absence of FMRP in FXS has a profound effect on syn-
aptic plasticity. The clinical symptoms of FXS include
intellectual disability, attention deficit and hyperactivity,
anxiety, autistic behaviors, sensory integration problems,
speech delay, seizures, hyperextensible joints, hypotonia,
postpubescent macroorchidism, flat feet and vertical
maxillary excess with protruding ears [2]. There is cur-
rently no cure or approved medication for FXS although
various drugs target specific disease symptoms and a
large number of therapeutics are in various stages of
clinical development.
The compelling need for validated FXS biomarkers
Dr. Mark Bear and colleagues proposed the “mGluR
Theory of FXS” in 2004 in which they provided a frame-
work through which overactive signaling through group
1 metabotropic glutamate receptors (mGluRs) (mGluR1

and mGluR5) could contribute to the psychiatric and
neurological symptoms of FXS [3]. Mechanistic research
the past decade has validated the role of mGluR5 in FXS
as well as identified additional membrane receptors, sig-
naling molecules and proteins involved in long-term de-
pression (LTD) that are potential therapeutic targets and
disease biomarkers. Compounds targeting these mole-
cules have moved into clinical trials in individuals with
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FXS, which has provided valuable information regarding
potential drug efficacy; however, bench-to-bedside plans
are severely limited by the lack of validated outcome
measures [4]. To facilitate the identification and devel-
opment of outcome measures for FXS, the NIH orga-
nized a panel of experts who evaluated the potential
utility of cognitive, behavioral and emotional measures;
blood and tissue biomarkers; electrophysiological mea-
sures; eye tracking and pupillometry; and neuroimaging
tests for FXS [4]. They concluded that there is currently
no single or set of endpoints that can serve as an opti-
mal biomarker for FXS clinical trials. The Aberrant Be-
havior Checklist (ABC) is commonly adopted as the
primary outcome measure in FXS clinical trials [4,5]. A
recent phase 2 trial conducted by Seaside Therapeutics,
Inc. to evaluate the safety and tolerability of the GABA
agonist STX209 (R-baclofen) in patients with FXS failed
on the primary endpoint, which was the ABC-Irritability
subscale, although benefit was observed in other mea-
sures mostly by posthoc analysis [6]. Novartis has also
terminated development of their lead compound for
FXS, the mGluR5 inhibitor Mavoglurant (AFQ056), for
not meeting the primary endpoint of improved abnormal
behaviors compared to placebo. Thus, validated outcome
measures and biomarkers could greatly accelerate drug
development for FXS. Although recent publications indi-
cate that auditory processing, expressive language sampling,
eye tracking and pupillometry, eyeblink conditioning, the
Figure 1 Potential blood-based biomarkers for FXS. Candidate blood-b
phosphoinositide 3-kinase (PI3K), matrix metalloproteinase-9 (MMP-9), amyl
neurotrophic factor (BDNF), p70 ribosomal subunit 6 kinase 1 (S6K1), and c
6-factor structured ABC, markerless motion analysis, and
the Pediatric Anxiety Rating Scale–Revised (PARS-R) may
be viable outcome measures for FXS clinical trials, these
tests require considerably more time and money to perform
than a simple blood-based biomarker assay. Below, we dis-
cuss candidate blood-based biomarkers for FXS including
extracellular-regulated kinase (ERK), phosphoinositide 3-
kinase (PI3K), matrix metalloproteinase-9 (MMP-9), and
amyloid-beta protein precursor (APP) and catabolites
(Figure 1).

Extracellular-regulated kinase
ERK is a component of the mitogen-activated protein
kinase (MAPK) signal transduction pathway. ERK signal-
ing can be activated by either protein tyrosine-linked re-
ceptors or by G protein-coupled receptors with signaling
propagated through a series of phosphorylation reac-
tions. Although there are contradictory results regarding
basal phospho-ERK levels and mGluR-induced phos-
phorylation of ERK in FXS models, a specific inhibitor
of the upstream mitogen-activated protein kinase ki-
nases 1 and 2 (MEK1/2) eliminated audiogenic seizure
activity in Fmr1KO mice [7]. Findings from the Greenough
laboratory suggest that the early phase kinetics of ERK ac-
tivation in lymphocytes is delayed in FXS subjects and
could serve as a disease biomarker [8]. ERK activation
rates normalize in response to lithium and riluzole treat-
ment [9,10].
ased biomarkers for FXS include: extracellular-regulated kinase (ERK),
oid-beta protein precursor (APP) and catabolites, brain-derived
ytokine and chemokine profiles.
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Phosphoinositide 3-kinase
PI3Ks are a family of enzymes involved in cell growth,
proliferation, differentiation, motility, survival and intra-
cellular trafficking. The catalytic p110β subunit of class
I PI3Ks activates protein kinase B (PKB, aka Akt), which
is part of the mammalian target of rapamycin (mTOR)
signaling pathway. The Zukin laboratory has shown that
p110β as well as mTOR phosphorylation and activity
are elevated in juvenile Fmr1KO mice [11]. Gross and
Bassell demonstrated that FMRP regulates the synthesis
of p110β and that peripheral lymphocytes from FXS pa-
tients exhibit excessive PI3K activity as well as protein
synthesis levels [12]. They utilized an ELISA-based col-
orimetric assay to detect PI3K activity and a fluorescent
metabolic labeling assay to detect protein synthesis in
FXS lymphocytes. Both methods could be adapted for
clinical evaluation of PI3K activity and protein synthesis
levels in FXS lymphocytes in response to drug treatment.

Matrix metalloproteinase 9
MMPs are involved in the breakdown of the extracellu-
lar matrix during processes such as embryonic develop-
ment, wound healing and learning and memory. MMP-9
is involved in activity-dependent reorganization of den-
dritic spine architecture. MMP-9 mRNA is part of the
FMRP complex, and translation of MMP-9 is increased
at Fmr1KO synapses [13]. The Ethell laboratory found
that the antibiotic minocycline decreases MMP-9 in the
hippocampus of Fmr1KO mice while promoting dendritic
spine maturation and improving anxiety and strategic
exploratory behavior [14]. Minocycline also prevents all
neuroanatomical defects in FXS flies and improves lan-
guage and social communication skills, anxiety, attention,
irritability, stereotypy, hyperactivity and inappropriate
speech in humans [15-17]. The pro- and active-forms of
plasma MMP-9 are substantially elevated in FXS individ-
uals compared to typically developing age-matched con-
trols although a significant overall correlation between
reduced MMP-9 activity and observed improvement in
the Clinical Global Impression-Improvement (CGI-I) was
not observed [18]. The preliminary analysis consisted of
plasma samples from ten subjects who received minocy-
cline for 3 months with blood samples collected at base-
line and after treatment. Six of the ten subjects exhibited
some decrease in MMP-9 activity after minocycline treat-
ment and the remaining four showed no change. Five of
six patients with decreased MMP-9 activity exhibited im-
provement in the CGI-I. Thus, a larger study is required
to determine if MMP-9 is a viable blood-based biomarker
to monitor minocycline efficacy in FXS.

Amyloid-beta protein precursor and Amyloid-beta
APP and metabolites including amyloid-beta (Aβ) are
potential FXS biomarkers. We found that FMRP binds
to and regulates the translation of App mRNA [19]. In
the absence of FMRP (Fmr1KO mice), APP and Aβ are
overexpressed. Genetic knockout of one App allele in
the Fmr1KO mice rescues many disease phenotypes in-
cluding seizures, anxiety, the ratio of mature versus im-
mature dendritic spines and mGluR-LTD [20]. In human
blood plasma, the level of Aβ1-42 was significantly re-
duced in full-mutation FXS adult males compared to
age-matched controls while APP and Aβ1-40 levels were
not altered. These data suggest that Aβ1-42 may be a
plausible blood-based biomarker for FXS. APP and Aβ
are currently under evaluation as blood-based bio-
markers in a prospective open-label trial of acamprosate
in FXS youth and preliminary results indicate that APP
levels are normalized in response to drug treatment [4].
Accumulating evidence from the Lahiri laboratory shows
that Aβ1-40, Aβ1-42 and sAPPβ levels are decreased in
plasma of youth with severe autism compared to con-
trols whereas sAPPα levels are elevated [21]. In total,
these data suggest that there may be age-dependent
differences in APP expression and processing and that
these proteins may be valuable biomarkers for both
FXS and autism. An important caveat in developing
Aβ as a blood-based biomarker is that anticoagulants
appear to alter APP processing; thus, blood collection
procedures need to be standardized [22]. The advan-
tage of APP and Aβ as blood-based biomarkers for FXS,
as opposed to measuring the activity of the aforemen-
tioned signaling molecules, is the stability of the proteins
in serum.

Other potential biomarkers
In addition to the biomarkers discussed above, other po-
tential candidates include brain-derived neurotrophic
factor (BDNF), p70 ribosomal subunit 6 kinase 1 (S6K1),
and cytokine and chemokine profiles. Erickson and col-
leagues observed increased BDNF levels in a pilot FXS
trial testing acamprosate [23]. Hoeffer and colleagues
found increased phosphorylation of S6K1 in FXS lym-
phocytes [24]. Ashwood and colleagues found altered
plasma cytokine and chemokine levels in FXS subjects;
specifically, they observed elevated interleukin-1 alpha
(IL-1α), regulated on activation normal T-cell expressed
and secreted protein (RANTES) and 10 kDa interferon
gamma-induced protein (IP-10) compared to typically
developing controls [25].

Summary and conclusions
In summary, there are numerous drugs exhibiting prom-
ise in preclinical testing for FXS but no validated blood-
based biomarkers or behavioral outcome measures for
drug efficacy testing. This mini-review highlights research
findings demonstrating that ERK activation rates, PI3K
and MMP-9 activity levels, and APP and metabolite levels
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are potential blood-based biomarkers for FXS. These
candidate biomarkers are at early stages of validation and
deserve further investigation.
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