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Abstract

Big data are coming to the study of bipolar disorder and all of psychiatry. Data are coming from providers and payers
(including EMR, imaging, insurance claims and pharmacy data), from omics (genomic, proteomic, and metabolomic
data), and from patients and non-providers (data from smart phone and Internet activities, sensors and monitoring
tools). Analysis of the big data will provide unprecedented opportunities for exploration, descriptive observation,
hypothesis generation, and prediction, and the results of big data studies will be incorporated into clinical practice.
Technical challenges remain in the quality, analysis and management of big data. This paper discusses some of the
fundamental opportunities and challenges of big data for psychiatry.

Introduction

Digital data are collected at an incredible rate. With 2.5
quintillion (2.5 x 10'®) bytes of data generated every day,
90 % of the world’s data were created in the past 2 years
(IBM 2015). This is due in part to the revolutionary belief
that data and the unexpected information it contains are
valuable (Economist 2010; MIT Sloan and IBM 2010; Hill
2013). Data as a critically important source of knowledge,
insights and value are transforming every aspect of our
world, including healthcare. There are now many success-
ful standalone businesses that sell data, analytic tools and
data analysis (ATKearney 2013). The market that is cur-
rently referred to as big data, including hardware, soft-
ware and services was estimated at about $19 billion in
2013 (Kelly 2014). Healthcare is one of the fastest grow-
ing segments of the digital world, with healthcare data
increasing at a rate of about 50 % per year (IDC 2014).
There are three primary sources of big data in healthcare:
providers and payers (including EMR, imaging, insur-
ance claims and pharmacy data), omic data (including
genomic, epigenomic, proteomic, and metabolomic data)
(Starren et al. 2013), and patients and non-providers
(including data from smart phone and Internet activities,
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sensors and monitoring tools) (Glenn and Monteith
2014).

The growth of big data in psychiatry will provide
unprecedented opportunities for exploration, descrip-
tive observation, hypothesis generation, and prediction
for clinical, research and business issues. The results of
big data analyses will be incorporated into standards
and guidelines and will directly impact clinical decision
making. Psychiatrists will increasingly have to evaluate
results from research studies and commercial analyti-
cal products that are based on big data. In addition to
the opportunities, multiple challenges remain relating to
data quality, acquisition and processing, analytical meth-
odology and interpretation. The purpose of this article is
to discuss some of the fundamental features of big data
that will be a part of psychiatry in the near future. The
wide variety of ethical issues related to big data in society
including individual privacy, informed consent, reuse of
data, involvement of commercial organizations, and atti-
tudes towards the boundaries between public and private
are outside the scope of this article.

What is big in big data?

There are many definitions of big data and the differ-
ences in perspective reflect the broad impact big data
are having on modern life. The most common definition
describes characteristics of big data as volume, velocity
and variety (Laney 2001). Volume refers to the massive
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size of big datasets. A typical 500-bed hospital contains
more than 50 petabytes (50 x 10'°) of data (IDC 2014).
An estimate of per patient data generated in an EMR
is about 80 MB per year with 95 % of this being imag-
ing data (Halamka 2011). Genomic data require 50 times
more storage per patient than imaging data (Starren et al.
2013). With an estimated 1.2 billion ambulatory care vis-
its in the US in 2014 (CDC 2014), and 78 % of physicians
and 59 % of hospitals now using an EMR system (HHS
2014), the size of medical datasets will expand rapidly.
The size of medical data refers not only to newly created
data, but also to information that was generated in the
past.

Velocity refers to the rate at which data are gener-
ated and must be acted upon, such as filtered, reduced,
transferred and analyzed, as opposed to stored for future
processing. As an extreme example, the Large Hadron
Collider at the Center for European Nuclear Research
(CERN) generates about 1 PB of raw data per second,
of which one out of 10,000 events are passed through to
processor cores where 1 % of the remaining events are
selected for analysis (CERN 2015). In the commercial
world, the proliferation of digital devices such as smart-
phones with applications that record locations, prefer-
ences, etc., using sensors and RFID tags has led to an
unprecedented rate of data creation. Behavioral analytics
for targeted advertising creates a need to process huge
amounts of streaming data at very high rates of speed in
near real-time for timely delivery of ads. Variety refers to
the diverse data forms in big data, including structured
(tabular such as in a spreadsheet or relational database),
unstructured (such as text, imaging, video, and audio),
and semi-structured (such as XML documents). About
80 % of the data in healthcare are unstructured (IBM
2013).

Big data is also defined by its complexity. In a tradi-
tional healthcare dataset, such as for a clinical trial, there
are a large number of subjects () in comparison to a lim-
ited number of parameters (p) for each subject, referred
to as a “large n, small p” problem (Spiegelhalter 2014;
Sinha et al. 2009). Big data can expand this to where the
number of subjects is extremely large in relation to the
number of parameters. Big data may also change the
fundamental relationship to a “large n, large p” prob-
lem where datasets not only have a very large number of
subjects, but a very large number of parameters for each
subject. Additionally, some data, such as from genomic
microarray or fMRI, create “small #, large p” problems
where there may be a huge number of parameters for a
limited number of subjects (Spiegelhalter 2014; Fan et al.
2014). Both “large n” and “large p” problems create new
and difficult computational and statistical challenges for
analysis and interpretation of big data (Fan et al. 2014).
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Big datasets may also combine disparate datasets of very
different dimensions. Bigness can be defined as data so
multidimensional and complex that it must be reduced
before it can be analyzed (Patty and Penn 2015), or as
when current technology and methods (throughput and
analytics) cannot provide timely and quality answers to
data-driven questions (Kraska 2013; Jacobs 2009). The n
and p characteristics of the datasets used in psychiatry
research will have great impact.

Another perspective is that big data is defined by its
impact on human sensemaking, where sensemaking is
defined as the process used to analyze data and make
decisions (Rohrer et al. 2014). Big data is too massive for
humans to comprehend without the assistance of com-
puter models (Weinberger 2012). The emerging field of
visual analytics attempts to combine the data process-
ing power of a computer with the outstanding human
ability to recognize visual patterns (Ware 2012; Wong
et al. 2012). Visual analytics systems use interactive
visual interfaces to facilitate human analytical reason-
ing (Wong et al. 2012; Rohrer et al. 2014). While arising
in the intelligence industry (Kielman et al. 2009; Rohrer
et al. 2014), projects with this approach are being devel-
oped in biology and healthcare (Shneiderman et al. 2013;
O’Donoghue et al. 2010).

Finally, bigness can be defined in the relation to chang-
ing attitudes to technology. With the new primacy of
data, technologies are designed around the data instead
of data being designed around the technologies (Gal-
lagher 2013). The traditional role of I'T within an organ-
ization including healthcare, of automating business
processes, will have to change focus to handle data-inten-
sive analytical processing, and make information more
readily available to all (Kouzes et al. 2009).

Other unique features of big data

Most data currently used in medical research, such as a
randomized controlled trial, were designed and collected
to answer a specific question. By contrast, a big data-
set is designed to be re-used for many purposes, and to
answer multiple questions including questions that can-
not be anticipated at the time of data collection. Big data
are often collected for reasons unrelated to research,
such as an EMR, and multiple researchers are generally
contributing data. The data may be physically stored in
a distributed fashion across the globe. Big data are often
combined with open (public access) data now available
from governments worldwide, including a wide range of
economic, health and climate data, and vital statistics.
Furthermore, vast amounts of data available from com-
mercial for profit companies will increasingly be involved
in medical research. Big data ownership is fragmented
across all the sources of data, including providers, payers,
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pharmaceuticals, governments, data brokers, technology
providers and patients (Szlezdk et al. 2014).

Unlike with smaller data projects, big data projects
require the collaboration of people with diverse areas
of expertise including physicians, biologists, statisti-
cians, software engineers and developers, mechanical
engineers, and network security analysts. The big data
projects are often expensive to administer, and require
detailed project management with procedures and qual-
ity standards for every aspect of dealing with data. Les-
sons learned in prior implementations of data projects
such as NIH/NCI Cancer Biomedical Informatics Grid
(caBIG) and the genomics project ENCODE may be of
interest (NCI 2011; Birney 2012).

Big data in general medicine and psychiatry

Big data provide many opportunities for scientific explo-
ration. Clinical data mining can be used to answer ques-
tions that cannot be addressed with randomized clinical
trials (Murdoch and Detsky 2013). For example, active
postmarketing drug surveillance can use data from EMR,
event reporting systems and social media (Moses et al.
2013; Harpaz et al. 2012). Other examples include situ-
ations where randomized clinical trials would be unethi-
cal such as in critical care, or where multiyear results are
desired (Cooke and Iwashyna 2013). Big data also can
help to determine whether conclusions derived from
narrowly selected samples for randomized clinical trials
are generalizable to a broader population (Murdoch and
Detsky 2013). Big data allows new clinical questions to
be asked and phenomena explored that were previously
unavailable. Thus, observational data can be used to gen-
erate new hypotheses that may be more generalizable,
and may help to create better randomized controlled
trials (Titiunik 2015; Cooke and Iwashyna 2013). Rand-
omized registry trials are being created, which randomize
based on observational database information, and then
integrate investigation with routine clinical care (Lauer
and D’Agostino 2013; March et al. 2005).

Big data may allow the study of rare events. This
includes the exploration of the relation between param-
eters such as genetic findings and rare diseases (Fan et al.
2014), and the study of those in the tails of distributions
such as the small percent of the population with the high-
est healthcare expenditures (Cohen 2012). Large scale
claims utilization databases based on data from com-
munity settings will be useful in epidemiologic research
(Schneeweiss and Avorn 2005). Finally, observational
data allow measurement of various parameters of real-
world clinical practice.

Big data are already impacting every aspect of medi-
cine. The secondary use of data has contributed to under-
standing variation in critical care treatment, including

Page 3 of 11

racial/ethnic and insurance-based disparities (Cooke
and Iwashyna 2013). Other diverse examples of ongoing
projects include whole slide images in pathology (Wilbur
2014), EMR surveillance for post-operative complications
(FitzHenry et al. 2013), critical care databases for con-
tinual learning in the ICU (Celi et al. 2013), large clini-
cal networks for outcomes research such as PCORnet
(Collins et al. 2014) and the million veteran program (VA
2015), a new drug surveillance database from the FDA
(2014), and using omics data to better understand immu-
nity and vaccination (Nakaya et al. 2011).

Big data are also transforming psychiatry. Table 1 illus-
trates the potential impact of big data with examples of
a wide range of recent projects. Observational evidence
may be particularly important to psychiatry as the evi-
dence available from randomized controlled trials may be
incomplete, inconclusive or unavailable for many every-
day clinical decisions (Bhugra et al. 2011). Furthermore,
many patients who participate in clinical trials in psy-
chiatry, including for bipolar disorder and schizophre-
nia, are not typical of those seen clinical practice (Zarin
et al. 2005; Hoertel et al. 2013). Big data may help to cre-
ate new clinical distinctions and phenotypes based on
aggregated measurements of observational data (Altman
and Ashley 2015; Hripcsak and Albers 2013). These new
phenotypes may increase understanding of the hetero-
geneity present in psychiatric diagnoses such as bipolar
disorder, and of the complex underlying genetics (Castro
et al. 2015; Potash 2015). Big data may provide sufficient
data to study subpopulations that are underrepresented
in traditional samples, such as heroin addicts, using tech-
niques such as integrative data analysis that combine
independent data sets to product adequate sample sizes
(Srinivasan et al. 2015; Curran and Hussong 2009). The
maturing infrastructure to acquire, transmit, store and
analyze exabyte-scale quantities of multisite neuroim-
aging data will expand knowledge of fundamental brain
processes throughout normal life as well as in diseased
states (van Horn and Toga 2014).

Big data have fundamentally changed the ability to
analyze human behaviors and actions. Huge quanti-
ties of data are created as a by-product of the routine
transactions of daily life from smart phone and Internet
activities including social medial, sensors and monitor-
ing tools (Glenn and Monteith 2014). These data tend
to provide near real-time measures of behaviors, rather
than attitudes or beliefs (Groves 2011), which are becom-
ing increasingly predictable. Examples of prediction from
social media and sensor data include human motility (De
Domenico et al. 2013; Gonzalez et al. 2008), friendships
(Eagle et al. 2009), personality (Youyou et al. 2015), and
private traits such as sexual orientation and ethnicity
(Kosinski et al. 2013). Big data may reveal behavior that
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was previously difficult to detect, including those that
are deliberately hidden, and allow comparisons between
more precise samples of interest (Monroe et al. 2015).
Integration of behavioral data with provider and omics
data may also lead to the detection of new biomarkers of
psychiatric illness, including bipolar disorder (Mclntyre
etal. 2014).

Quality issues with big data

Many issues impact the quality of big data. Data acquired
from different sources are created with different levels
of accuracy, precision and timeliness, and data not cre-
ated for research may lack sufficient quality for research.
Combining data items from different databases requires
an assumption that the items are sufficiently similar that
equivalence can be determined. It is difficult to keep rela-
tionships among data clear over time in large databases
with many near match inputs (NSA 2014). Furthermore,
the vast majority of data are unstructured. With struc-
tured data, almost every data field can be analyzed, miss-
ing data can be measured, and the ratio of information
to data is very high. In contrast, with unstructured data,
information must be detected from within a mountain of
data (Groves 2011).

Neither EMR nor administrative/claims data were cre-
ated for research purposes, and contain many quality
issues that impede their use in research. These include
highly variable accuracy (Hogan and Wagner 1997; Chan
et al. 2010), substantial missing data and difficulty of dif-
ferentiating missing from negative values (Wells et al.
2013), inconsistent use of medical terminology (Halamka
2014), redundant data in text (Cohen et al. 2013), varying
levels of detail (Hersh et al. 2013), lack of completeness
and fragmentation of medical record across providers
(Bourgeois et al. 2010), impact of reimbursement policies
on claims data (Overhage and Overhage 2013), inaccu-
rate ICD codes (O’Malley et al. 2005), temporary trun-
cations due to insurance coverage issues (Overhage and
Overhage 2013), and variations in data over time due to
changing federal requirements (Halamka 2014). EMR
data are difficult to compare even when using the same
vendor product or within the same organization (Chan
et al. 2010). EMR data may also lack the required prov-
enance (metadata to trace an exact history of the data
contents and ownership) for use in research (Buneman
et al. 2000).

Some data from commercial firms, such as Internet
behavioral data, are created by proprietary algorithms.
These algorithms are not validated publicly and may be
modified at any time, such as to improve customer ser-
vice, which can impact their use in longitudinal studies
(Lazer et al. 2014). Data from social media may include
measurement or self-presentation errors, such as the
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finding that half of adult Facebook users have more than
200 friends in their network (Smith 2014), and malicious
errors with at least 67 million Facebook accounts either
duplicate, malicious or otherwise ‘fake’ (Munson 2014).
Errors can be created when data from diverse sources
are combined. For example, the ways that floating-point
numbers are stored on common software/hardware plat-
forms and handled by compilers may exhibit subtle dif-
ferences with respect to floating-point computations that
may lead to serious errors in big data processing (Mon-
niaux 2008).

The multidimensional complexity of big data requires
that it is reduced before it can be practically analyzed,
even using advanced tools. The more complex the data,
the more reduction is done and the selection of which
data should be retained versus which data discarded is
crucial (Patty and Penn 2015). There are a wide range
of methodologies for dimension reduction, with much
active research in this field (Wolfe 2013). The selection
of appropriate technique is related to the type of data
involved, such that the process to extract information
from imaging data is very different from that used to find
information in unstructured text (Jagadish et al. 2014).
Deciding which parameters are important is a subjective
process, and may remove the natural variability that may
challenge preconceived assumptions (Bollier et al. 2010).
Furthermore, it is difficult to interpret context in big data
as the sheer volume of data increases (Boyd and Craw-
ford 2012). It can also be difficult to distinguish findings
of interest from hardware and software errors, such as
when filtering data from sensors (Jagadish et al. 2014).
Data reduction methodologies are of particular impor-
tance to medicine since most secondary clinical data-
bases contain only the data parameters of interest (Wang
and Krishnan 2014).

Analytical challenges for big data

Regardless of how big the data are, it is still a sample
and must be representative of the population of inter-
est. For example, although there is considerable interest
in the analysis of Twitter content to monitor aspects of
behavior such as suicide risk (Jashinsky et al. 2014) or the
stigma of schizophrenia (Joseph et al. 2015), the Twit-
ter user population is highly unrepresentative of the US
population (Mislove et al. 2011). Conclusions based on
social media apply only to the self-selected group who
use the specific site. The demographic variables that limit
the generalizability of social media include age, gender,
ethnicity, income, geography and Internet skills (Mislove
et al. 2011; Hargittai 2015). There are many other types of
biases in big data (loannidis 2013), including in EMR and
claims data (Kaplan et al. 2014). One type of bias in EMR
and research databases may be underrepresentation of
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racial and ethnic minorities due to disparities in men-
tal health care in psychiatry, primary care and clini-
cal research (Cook et al. 2014; Lagomasino et al. 2011;
Yancey et al. 2006). Other examples of bias detected in
EMR and claims data are listed in Table 2.

Researchers commonly use big data to look for cor-
relations yet the high dimensionality of big data cre-
ates analytical challenges. Classical statistical inference
assumes that the explanatory variables included in a
model and the resultant estimated errors are independ-
ent and uncorrelated. However, when statistical models
are estimated that include a large number of explanatory
variables these assumptions may be violated. The most
common problems resulting from the presence of many
variables are spurious correlations (many unrelated vari-
ables are correlated by chance), and incidental endogene-
ity (explanatory variables are correlated with the residual
errors) (Fan et al. 2014). In addition, noise accumulation
(the sum of estimating errors accumulated from many
variables) may dominate the underlying signal and over-
whelm the explanatory power of the model (Fan et al.
2014). New techniques are being developed to accom-
modate the issues unique to the analysis of high-dimen-
sional data. However, if these issues are ignored and the
assumptions of classical statistical inference are violated,
the analytic results will likely be incorrect. As databases
get larger, the potential for false findings grows exponen-
tially (Spiegelhalter 2014). Other problems reported in
the analysis of big data include overfitting of models, fail-
ure to establish stationarity in time series, and multiple
comparison bias. Many results of big data analyses can-
not be reproduced (Ince 2012; Ioannidis et al. 2009).

The widespread desire to use big data to go beyond cor-
relation to determine causality presents additional ana-
lytical challenges. When trying to infer causality from
observational healthcare data, confounding is a major
problem due to the large number of potential parameters
for each patient (Glass et al. 2013). There are a variety
of approaches to adjust measured confounders to create
comparison groups of patients with similar characteris-
tics, such as propensity scores, stratification, matching,
and regression (Austin 2011; Stuart 2010; Glass et al.
2013). These techniques may not address issues such as
inconsistent or incorrect measurements, missing clini-
cal variables, unknown or unmeasured confounders, and
time-varying confounders and exposures (Glass et al
2013; Polsky et al. 2009; Toh et al. 2011).

Statistically inferring causality using big data assumes
all the needed variables are present, exactly the same
problem as with small data (Titiunik 2015). If the param-
eters were incorrect in a small dataset, adding data will
not solve the problem. Causal inferences require that
important pretreatment parameters were not omitted
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and that posttreatment parameters were not included
(Titiunik 2015). In the words of Hal Varian, chief econo-
mist at Google, “Observational data—no matter how big
it is—can usually only measure correlation, not causality”
(Varian 2014).

Does big data replace small data?

There is a need for healthcare data of all sizes, and an
important role remains for smaller data as well as big
data. As the famous statistician John Tukey (1988) sum-
marized data analysis “Neither exploratory nor confirma-
tory is adequate alone” For example, smaller samples
will continue to be used in randomized, clinical trials
to determine drug efficacy for regulatory agencies, and
to validate potential biomarkers (Ioannidis and Khoury
2013). Small to large samples with high-quality data
will be used in observational studies, and can be com-
bined with open data. Even commercial vendors such
as Google create samples from big data based on cri-
teria such as user names or geographic areas, and run
randomly assigned treatment—control experiments to
determine causality (Varian 2014). Smaller data are also
easier to analyze, less expensive to manage, and can be
effectively used by single institutions for many research
purposes. However, with the increasing acceptance of
remote patient monitoring, even small, clearly designed
studies are beginning to generate big data. For example,
daily self-reporting mood charting programs for bipolar
disorder create large numbers of medication parameters
(Bauer et al. 2013a; b). Other studies that prospectively
capture streaming behavioral, neural and physiological
data from a few hundred patients produce enormously
complex, multidimensional time-stamped datasets.

It will become increasingly important in psychiatry to
understand what size and type of database is most appro-
priate for the problem being addressed. Huge amounts
of data collected for reasons that are unrelated and irrel-
evant to the question at hand may not be of value. How-
ever, as more precise analytics are available, big data will
become increasingly useful for more types of questions.
Continuing research will help to clarify which problems
should be addressed with big data versus small data,
which big data problems should be addressed by sam-
pling, and which analytic techniques are most appropri-
ate. Furthermore, as more hypotheses are generated from
observational data, new procedures will be required to
determine which hypotheses should be further investi-
gated using randomized clinical trials (Drazen and Geli-
jns 2014).

In conclusion, data from clinical, administrative, imag-
ing and omics, and the coming flood from patient Inter-
net activities, sensors and monitoring tools will provide
unprecedented opportunities for psychiatry. Despite
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many technical challenges, new approaches are rapidly
being developed that will allow the use of big datasets to
increase understanding of existing and new questions in
psychiatry.
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