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Abstract

This work presents a partitioned method for landslide-generated wave events. The
proposed strategy combines a Lagrangian Navier Stokes multi-fluid solver with an
Eulerian method based on the Boussinesq shallow water equations. The Lagrangian
solver uses the Particle Finite Element Method to model the landslide runout, its impact
against the water body and the consequent wave generation. The results of this
fully-resolved analysis are stored at selected interfaces and then used as input for the
shallow water solver to model the far-field wave propagation. This one-way coupling
scheme reduces drastically the computational cost of the analyses while maintaining
high accuracy in reproducing the key phenomena of the cascading natural hazard.
Several numerical examples are presented to show the accuracy and robustness of the
proposed coupling strategy and its applicability to large-scale landslide-generated
wave events. The validation of the partitioned method is performed versus available
results of other numerical methods, analytical solutions and experimental measures.

Keywords: Free-surface flows, Particle finite element method, Finite element method,
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Introduction
A landslide-generated wave (LGW) [1], also called landslide-induced tsunami [2], is a
major natural hazard that occurs when a landslide impacts a water reservoir and produces
large-amplitude waves. LGW events can have devastating effects on the coastal areas of
water basins, such as lakes, fjords and artificial reservoirs.
The fjord district of western Norway is one of the zones of the world most affected

by this major natural hazard [3,4]. Historical records over the last 400 years show that
Norway has experienced at least two major LGW events every century [5]. Only in the
first half of the last century, the catastrophic events of Loen (in 1905 and 1936) [6] and
Tafjord (in 1934) [7] caused the death of 174 people. The LGW events of Lituya Bay,
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Alaska, in 1958 [8] and Vajont, Italy, in 1963 [9] are among the most well-known cases of
this cascading natural hazard. A wider overview of LGW historical events can be found
in [10] and [11]. Furthermore, this situation is made even more critical by the effects
of global warming, which is clearly leading to an increment in number and intensity of
natural disasters [12–14].
Accuratemodeling and prediction of LGWs are of key importance to reduce their catas-

trophic effects. Both experimental and numerical studies have been greatly contributed
to the enhancement of the forecasting capabilities against these natural hazards.
Physicalmodels are particularly helpful to identify the key parameters of both the sliding

material and the water body and to determine their specific effect on the LGW scenario
[15–21]. A detailed overview of experimental tests applied to LGW events can be found
in [1]. Nevertheless, laboratory tests are mainly devoted to determining the near-field
wave conditions, while estimations on the far-field waves, which are responsible for major
damages to the coastal areas affected by an LGW event, are more difficult to extrapolate.
On the other hand, numerical methods have the potential to predict both near- and far-

field waves characteristics. However, the numerical simulation of a LGW is a challenging
task. Indeed, the computational method must be able to model the complex constitutive
behavior of the landslide material, deal with fluid-solid (or multi-fluid) interaction, and
track the largely evolving topology of both landslide and water bodies. Furthermore, the
LGW analysis involves different characteristic time and space scales for the near field
(landslide-water impact zone) and the far field (wave propagation). Finally, it is required
to solve large-scale three-dimensional (3D) geometries for long time durations, and this
makes the computational cost of LGW analyses one of the most critical issues.
The numerical models applied to LGWs can be classified into three main groups [11]

briefly summarized below.
Thefirst approachconsists inusing awavepropagation solver, typically basedonShallow

Water (SW) equations. In this strategy, the landslide runout and water impact are not
resolved but are introduced into the model as an equivalent boundary condition [22,23].
This approach is the simplest one and has the lowest computational cost. However, it
assumes strong simplifications on both the landslide motion andmomentum transfer and
thus it can only give an approximate idea of the global LGW scenario.
In the second strategy, the landslide and water motion equations are solved in a unique

coupled model. First applications of this holistic strategy can be found in [24] and [25],
where shallow water models were used for both the landslide and the water body. Only
recently, more accurate 3D monolithic approaches for LGW problems have been pre-
sented, see for example [26–31].Nevertheless, the computational cost of this fully resolved
method can be still unaffordable for large-scale events.
The third approach splits the LGW problem into two simulations that interact with

each other at their interface. Typically, in these so-called partitioned strategies, a numer-
ical method, here called near-field solver (NFS), computes the landslide runout, impact
against the water body and wave formation. A different numerical scheme, here called
far-field solver (FFS), predicts the far-field wave propagation [11]. Generally, a weak (or
one-way) coupling scheme is adopted, meaning that the NFS is insensitive to the FFS
solution. The one-way coupling simplification preserves the computational advantages of
this partitioned approach and it still ensures an accurate modeling of the key phenomena
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of an LGW scenario, such as the landslide runout, the wave generation and the far-field
wave propagation.
One of the first applications of this partitionedmethod for LGWswas presented in [32].

In this work, a simplified 3Dmodel was used for the landslide-water impact and a shallow
water model was applied for the far-field wave propagation. In [33], a potential tsunami
scenario induced by the collapse of a part of Cumbre Vieja Volcano of La Palma island,
Spain,was studied by coupling a 3Dcompressible Eulerian solverwith aBoussinesqmodel.
In [34], the same case study was analyzed using a 3D Volume Of Fluid (VOF) method,
as the NFS, and an analogous FFS such as that used in [33]. More recently, Tan et al.
[35] coupled a Smoothed Particle Hydrodynamics (SPH) method with a shallow water
equations solver was used to reproduce hypothetical LGW scenarios at Es Vedrà, Ibiza,
Spain.
In this work, we propose and validate a novel partitioned model for LGWs. In this new

strategy, a Lagrangian finite element method, namely the Particle Finite Element Method
(PFEM) [36–38], is used as the NFS and a standard shallow water Boussinesq model is
used as the FFS. Several previous works have shown the accuracy of the PFEM to model
landslides [39–41], also in cascading events [42–45]. In this work, we use the PFEM
approach that has been successfully applied to LGW scenarios in [46] and in [28,29],
where 3D simulations of the Vajont disaster were presented. This
work aims at being a proof of concept of this new coupled strategy for real LGW sce-

narios. For this reason, a deep validation of the method is presented by analyzing the
performance and accuracy of the new partitioned technique in targeted tests, using refer-
ence solutions obtained with other numerical methods, experimental tests and analytical
solutions. In partitioned methods, the momentum transfer between the Navier–Stokes
and the Boussinesq models must be accurate in order to obtain a faithful representation
of the LGW scenario. Thus, particular attention is devoted here to analyze the effect of
the near-field boundary conditions on the far-field propagating wave. Convergence and
sensitivity analyses are carried out in order to verify the accuracy and robustness of the
proposed method.
The content of the paper is structured as follows. The NFS and FFS are presented in

“Near-field and far-field solvers” section. In “One-way coupling” section, the coupling
strategy between these two solvers is explained. In “Validation tests” section, three LGW
examples are analyzed to validate the proposed partitioned strategy and to show its poten-
tial to large-scale LGW events.

Near-field and far-field solvers
In this section, we describe briefly and separately the near-field and far-field solvers that
are here used to model LGWs. In section Near-field solver: Lagrangian Navier–Stokes
model, we present the Lagrangian multi-fluid Navier–Stokes model that is used as the
NFS and, in section Far-field solver: shallow water equations, we introduce the Eulerian
shallow water Boussinesq solver employed as FFS.

Near-field solver: Lagrangian Navier–Stokes model

In this work, the Particle Finite Element Method (PFEM) is used to model the landslide
runout, its impact against the water body and the wave generation. The motion of both
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water and landslide materials is obtained by solving the Navier–Stokes equations using
an updated Lagrangian description of motion. Following other PFEM approaches [47,48],
the mass conservation equation is not solved in the standard divergence-free form but
admitting a small compressibility (quasi-incompressible formulation). In this framework,
the governing equations read

ρ
∂v
∂t

− ∇ · σ − b = 0 in �t × (0, T ) (1a)

1
κ

∂p
∂t

+ ∇ · v = 0 in �t × (0, T ) (1b)

where v is the velocity field, σ is the Cauchy stress tensor, b is the body force per unit of
volume, p is the pressure, ρ and κ are the material density and bulk modulus, respectively,
t is the time, �t is the updated computational domain, and T is the total time duration.
The system (1) is complemented by appropriate boundary conditions that read

v = v̂ on �v (2a)

σ · n = t̂ on �t (2b)

being n is the outgoing normal vector to fluid boundaries, v̂ the prescribed velocities on
the Dirichlet boundary (�v), and t̂ the tractions acting on the Neumann contour (�t ).
To deal with incompressible materials such as water, the Cauchy stress tensor is split

into its deviatoric and volumetric parts as

σ = τ − pI (3)

where τ is the deviatoric stress tensor and I is the second-order identity tensor.
The deviatoric part of the Cauchy stress can be written in a general form as

τ = μ̄γ̇ (4)

where γ̇ is the deviatoric strain rate and μ̄ is the apparent viscosity.
We remark that Eq. (4) can represent both water and landslide materials. Water is

modeledwith a standardNewtonian law and, in this case, μ̄ of Eq. (4) is simply the dynamic
viscosity. On the other hand, in the non-Newtonian laws for the landslide material, μ̄may
also depend on the deviatoric strain rate, such as in a Bingham law, and on pressure, such
as in a frictional viscoplastic model. Implementation and validation of the mentioned
non-Newtonian laws in the PFEM formulation used in this work can be found in [49] and
[28].
We also remark that, in this work, the sliding body is always modeled as a mono-phase

material, also in underwater conditions. Considering the high impact velocities of the
landslide, we can assume that this simplifying hypothesis has an almost negligible effect
on thewave generationmechanism.On the other hand, thismay affect the final deposition
pattern of the sliding material, which, however, is not among the main interests of this
article.
In the PFEM, the solution of the governing equations is obtained like in a standard

Lagrangian Finite Element Method (FEM). Linear shape functions are used for the nodal
unknowns of the problem, namely the fluid velocities and pressure. The formulation is
stabilized with a Finite Calculus (FIC)method [50] to avoid the numerical instabilities due
to the unfulfillment of the inf -sup condition [51] in the incompressible case. An implicit
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Fig. 1 a Diagram of the variables for the shallow water model. bMean velocity. c Velocity at a specific depth

two-step strategy is used to solve each time increment. Once convergence is reached, the
position of the nodes is updated and the quality of the discretization is checked. If the
mesh gets too distorted, a new FE mesh is built maintaining the nodes of the previous
one. In the PFEM, remeshing is done with a fast algorithm that combines the Delaunay
triangulation [52] and the Alpha-Shape method [53]. A more detailed description of the
PFEM approach and the remeshing algorithm can be found in the review work [38].
The Lagrangian description and an efficient remeshing strategy,make the PFEMcapable

of detecting accurately the highly deforming contours of both landslide and water bodies,
which is a key feature for a correct simulation of a LGW event.

Far-field solver: shallow water equations

The ShallowWater (SW) equations are a simplified form of the Navier–Stokes equations.
The main assumptions include incompressibility, hydrostatic pressure distribution, small
vertical velocity. After integrating the equations from the seabed to the free surface η, a
new set of unknowns is obtained. The pressure p is replaced by the free surface elevation
η, and the velocity u is substituted by the mean horizontal velocity ū. We will use the
modified Boussinesq equations presented in [54]. Those equations are an extension of
the SW equations which include the modeling of the frequency dispersion for long waves.
Originally, these equationswere expressed in termsof thehorizontal velocityuβ , evaluated
at a specific relative depth β , namely,

∂η

∂t
+ ∇ · (

(H + η)uβ

) + ∇ · Jη = 0 (5a)

∂uβ

∂t
+ ∇η + (uβ · ∇)uβ + Ju = 0 (5b)

The auxiliary fields Jη and Ju introduce the dispersive mechanism and are defined accord-
ing to the following expressions:

Jη = C1H3∇∇ · uβ + C3H2∇∇ · (Huβ ) (6a)

Ju = C2H3∇∇ · ∂uβ

∂t
+ C4H2∇∇ · ∂(Huβ )

∂t
(6b)

where the Ci constants depend on the choice of β

C1 = 1
2

(
β2 − 1

3

)
, C2 = β2

2
, C3 = β + 1

2
, C4 = β (7)

The free parameter β was fixed to −0.531 by Nwogu et al. [54] in order to minimize the
errors introduced by the approximation with respect to linear wave theory. Fig. 1 shows a
schematic of the model.
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System 5 is closed with the following Dirichlet boundary conditions at the reflecting �R
and inflow �I boundaries,

ū · n = 0 on �R (8a)

ū · n = u′ or η = η′ on �I (8b)

Where u′ and η′ are the specified inflow velocity and the wave amplitude. Both variables
are correlated by linear theory ([54,55]). In the case of supercritical regime, both velocity
and wave amplitude should be imposed. Due to the dispersion relation [56], the reflecting
boundary condition has the following additional requirement if the velocity is imposed

ūβ · n = Jη · n = 0 on �R (9)

TheBoussinesq equations are solvedusing the standardFEM.The space domain is inter-
polated with a Galerkin discretization of linear triangles and a finite difference scheme
with constant time step is used to integrate the equations in time. Some numerical dif-
ficulties such as the third-order differential operator and the time integration accuracy
are addressed in [56,57]. As stated in [58,59], problem (5) is an hyperbolic wave in mixed
form and there is an incompatibility condition (see [51]) because the same interpolation
is used for both variables, the velocity uβ and the wave amplitude η. Here, the equations
are stabilized using the FIC approach extending the work reported in [60].
Following [57], the third-order spatial derivatives are modeled using Jη as an intermedi-

ate variable and the field Ju can be directly included in the equations by parts integration.
Some boundary terms arise from the integration of both fields. Since these terms do not
vanish at all the boundaries, we cannot neglect them.
The time integrationhas been approximatedusing the predictor-correctorAdamsBash-

forth Moulton method (see for example [56,61]).

One-way coupling
The LGW problem is here simulated using a weakly coupled (one-way) method which
makes interact the PFEM solver presented in section Near-field solver: Lagrangian
Navier–Stokes model, and the SW solver described in section Far-field solver: shallow
water equations.
We note that problem (5) defines a phase speed c which in the SW limit is computed

as
√
gh. Being u the modulus of the horizontal velocity uβ , the information travels at

velocities u+ c and u− c. If the flow is subcritical, which is the case analyzed in this work,
then u < c and the information travels both upstream and downstream.
Considering the bidirectional characteristics of the equations, a first possibility would

be to consider two domains adjacent to each other and define a strong (two-way) coupling
(see for example [62]). However, such a strongly coupled approach is computationally
expensive, as it requires running parallelly the PFEM and the SW solvers.
Moreover, the accuracy increment given by a two-way method over a one-way strategy

on the far-field wave propagation can be considered negligible. For these reasons, here,
we adopt a decoupled space-time one-way strategy in which the PFEM solution is stored
at the SW interface and, in a second stage, it is imposed as a boundary condition for
the SW simulation. In order to avoid perturbations of the results at the interface, the
computational domain of the PFEM is extended beyond the position of the SW interface
using non-reflecting boundaries.
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Fig. 2 Schematic view of the near-field solver and the far-field solver for the coupled solution of LGW

Taking advantage of such a one-way coupling strategy, the PFEM and SW simulations
can be executed independently leading to a very versatile tool for LGWs with significant
saves of computing time. Since the PFEM is a Lagrangian strategy, a search algorithm is
constructed at every time step in order to find all the elements cut by the SW interface.
Then, the PFEM calculations beyond the interface are not relevant. This fact is the key to
the computational savings, since the computational domain can be shortened by means
of an open boundary. However, the numerical approximation of open boundaries—the
absorbing boundaries—introduces some reflections. In this work, the absorbing boundary
is modelled by extending the domain after the open boundary with a gentle slope. The
computational domain ends when the slope reaches the mean water level, at this point,
the impulse waves leave the computational domain.
In a later stage, the characteristic variables computed at the interface are imposed to

the SW domain through an inflow boundary condition. We recall the subcritical charac-
teristics of the analyzed flows, hence, one variable is required to be imposed in order to
define a well-posed problem: the wave amplitude or the horizontal velocity. We choose
to impose the velocity, since it is more representative of the momentum exchange from
the PFEM and the SW computation. It has proven to be accurate, even when the Boussi-
nesq assumptions are not perfectly fulfilled. A general picture of the coupling strategy is
illustrated in Fig. 2.
Even though the Boussinesq equations are expressed in terms of the velocity evaluated

at a certain depth, uβ , this magnitude is a measure of the depth-averaged velocity ū. In
other words, it can be understood as a numerical quadrature of one integration point.
When the waves are regular, the choice of one magnitude or another is not relevant, but
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Fig. 3 Solitary wave example. Schematic side view of the experimental flume studied. Units in m. The
approximate position of the different wave gauges is also depicted

when wave breaking is present, the depth-averaged velocity is more representative of the
momentum exchange.
We remark that the average vertical velocity of the fluid corresponds to the time deriva-

tive of the free surface elevation. This variable does not correspond to a boundary condi-
tion for the studied cases.
Finally, there is an additional condition associated to �I (8b). If ū is assumed to be equal

to uβ , a constraint appears over the dispersive field Jη, which is equivalent to impose
∇∇ · u = 0 on �I (see [57]).

Validation tests
In this section, we present three different cases to validate the proposed partitioned strat-
egy and to show its potential for practical applications. The first numerical example is
aimed at reproducing a unidirectional wave generated in a laboratory channel. For this
test, we carry out a detailed validation of the coupled method paying special attention to
the transmission of boundary conditions between the near- and the far-field solvers. The
simplicity of this test allows us to compare our results with both experimental measures
and analytical solutions, and also with the numerical solution obtained with a full PFEM
model. In the second example, we apply the partitioned method to a more representative
example of LGW problems. In this test, we reproduce numerically the water wave gener-
ated experimentally by the impact of a second mass of water sliding at high velocity over
a steep slope. The last test aims at showing the applicability of the method to real-world
LGW problems. For this purpose, we considered a realistic configuration of a LGW event
occurring in an alpine lake. Our numerical solution is compared to another LGW solver
presented in the literature.

Solitary wave in a channel

In this test, we reproduce the laboratory experiment carried out at a large wave flume
of the Coastal Research Center in Hannover. A solitary wave is generated by a piston-
type maker and travels 180m until reaching the final inclined slope. A schematic view of
the wave flume is depicted in Fig. 3. More details about the experiment can be found in
[63–65].
Figure 4 shows the horizontal stroke of the paddle along time. The wave height has been

monitored at different positions of the flume, including the on-shore zone. In this work,
we will compare our numerical solution to the experimental measures obtained at the
four wave gauges whose coordinates are given in Table 1. The selected gauges are placed
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Table 1 Solitary wave example

Gauge Position [m]

G1 60.0

G2 170.0

G3 223.5

G4 239.7

Position of the different gauges in the flume

Fig. 4 Solitary wave example. Paddle position according to time. Data provided in Krautwald et al. [63–65]

at key positions of the channel and allow us tomonitor wave generation (G1), propagation
(G2), shoaling (G3) and flooding (G4).

Physical considerations

The aforementioned specifications generate a solitary wave of 0.6m amplitude and 65m
wavelength. The wave generation, propagation and breaking were analyzed using the
PFEM approach reported byOñate et al. [66]. Given the properties of such a solitary wave,
it can be simulated using the Boussinesq approximation and thus reducing drastically the
computational demand.This experiment is very interesting for two reasons. Firstly, we can
perform a verification test of both formulations and compare the numerical results against
experimental data. Secondly, the simplicity of the geometry allows us to obtain analytical
solutions for the Boussinesq equations. The analytical solution is a wave equation of the
type

u = A0sech2φ

η = A1sech2φ + A2sech4φ

where φ = kx− ωt. Details of the parameters A0, A1 and A2 and the relation between the
wavelength, period and amplitude can be found in [61].
The generation of solitary waves has motivated several discussions and a review can

be found in [67]. The kinematic description of the piston wave maker is the origin of
the discussion, since it cannot represent the exact solution of a solitary wave due to
construction limitations. Some expressions for the motion of the piston can be obtained
by integrating the analytical solution of the wave and truncating it on a finite space and
time domain, corresponding to the features of the piston. Then, the experimental solitary
wave is generated with a tail of secondary oscillations.
The Lagrangian formulation of PFEM perfectly tracks the movement of the paddle and

thus the numerical simulation reproduces the experimental results with high fidelity. On
the other hand, since the Boussinesq equations are implemented in an Eulerian frame, this
boundary condition is difficult to impose. An easier alternative is to apply the analytical
solution as a boundary condition.
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Fig. 5 Solitary wave example. Time evolution of the free surface at two gauges

Figure 5 shows the comparison between the solitary wave propagation obtained with
the PFEM, the experimental results, and the Boussinesq and analytical solutions. The
Boussinesq simulation shows no secondary oscillations because the solitary wave has
been imposed perfectly. The PFEM analysis matches the experimental data and the SW
analysis matches the analytical solution. The analytical solution overestimates the phase
speed and this mismatch will be discussed in the following analyses.
We remark that the difference in the phase speed of the wave is not originated by the

coupling strategy, but by the Boussinesq approximation. The accuracy of the approxima-
tion depends on the non linearity ratio ε = η/H and dispersion ratio μ = H/λ. A more
detailed study can be found in [68], particularly when ε < 0.4.

Numerical results of the coupled strategy

A global representation of the wave propagation is found in Fig. 6. In this simulation,
the first 10m are simulated using the 2D PFEM and the rest of the channel is simulated
using the SW solver. Additionally, the full channel has been simulated with the PFEM to
provide a reference solution for the coupledmethod and to analyze better its performance.
Concerning the space and time discretizations used in the two solvers, the PFEM domain
has a mesh of mean size 
x = 0.3m and the time step increment 
t = 0.001s is used,
while the SW domain is discretized with 
x=0.8m and 
t=0.025 s.
The results of gauges G2 and G3 show a small gap between the predicted wave by

the two solvers. The Boussinesq approximation is triggering this gap, originated by an
overestimation of the phase speed. This difference is consistent with wave theory and the
current wave specifications. Note that the same gap can be observed in Fig. 5. The run-up
(G4) is out of the SW theory assumptions, but still relevant results are obtained.
The magnitude of the computational time saving of the coupled method versus the full

PFEM solution is about 95%. These savings will be analyzed in more detail in the next
paragraphs. The savings depend on the spatial and temporal domains chosen for the NFS,
that have to be carefully designed in order not to introduce additional errors.

Sensitivity to the interface position

The FFS sensitivity has been tested with some SW interface positions, namely at x1 =
10, 20, 30 and 40m.Onewould expect to obtain amore accurate response as the interface
is placed further away from the paddle. Nevertheless, since in this example thewave is very
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Fig. 6 Solitary wave example. Time series obtained with the interface at x = 10m

Table 2 Solitary wave example

Interface position

10m 20m 30m 40m

2.48% 3.01% 3.12% 2.84%

Wave amplitude errors computed at gauge 3 (x=170m) for different positions of the SW interface. Reference solution: full
PFEM simulation

regular, the observed influence of the interface position on the results is not significant.
The solutions obtained with all the interfaces can be considered already converged (Table
2). These results were expected due to the regularity of the wave. For this reason, a similar
study is also performed in section Wave generated by a water landslide, where the SW
interfaces are placed into a more chaotic fluid flow.

Sensitivity to the temporal domain

Part of the saving in computational time comes from reducing the duration of the PFEM
simulation up to the minimum time needed. Once the initial impulse has generated the
wave and it has been transferred to the SW domain, the PFEM computations do not
provide relevant information. From that time on, the initial boundary condition, which
corresponds to water at rest, is imposed at the SW domain.
This transition in the BC has to be carefully treated in order to avoid unphysical oscil-

lations. A good duration for the transition is half of the period of the current wave.
In this test, we evaluate the effect of feeding the FFS with NFS solutions limited in time.

In particular, we considered four PFEM analyses of duration 10, 20, 30, and 40s.
Figure 7 shows the time evolution of the wave amplitude at the first gauge. In the graph,

we also added dots representing the time instant when one analysis starts to diverge from
the rest. It is clearly observed that the four solutions have an identical behavior in the first
part of the graph. In particular, even with just 10s of the PFEM simulation, the main wave
is well reproduced. Beyond this time, the curves diverge progressively. As expected, a time
interval of around 10 seconds separates the consecutive diverging points.
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Fig. 7 Solitary wave example. Set of analysis where the interface is active only in a part of the time domain. The
marker shows when the solution tends to the resting condition

Fig. 8 Solitary wave example. a The mesh with interface at 10m, 2700 elements. b The mesh with interface at
20m, 3 800 elements. c Detail of the full mesh of the channel, 20 000 elements. The slope has a dissipative effect
and is acting as an absorbing boundary

Table 3 Solitary wave example

PFEM domain length PFEM 2D PFEM 3D

SW interface position SW interface position

10m 20m 30m 10m 20m 30m

30m − 0.652% − 0.984% − 6.37% 0.228% − 3.0% − 7.16%

20m − 0.635% − 5.97% / − 0.438% − 5.62% /

10m − 5.21% / / − 5.24% / /

Errors of the wave amplitude computed at gauge 3 (x=170m) with different configurations. Reference solution: coupled
solution obtained with the full PFEM domain, as shown in Fig. 8c

Sensitivity to PFEM domain length

Besides the reduction of the time duration of the analyses, the optimization of the size
of the PFEM computing domain can drastically reduce the computational cost of the
simulations without affecting the accuracy of the results. For this reason, we analyze here
the effect of considering partial PFEMdomains of 10, 20 and 30m length plus an extension
acting as absorbing boundary condition, as shown in Fig. 8. The study is carried out for
both 2D and 3D PFEM domains.
The errors introduced by the effect of shortening the PFEM domain are listed in

Table 3.
It is important to note that the vicinity of the absorbing boundary condition of the PFEM

may affect the accuracy of the interface. The small errors obtained when the interface is
far enough from the absorbing boundary show that the presented methodology allows to
effectively reduce the PFEM domain without virtually affecting the quality of the solution.
This is particularly noticeable in the 2D case.
The 3D case presents a similar behavior, but higher errors are observed in the 30m

domain length. However, these errors are more attributable to the capabilities of the NFS
for reproducing the fluid-solid interaction at the lateral walls (see [66] for more details)
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Fig. 9 Landslide wave problem. Setup of the LGW flume for the experimental and numerical analyses

than to the coupling strategy. A finer discretization in the PFEMmesh would reduce this
bias.

Wave generated by a water landslide

In the second example, we simulate the experiment carried out at the Queen’s University
landslide flume presented in [69]. In this laboratory test, a mass of water is released from
an elevated reservoir and, after flowing downhill over a 30◦ slope, it impacts at high
velocity the water at rest placed on a 33.8m-long channel. In the reference work [69], 41
experimentswere presented covering awide range of source volumes and reservoir depths.
In [46], a comparison of experimental and numerical results obtained for three different
water depths in the channel is presented. In this research, we select the largest volume
case (0.45m3) and water depth (0.60m). Figure 9 shows the geometry of the experimental
setup considered in this work.
We remark that considering a water landslide does not affect the relevance of the test

in the field of LGWs. In fact, the phenomena produced by the water runout and impact
are totally representative of a realistic LGW scenario with a fast mobilized material. Fur-
thermore, the use of water as sliding material removes the uncertainty related to the
rheological properties of the slide and allows repeatability of the test.
The PFEM is used to simulate the water runout, the impact against the water at rest

and the consequent wave formation (Fig. 10). Remarkably, the front of the water landslide
reaches the end of the slope with a thin layer of less than 10 cm and it impacts the
water in the channel at a speed of about 8.5m/s. Thus, in order to capture accurately the
phenomena at the impact zone, fine mesh and time discretizations are necessary. For this
reason, a mesh size of 
x=1.5 cm and a time step increment of 
t = 5 · 10−4s are used in
the PFEM simulations. On the other hand, much coarser mesh and time discretizations
can be used to model the wave propagation along the channel with the SW solver. In
particular, in the FFS a time step of 
t = 0.025s and a mesh size of 
x=0.3m have
been used. We remark that the possibility of using much different and yet adequate space
and time parameters in the FFS and NFS solvers is one of the main advantages of this
partitioned method and one of the reasons for its high computational efficiency.

Numerical results

This LGW scenario has been solved using a time and space reduced PFEM domain in
combination with three SW interfaces. The PFEM spatial domain includes the runout, the
first 7m of the flume and an absorbing boundary condition, while the temporal domain
includes only the first 5s. The SW interfaces are positioned at 2, 4 and 6m. Figure 11
presents the results obtained at the gauges and a representation of the wave propagation.
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Fig. 10 Landslide wave problem. Near-field results with the PFEM solution of Navier–Stokes problem. The thin
vertical lines show the SW interfaces positions

In the top image, it can be observed the vicinity of the first gauge and the first SW
interface to thewave generation zone. Indeed, gaugeG1canonly record thePFEMsolution
and the SW solution obtained by the first interface. It is clear that the imposed boundary
condition does not satisfy the Boussinesq assumptions and the interpolated wave does
not fit the profile of a breaking wave. However, although the wave interpolated by the FFS
at the first stages is not equivalent in terms of wave height, the stored momentum is the
correct one. This can be observed at gauges G2 and G3, where the experimental wave has
adopted the solution of a solitary wave and matches the profile of the FFS.
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Fig. 11 Landslide wave problem. Time series of the wave amplitude at the different recording points

The results obtained at gauges G2 and G3, placed at the middle and the end of the
channel, respectively, show that all the three SW interface positions reproduce well the
main wave obtained experimentally. This is particularly remarkable considering that the
SW interface placed at x=2m is completely inside the impact zone (Fig. 10). These results
show that, as long the momentum is well transferred from the NFS to FFS, the wave
propagation process in the far-field can be accurately reproduced even considering the
SW interface in a zone where the wave is not completely generated. We also remark that
this can be done safely in this test, since water has been considered for the slidingmaterial.
In case of considering a different landslide material, either the interface is placed further
the zone ofmaterial deposition of the landslide, or the interface boundary conditions have
to take into account the presence of different materials in the computation of the overall
momentum.
Gauge G2 also records a considerable time interval after the first wave, this allows us

to analyze also the secondary waves. In this case, we note some discrepancies between
the results obtained by three SW interface positions. In particular, the first solution that
diverges from the experimental one (and from the two other numerical solutions) is that
obtained by the farthest interface position (6m). This result is totally consistent with the
time domain truncation explained in section Sensitivity to the temporal domain and Fig.
7. As the interface position is further from the impact zone, the signal arrives later. Being
the phase speed about 2.5m/s, the time difference between each interface is around 0.8s.
As a concluding remark for this example, the computational cost of the full simulation

of the LGWhas been estimated proportionally to the time needed by the signal to arrive at
the end of the channel and proportionally to the number of elements required to discretize
the full domain. The resources consumed by the FFS can be neglected since they are two
orders of magnitude smaller. According to these considerations, the overall time saving
given by the proposed partitioned strategy is 95%.
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Fig. 12 Landslide in a representative lake. Side and top view of the geometry. Dimensions in m

Landslide in a representative alpine lake

In [70], different metrics of real alpine lakes were used to define the configuration of
theoretical mountain basins of different sizes and shapes. These geometries were used
in [70] to study LGW scenarios with a finite volume solver and to obtain correlations
between the lake configuration and the landslide-generated waves. Here, we analyze one
of the lakes considered in [70] to test the proposed coupled strategy in a 3D complex
setup.
Figure 12 shows the side and top views of the geometry of the lake. The case study is

a circular lake with a diameter of 1500 m. The landslide has a prismatic shape of 20m
thick, 208m long and 120m wide. Following [70], a bulk material density of 1620 kg/m3

is used for the landslide material and an initial velocity of 20 m/s has been prescribed to
the sliding body.
Preliminary NFS analyses of the LGW scenario showed that the landslide material

reaches a deposition distance of around 350m. This information is useful to place the SW
interface at a position that is not trespassed by the sliding material. For this reason, the
interface of the FFS has been placed at 400m from the center of coordinates, which is the
center of the run-out impact.

Numerical results

Figure 13 shows a global view of the simulated LGW and a superposition of the NFS and
FFS results.
In order to assess the quality of the obtained solution, in Fig. 14we compare the envelope

of the maximum wave height measured along sections S1 and S2 with the reference
solution given in [70].
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Fig. 13 Landslide in a representative lake. Global representation of the LGW. The NFS domain is plotted until the
SW interface and only the geometry is shown. For the FFS, results for the free surface elevation are depicted.
Dimensions inm

Fig. 14 Landslide in a representative lake. Envelope of the free-water-surface elevation along sections S1 and S2
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Globally, the results obtained with the proposed method agree well with the reference
numerical solution, both in thenear and far fields.Althoughwith somedifferences in terms
of magnitude, both methods are also able to reproduce the amplification of the wave near
the shoreline. This phenomenon is produced by the combined effect of shoaling and the
wave reflection given by the steep bottom surface.
We also highlight that the results of the FFS are in good agreement with wave propa-

gation theory. In an unconstrained plane, the wave amplitude is inversely proportional to
the distance from the origin. Section S1 is closer to the unconstrained decay, while section
S2 shows a smaller decay since it is closer to the boundary.
Finally, it is worth commenting on the peaks in amplitude exhibited by the FFS solution

close to the SW interface.Asmentionedbefore, the imposed signal coming from thePFEM
simulation is still not fulfilling the Boussinesq theory. On the other hand, the generation
of stable waves by Dirichlet boundary conditions requires some traveling distance to be
modulated by the fluid system [68]. For this reason, the wave amplitude results obtained
close to the SW interface with the FFS should be disregarded. We emphasize again that,
on the other hand, the overall momentum computed in that zone is still correct.
In any case, the presented partitioned approach would be really interesting for an exer-

cise like the lakes classification in [70]. Indeed, a single landslide calculated with the NFS
could be used to simulate different representative lakes with the FFS. Also, in a more
detailed study it would allow concentrating the computational resources in the analysis of
the run-out and wave generation, thus enhancing the overall accuracy of the partitioned
scheme.

Concluding remarks
We presented a novel partitioned strategy for solving landslide-generated wave (LGW)
problems. The coupled method makes interact a near-field solver (NFS) with a far-field
one (FFS). The NFS reproduces the landslide runout and the impact zone by solving the
Navier Stokes equations with the Lagrangian Particle Finite Element Method (PFEM).
On the other hand, the FFS uses as input the NFS results stored at a certain interface to
model the wave propagation with an Eulerian Finite Element Method (FEM) based on
Boussinesq shallow water (SW) equations. To improve substantially the computational
performance of the method and, thus, to allow for the simulation of large-scale problems,
we adopt a one-way coupling scheme, meaning that the NFS solution is insensitive to the
FFS one. This partitioned method also allows us to freely decouple the time and space
discretizations of the two solvers, giving a further advantage in terms of accuracy and
efficiency.
In all the examples presented, the results obtained with the new partitionedmethod had

shown a very good agreement with the reference solutions, both in 2D and 3D problems.
Remarkably, we have been able to compare our numerical results with analytical solutions,
fully-resolved numerical simulations of LGW events, other coupled methods presented
in the literature, and experimental observations.
Placing theSWinterface as close aspossible to the impact zonegives themajor advantage

of reducing the NFS domain and, consequently, the overall computational cost of the
analysis. For this reason, we have compared the FFS results obtained considering different
positions of the SW interface for the same NFS solution. This study showed that, as
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long the momentum of the NFS is well transferred to the FFS, the SW interface can be
also placed very close to the impact zone, even if the wave is not already formed. More
specifically, the SW interface can be placed at one wavelength from the impact zone. In
fact, although locally the FFS results may give spurious amplitudes since the input wave is
not fulfilling the Boussinesq theory, the storedmomentum is correct and the far-fieldwave
propagation is reproduced accurately. We remark that this can be easily done in case of
having the same density between the sliding material and the water in the reservoir, such
in the water landslide scenario analyzed in “Wave generated by a water landslide” section.
In a more general case, the interface should be placed further than the deposition zone
of the landslide, or the SW interface should take into account the variation of material
densities on depth.
We have also verified the effect of reducing the size of the PFEM domain by using

absorbing boundary conditions. For this purpose, a gentle final slope with an inclination
of 1:10 was placed at the end of the PFEM domain. We showed that, as long as the SW
interface is not placed too close to the absorbing boundary, the PFEM domain can be
safely truncated without affecting the global results. To be precise, the gentle slope should
begin at least one half wavelength after the SW interface.
Finally, we also studied the effect of reducing the time duration of the NFS analyses.

We have shown that, if the main interest of the simulation of the LGW scenario is to
reproduce the main wave propagation, the PFEM analysis can be safely stopped after it
hasmodeled the impact of the landslide on the water and the first wave formation. Indeed,
this time truncation of the NFS will only affect the secondary waves propagation. We also
showed that, knowing the NFS duration and the wave propagation speed, it is possible to
have a quite accurate estimation of the reliability of the secondary waves results.
All these specific studies will allow us the define the most computational efficient NFS-

FFS scheme for practical LGW simulations. Although the overall computational cost
depends inevitably on the geometry and the proportions among the near and far fields, in
the examples here presented,we could estimate a 90%of time saving versus a fully-resolved
simulation of the same LGW scenario.
Among the possible enhancements of the proposed method, we consider it of primary

interest to investigate more efficient strategies for the NFS absorbing boundaries and to
develop a reverse one-way coupled algorithm where the FFS transfers the information to
the NFS. This FFS-NFS model would allow us simulating with high accuracy the effect of
tsunami waves produced by landslides (or by some other source, i.e., an earthquake) on
the shoreline and the civil constructions placed therein.
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