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fAheac'Lgmgﬂ‘:;gj?y“gfTweme’ Surrogate modelling is a powerful tool to replace computationally expensive nonlinear
Drienerlolaan 5, 7522 NB numerical simulations, with fast representations thereof, for inverse analysis,
Enschede, The Netherlands model-based control or optimization. For some problems, it is required that the
surrogate model describes a complete output field. To construct such surrogate
models, proper orthogonal decomposition (POD) can be used to reduce the
dimensionality of the output data. The accuracy of the surrogate models strongly
depends on the (pre)processing actions that are used to prepare the data for the
dimensionality reduction. In this work, POD-based surrogate models with Radial Basis
Function interpolation are used to model high-dimensional FE data fields. The effect of
(pre)processing methods on the accuracy of the result field is systematically
investigated. Different existing methods for surrogate model construction are
compared with a novel method. Special attention is given to data fields consisting of
several physical meanings, e.g. displacement, strain and stress. A distinction is made
between the errors due to truncation and due to interpolation of the data. It is found
that scaling the data per physical part substantially increases the accuracy of the
surrogate model.

Keywords: Metamodel, Multiphysical field, Preprocessing, Proper Orthogonal
Decomposition, Radial Basis Function

Introduction

Computational Fluid Dynamics (CFD) and Finite Element (FE) analyses are powerful tools
to solve engineering problems for which no analytical solution can be found. However, for
nonlinear problems with many degrees of freedom, these analyses can be computationally
costly. Consequently CFD and FE models are impractical for direct use in e.g. inverse
analyses, (robust) optimization or control algorithms. For these purposes surrogate models
can be constructed [1,2]. Surrogate models are cheap and fast representations that mimic
the output of expensive models. Surrogate models are constructed from data sets that
contain the full input and output fields for multiple evaluations of the (CFD or FE) model.
These data sets are considered to be the observations of a black-box function. Several
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mathematical methods exist to approximate the black-box function using data [3]. In this
work, specifically the use of non-intrusive Radial Basis Function interpolation models is
investigated, for the case that no gradient information is available. With non-intrusive it
is meant that no access to the source code of the solver is required.

It is often sufficient to construct a scalar surrogate model, also referred to as metamodel,
to optimize a single objective function. For example in the work of Wiebenga et al. [4]
an industrial V-bending process is optimized. In the V-bending process the flange shape
is defined by the main angle, a scalar, that is optimized towards 90°. To perform such
task, a continuous description of the interpolant on the input space is needed. However,
sometimes a complete output field needs to be described by the surrogate model. For
example in the work of Hamdaoui et al. [5] the displacement field of the stamping of
an axisymmetric cup from a blank made of high strength steels needs to be described
in order to model the major and minor strain in a Forming Limit Diagram. In the work
of Iuliano and Quagliarella [6] an airfoil in different transonic conditions is optimized.
The lift, drag and pitching moment coefficient of the airfoil depend on the flow field
evaluated using CFD. When such output field is large, it becomes inefficient to use standard
scalar techniques for constructing the surrogate model. Furthermore, large data sets may
lead to storage issues as well. To overcome these issues, reduction techniques can be
applied to construct full field surrogate models. A commonly used method is Proper
Orthogonal Decomposition. Proper Orthogonal Decomposition (POD) is an umbrella
term that includes Principal Component Analysis (PCA), Karhunen-Loeve Expansion
(KLE) and Singular Value Decomposition (SVD) [7,8]. The goal of the decomposition is
to obtain a low-dimensional representation of the output field that contains as much as
necessary of the variation that can be observed in the data set.

Proper Generalized Decomposition (PGD) can also be used to find such low-
dimensional representation of the output field. In PGD the reduced basis and the solution
of the problem are solved simultaneously making use of separation of variables [9]. The
computational time of expensive numerical models can therefore be drastically reduced
with PGD through the reduction of the system of equations. Proper Orthogonal Decom-
position can be used in a similar way for reducing the system of equations, although the
reduced basis is determined a posteriori, based on the history of previous increments in
the calculations of the model. Such applications of POD are intrusive, as they require to
be implemented into the nonlinear solver [8,10—13]. In contrast, non-intrusive POD is
used to construct a reduced basis of a model based on a set of offline observations. This is
often used for constructing a cheap replica of an expensive numerical model. The focus
in this paper is on the use of non-intrusive POD with RBF interpolation, as it can be used
offline without access to the source code.

The output fields are projected into the reduced basis to obtain the amplitudes that
will be interpolated to construct a continuous metamodel. These projections can also
be referred to as (POD-)coefficients [14], coordinates [15], modal coordinates [16], factor
scores [17] or weights. To construct the projection-based reduced-order surrogate model,
the amplitudes can be interpolated using many different metamodelling techniques, such
as Kriging, Response Surface Method and Radial Basis Function interpolation. For an
extensive overview of metamodelling techniques see [1,2,18,19]. In this work, Radial
Basis Function (RBF) interpolation is used to interpolate the amplitudes.
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Applications of surrogate models based on a combination of POD and RBF interpolation
are found in many engineering fields. Among many other examples, nonlinear FE analyses
are replaced by a POD+RBF-based surrogate model in a geotechnical application in the
work of Khaledi et al. [20]. In their work a POD+RBF-based surrogate model is used
to identify the material parameters of the soil in the simulation of tunnel excavations.
Bocciarelli etal. [21] identify elasticity and plasticity material parameters of two aluminium
alloys using an indentation test. In the work of Havinga et al. [22], a POD+RBF-based
surrogate model of the force-displacement curve from a sheet bending process is used
to perform real-time Bayesian estimation of process variations. Dang et al. [23] use a
POD+RBEF-based surrogate model to reduce the springback in U-shape draw bending.
CFD analyses are replaced by a POD+RBF-based surrogate model by Kato et al. [24] to
optimize a turbine blade.

The general off-line steps to construct a non-intrusive POD-based surrogate model are:
obtaining a training set consisting of input and output data, preprocessing the output data,
determining the predominant modes of the output data, interpolating the amplitudes of
the different modes in the input space, and lastly post-processing the approximation. We
will refer to the matrix, that collects the output data per input setting as its columns, as
the snapshot matrix. The rows of the snapshot matrix correspond to the different (state)
variables that need to be modelled [16,25]. The rows of the snapshot matrix are also
referred to as components [26), degrees of freedom [5,23], measurable quantities [21] or
observation points [27]. When different types of variables are present in the output data,
one may use different separate snapshot matrices for each variable or gather them all in
a single snapshot matrix. For instance, to model a displacement field, Hamdaoui et al. [5]
use separate snapshot matrices for the displacements in x- and y-direction. While in the
work of Buljak [28] the displacements in x- and y-direction are gathered in one single
snapshot matrix. When different physical quantities need to be modelled one can also
gather all data in one big snapshot matrix. However, in the surrogate modelling of FE
analyses it is more common to use separate snapshot matrices for each physical quantity.
For example separate snapshot matrices are used in Misiun et al. [29] to model stress
components, plastic strain, a damage indicator and temperature; in Steffes-lai [30] to
model the equivalent plastic strain, thickness and a damage criterion; and in Buljak [31]
to model the loading & unloading curves, nodal displacements, equivalent stresses and
principal stress components.

When such physical quantities are gathered in the same snapshot matrix their values
may very much differ in magnitude, e.g. strains in the order of 10~! and stresses in the
order of 10° Pa (101 ~10? MPa). When a surrogate model of a CFD analysis is constructed
the issue that some data is of different orders of magnitude compared to others is often
solved by scaling the different physical parts. For example in the work of Zimmermann
and Gortz [32] and Guéntot et al. [14] different scaling methods are described. In the
latter a comparison is made between scaling the snapshot matrix per variable and per
physical part with the mean, range and standard deviation. They found that there is not
one superior scaling method, nevertheless the average errors are lower when scaling is
applied to the snapshot matrix.

In this work, the effect of different approaches for preprocessing high-dimensional mul-
tivariate output data on the accuracy of POD surrogate models, that are constructed based
on these data, are studied. In the next section different approaches in surrogate model
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construction are presented. Two of these approaches are based on different preprocessing
methods of the snapshot matrix and two approaches are based on decomposition of dif-
ferent parts of the snapshot matrix. The focus of this work is on how the snapshot matrix
should be handled in the context of POD-RBF interpolation. The systematic comparison
of the surrogate model results will contribute to a deeper understanding of the different
approaches. One of the approaches is novel, while the others have been well documented
in literature. The novel approach is relevant for the case that multiple physical quantities
are simultaneously included in the data set, for example when the data set contains both
stresses and strains. When a certain physical quantity is regarded as the main modelling
objective, a reduced order model of the other quantities can be computed based on the
covariance between the quantities, without requiring additional expensive computations
for model reduction or fitting the interpolation models. These cheaper computations
come at the cost of reduced accuracy, but may be appropriate for many applications, such
as for visualization. In the section ‘Demonstrator processes’ two metal-forming processes
are introduced for which surrogate models of the displacements, equivalent plastic strains
and stress field are desired. The bases that are used for the different surrogate models are
analyzed in the section ‘Comparing different bases’. The different surrogate models are
compared based on a validation set as presented in the section ‘Validation set results of
the demonstrator process’. The methods presented in this paper are generally applicable
and are not limited to the specific case that is used as a demonstrator.

Constructing different surrogate models

The general steps to construct a POD-based surrogate model are: obtaining a training
set, preprocessing the snapshot matrix, reducing the output, interpolating the amplitudes
and lastly post-processing the approximation. All steps are depicted in Fig. 1, and will be
discussed in more detail in this section.

Following the steps as presented in Fig. 1 and elaborating in the following sections, four
different surrogate models will be constructed. In order to illustrate the theory with an
example, the following output data field is presented. This example is used throughout
the discussion, although the approaches are generic and can be applied to any high-
dimensional multivariate output field. The different approaches discussed in this work
can be used as guidelines to construct a surrogate model of other cases. It is expected
that the suitability of the methods discussed in this work and of other methods that can
perform the same task, may depend on the specific applications. The example output field
of a single FE simulation consists of M variables that can be stored in the following M x 1
result vector that can be partitioned according to 3 different physical fields:

Y= {Ya} (1)

in which y, contains the M, displacements, y, contains the M, equivalent plastic strains,
and y, contains the M stress components.

The approaches described in the following sections can be applied to any other result
field that is described by different physical fields. Different steps of the preprocessing
and decomposition procedure may be either omitted or performed in several ways, lead-
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ing to the following four approaches for construction of a POD-based surrogate model
considered in this paper:

1 Only centering data by subtracting the mean value from the data (section “Zero
centering’).

2 Centering, scaling and decomposing all data at once (section ‘Scaling each physical
part’).

3 Centering data and decomposing each physical part independently (section ‘Separate
reduction of each physical part’).

4 Centering data and assemble basis vectors from one physical quantity (section
‘Assembly from one physical part’).

The approaches 1 and 3 are commonly applied in surrogate modelling of FE analyses
[5,28—31], while approach 2 is often applied in surrogate modelling of CFD analyses
[14,32]. Scaling the data means that each variable, physical part or the total snapshot
matrix is multiplied with a constant. Approach 4 is novel, in this approach one single
physical part is used to assemble the basis vectors describing the total field. In the following
sections, the steps of the surrogate model construction and the differences between the
four approaches will be explained in detail.

Obtaining a training set

The input parameter space x is a Ng;m-dimensional space that will be sampled with Ny
sample points. The sample points x; in the initial sample set X can be generated using
different sampling strategies. On each sample point a simulation is performed of which the
data can be stored in the result vector y;. The snapshot matrix Y is obtained by collecting

Obtain training s
Sample parameter space X in Ngim

Naim X Nexp M X Negp

Reduce output using SVD

Y* = ®,8,VT Eq. (7)

and A = sIVIEIT = [ { o } }Eq- (1)

MxK K X Nop

|

Interpolate amplitudes using RBI

Newp
G (X) = D Wnigni(x) Ea. (21)
i=1
with: w!' = o  G;! Eq. (23)

I

Post-process approximatio

FEA () = 3" @ v (x) Bq. (24)

n=1

7 (%) = £71(317 (%)) Eq. (26)-(29)

Fig. 1 Construction of a POD-based surrogate model
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the simulation results as its columns:

FEM
X: X; —)Y: yi

(2)

Ngim X Nexp M x Nexp

Many different sampling strategies can be found in literature. In the construction of POD-
based surrogate models it is common practice to combine different sampling strategies
to obtain the initial sample set, e.g. in the work of Havinga [22] a full factorial design
is combined with a space-filling Latin hypercube sampling (LHS) and in the work of
Steffes-lai [30] a starpoint design is extended with more sample points using a custom
infill strategy. A full factorial design consists of 2Ndim sample points that are different
combinations of the input parameters at their minimum or maximum value. The full
factorial design is used to properly cover the boundaries of the parameter space [22]. A
star point design consists of a center point, that is the nominal setting, and 2Ny, star
points. The star points are constructed by setting each input parameter one-at-a-time to
its minimum and maximum value, while other input parameters are kept at their nominal
value. The star point design can be used for sensitivity analysis [30]. To generate a LHS
the parameter space is divided into Né\,i‘f,‘m Nim-dimensional hypercubes. Sample points
are placed within the hypercubes under the condition that there are no sample points in
the hypercubes perpendicular to a hypercube that is containing a sample point. If this is
done such that the LHS is spacefilling, this generally leads to a uniform sampling over the
whole parameter space.

Preprocessing the snapshot matrix

The snapshot matrix obtained based on the initial sample set as described in the previous
section can be used for decomposition without any further modifications. For instance,
no modifications to the snapshot matrix are made in the work of Bocciarelli et al. [21].
However, when a suitable preprocessing method is applied to the snapshot matrix, the
information content of the first basis vectors can be increased. We define the preprocessing
of the snapshot matrix as:

Y* =f£.(Y) 3)

In which f,(-) is the preprocessing function that transforms the snapshot matrix into the
preprocessed snapshot matrix Y*. The superscript * and subscript , denote the applied
preprocessing method, e.g. ‘0’ for zero centering and ‘scaled’ for scaling per physical part.

Zero centering

In the construction of non-intrusive POD-based surrogate models it is common practice to
subtract the mean result from the snapshot matrix before decomposing [33]. Subtracting
the mean centers the data around zero, the resulting matrix is therefore also referred to
as the deviation matrix [14]. Subtracting the mean increases the information captured
in the first basis vectors. When the mean is not subtracted, the first basis vector will
dominate the decomposition and will point towards the mean [16,34]. As basis vectors
will be orthogonal, the subsequent basis vectors will be constrained by the direction of the
first basis vector, resulting in a suboptimal decomposition of the data set. An extensive
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comparison between non-centred and centred PCA is given by Cadima and Jolliffe [35].
Although subtracting the mean has been shown beneficial in the construction of non-
intrusive POD-based surrogate models [36], there are also applications known in which
subtracting the mean is not compatible, for example in incremental SVD [37].

To obtain the zero centred snapshot matrix the mean over each row, and hence each
variable, in the original snapshot matrix is subtracted.

YO =£(Y) =Y —y17 where: y= Y1 (4)

exp
in which 1 is a Neyp x 1 vector of ones. Note that the rank of the zero centered snapshot

matrix is one lower than the rank of the original matrix.

Scaling the snapshot matrix
Scaling the entries of the zero centered snapshot matrix is a common preprocessing
method in Principal Component Analysis. The scaling can be performed to the entire
snapshot matrix, to each physical part separately or per variable in each row. The scaling
can be calculated in many different ways. Scaling the data includes, but is not limited to,
normalising the data.

The most simple scaling method is to divide the entire snapshot matrix by a constant.
This is a common preprocessing method in covariance PCA. To perform covariance
PCA the zero centered snapshot matrix is scaled with the square root of the number of

experiments. When the snapshot matrix is divided by \/Nexp or \/Nexp — 1 the matrix
YTY will be a covariance matrix [17,38]. Dividing a matrix by a constant does not alter
the singular vectors that will be found in the SVD. It will only change the magnitudes of
the singular values by the same factor. Dividing by a constant therefore does not alter the
basis vectors obtained in a decomposition and for that reason is left out in the remainder
of this paper.

The scaling can also be performed per variable, that is each row in the snapshot matrix.
For example to perform correlation PCA, all rows are divided by their Euclidean norm
[17]. A major advantage of scaling by the norm is that the snapshot matrix is divided by
something with the same physical quantity. Hence, the entries in the snapshot matrix
become dimensionless. Instead of using the norm for scaling the data one can also use the
mean, range or standard deviation. Note that the mean of a zero centered snapshot matrix
is 0, and hence the mean y as defined in equation (4) should be used for scaling. As pointed
out by Skillicorn [33] dividing by the standard deviation will ensure that most of the values
in each row will fall in the range — 1 to + 1. It has been found in previous work [36] that
this is not beneficial for the quality of the surrogate model because the variation of the
variables with relatively small variations will be amplified, and therefore these variables
get a larger contribution to the basis vectors. To illustrate that this is not beneficial for the
quality of the surrogate model, we refer to the industrial bending problem as described
in “Demonstrator processes” section. The displacements in y-direction in the clamped
part of the sheet metal will be very small or even zero. Therefore, the standard deviation
will also be very small or zero. Scaling these displacements with their standard deviation
will magnify their importance. Hence, when the snapshot matrix is decomposed the basis
vectors will capture behavior (and noise) which in practice is barely present. Scaling each
row is therefore also left out of consideration in this paper.
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Scaling each physical part

The scaling can also be performed on each physical part in the snapshot matrix. As pointed
out by Guéntot et al. [14] for a snapshot matrix with different physical quantities it is better
to scale per data type. As different physical quantities are present in the result vector, they
can be of different order. For example, in the demonstrator process the stress components
in MPa are of order 102, while the strain components are of order 10~1. This will cause
the decomposition to be mainly determined by the stress terms. It is therefore proposed
to scale each part of the snapshot matrix. In [14] this is referred to as physical scaling. The
zero centered snapshot matrix in the example of this work with scaling applied to each
part will take the form:

[Yu - VulT] *Su
YUl = fratea(¥) = | [Ye —¥.17] s (5)
[Yo —¥17] s
Herein sy, s and sq are the scaling constants for the displacement, equivalent plastic
strain and stress respectively. The scaling constants can be for example the mean, standard
deviation or range of each physical part [14]. To the best of the authors knowledge, no
applications can be found in literature of scaling the snapshot matrix per physical part
to model FE simulation data. It is proposed to scale the different parts by their range.
To calculate the range of each physical part the minimum over each row and column is
subtracted from the maximum over each row and column. For the displacement field the
physical scaling constant s, can be calculated as:

su = (max Yy — min Yy) ! (6)

The scaling constants for the other parts can be calculated in an equivalent way.

Decomposing the output
The predominant modes in the preprocessed snapshot matrices will now be determined.
Hence, the zero centered snapshot (Y, section ‘Zero centering’) and the snapshot matrix

that is scaled per physical part (Yscaled

, section ‘Scaling each physical par’), will be decom-
posed. The snapshot matrix is decomposed into a new basis before reduction. In this work
a singular value decomposition (SVD) is used to find the proper orthogonal basis vectors

[39]. The SVD of the preprocessed snapshot matrix takes the following form:

. 0 :
Y*:¢*D*VI= Yy P - Ay {VZ:* }

,

0 :
M x Nexp Nexp X Nexp Nexp X Nexp

(7)

The preprocessed snapshot matrix is decomposed into three matrices: @, that contains
the left singular vectors @, as its columns, D, that contains the singular values d,, .« on
its diagonal and V! that contains the right singular vectors v,  as its rows. The subscripts
n and * denote the n-th direction in the basis and the applied preprocessing method,
respectively. As the singular values are sorted by size from largest to smallest, the most
information will be captured by the first singular vectors.

Alternatively the so called method of snapshots can be used [16], though the resulting
basis will be the same. In the method of snapshots the basis vectors are constructed from
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the snapshot matrix by finding the eigenvalues and eigenvectors of the matrix C, =
(Y*)TY* [28]. The orthonormal basis vectors can be found using:

—1/2
Qpx = Y. Vi )Ln,*/ (8)

In which v,, . and A, are the eigenvectors and eigenvalues of the matrix C, = (Y*)Ty*
respectively. By comparing with equation (7), the link between POD and SVD can be
deducted. The eigenvectors of the matrix C, are the right singular vectors. Hence, the
matrix V, holds the collection of all Ney,, eigenvectors v, .. The left singular vectors are
the eigenvectors of (Y*)(Y*)T [40]. The singular values are simply the square root of the
eigenvalues, hence: d,, . = \/m [41].

Note that both the left and right singular vectors are orthonormal, in that case:

viv,=ele, =1 )

Each left singular vector represents a vector in the result space (of length M). The left
singular vector matrix can be seen as a new coordinate system in the result space, and can
therefore be used as a basis for the data. This new basis can be truncated so that it will
contain only the first K basis vectors @, . with n = 1..K. We define the truncated basis
with K basis vectors as:

X =1 Tt 1 oxs (10

M x K

In which the superscript [K] denotes the number of basis vectors in the basis. The ampli-
tudes of the result vectors projected onto the basis vectors are found by multiplying the
singular values with the right singular vectors.

A = DIV = | (o) .
K X Nexp

The vector (x}; 4 collects the amplitudes of the Neyp result vectors corresponding to basis

vector @,,+. The K-rank approximation of the preprocessed snapshot matrix YX*! can
now be written as:
YK — glKIAIK] (12)

Reduction of the snapshot matrices
Both the zero centered snapshot (Y, section ‘zero centered’) and the snapshot matrix that

is scaled per physical part (Yscaled

, section ‘Scaling each physical part’) are decomposed
using the method described in the previous section, resulting in two different bases ®g
and ®g,jeq respectively. These bases that are found using the two different preprocessing
methods can both be truncated to K basis vectors to construct the corresponding K -rank

surrogate models.
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Separate reduction of each physical part
The third method for surrogate model construction uses decomposition of each physical
part of the zero centered snapshot matrix separately:

Y0 = [Yu - vulT] - o,D,V’
Y0 = [Ye — ‘751T] —&.D, V] (13)
YO = [YG - vng] = &,DV]

Note that scaling the different physical parts does not have any influence on the separate
bases as explained in “Scaling each physical part” section. As the physical parts are decom-
posed separately scaling each part will only change the magnitude of the corresponding
singular values of the part.

Assembly from one physical part

In this section a new method for assembling the basis vectors from one physical part,
hence a submatrix of the preprocessed snapshot matrix, will be described. The basis
will be determined for one of the physical quantities, whereafter the full basis will be
assembled from this basis, the full basis will describe the directions of variation in the
data that covaries most with the variation of the main physical quantity. The reasoning is
that certain physical quantities may be dependent on or covariant with others, and that
the modes of dependent quantities may be indirectly captured in the basis of the main
quantity. The resulting surrogate model will model the main quantity with maximum
accuracy, without much loss of accuracy in the other physical parts.

Note that the reduction method can be applied independently of the chosen preprocess-
ing method. By assembling from one physical part the covariances between the different
physical parts are retained, while the dominance of other physical parts can be reduced.
By means of example we are going to assemble the basis vectors from the zero centered
equivalent plastic strain field. However, the method described below can be applied for
assembly from any part of the snapshot matrix. One of the physical parts, in this case the
zero centered equivalent plastic strain, is decomposed using SVD as described previously.

Y?=®.D. V! (14)

Note that the left singular vectors of the equivalent plastic strain have size M, x 1. The
basis vectors that span the entire result space can be assembled by multiplying the right
singular vectors and the singular values from the zero centered equivalent strain with the
total zero centered snapshot matrix (Y°):

[®(c)u]
<I>(a) = [‘I’(s),s] = Yovst_l (15)

[®(c)0]

In which @) denotes the basis that spans the entire results space assembled from the
equivalent plastic strain. Due to the multiplication with the full preprocessed snapshot
matrix, the basis vectors are not orthonormal anymore.

To calculate the amplitudes a least squares projection is used:

Awe) = (@

(e)e

D)) @YY (16)
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The obtained basis can be truncated to obtain the K-rank approximation of the prepro-
cessed snapshot matrix assembled from the equivalent plastic strain field:

[K(e)] — K (K]
YR = g Ay (17)
M % Newy M x K K X Nexp

Interpolating the amplitudes

To predict the full result vector at any position of the input parameter space that is not part
of the initial sample set X, the amplitudes of the basis vectors will be interpolated. Each
row of the amplitude matrix A, in equation (11) consists of the amplitudes corresponding
to basis vector n. The entries in vector &y, correspond to each sample point x;, hence
it collects the entries a;,«. To construct a continuous surrogate model, the amplitudes
corresponding to the results of different input settings will be interpolated.

Ky —> écn,>|<(x) (18)

In the remainder of this section the subscript that indicates the preprocessing method *
is left out for clarity. One can also interpolate the right singular vectors as they are simply
the amplitudes divided by the singular values [30]. The interpolation can be done using
different interpolation methods. In this work Radial Basis Functions (RBFs) are used to
interpolate the amplitudes. An RBF can be any function that depends on the distance
between an arbitrary point in the parameter space x and a sample point in the parameter
space x;. The radial basis function corresponding to sample point x; will be:

gi(x) = gi(llx — x;|]) (19)

Several different basis functions have been proposed in literature. In multiple studies it has
been shown that the performance of multiquadric RBF for scalar interpolation is generally
good [2,42]. In a comparative study performed by Hamim [43] on the application of RBF in
POD-based surrogate models, it was shown that multiquadric RBF perform best compared
to other types of RBFs. Therefore a multiquadric RBF is chosen for interpolation of the
amplitudes in all surrogate models:

2i(%) = V14 (x —x)T0,(x — x;) (20)

In which 8, is the Ngim, X Ngim diagonal global scaling matrix of the amplitude correspond-
ing to basis vector n. The global scaling parameters are optimized per basis vector and
per surrogate model based on the Leave-One-Out Cross Validation values as proposed in
[44].

As the mean result vector is subtracted from the snapshot matrix, the mean ampli-
tude will be (close to) 0. No polynomial detrending is applied before interpolating the
amplitudes [45,46]. The interpolated amplitude is written as the sum of the RBFs g, ;(x)
multiplied with a weight w,, ;:

Nexp

by(x) = Z Wn,ign,i(x) (21)
i=1

One radial basis function is placed at the coordinate of each sample point in the input
parameter space. The weights of the basis functions can be determined exactly, as the
amplitudes are known at this same number of coordinates. To find the unknown weights
all RBFs can be evaluated at the initial sample points x; and collected in an Nexp X Nexp
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interpolation matrix G, [31].

gn,l(xl) cee gn,l(xNexp)
Gn = S : (22)
81, Nexp (x1) ... 81, Nexp (xNexp)

The weights in equation (21) can be solved by setting &,(x;) = «;;, leading to:

wl = alG,! (23)

Post-processing
When the amplitudes corresponding to all K basis vectors are interpolated the continuous
approximation in a preprocessed basis reads:

K
YEI ) = > @b (x) (24)
n=1
To construct the final surrogate model, the approximation in the truncated basis must be
mapped back to the same form as the initial snapshot matrix. The function that reverses
the applied preprocessing method is called the post-processing function and is denoted
with f*’l(-). The interpolated result vector can be written as:

K
¥ = £ ) = £, (Z cpn,*an,*<x>) (25)
n=1
The surrogate model with K basis vectors from the zero centered snapshot matrix can be
written as:
K
0 00 =¥+ Y @rob0(0) (26)

n=1
The surrogate model with K basis vectors from the zero centered and scaled snapshot
matrix can be written as:

K
A [K - A
ys[ca]led(x) =y+ (Z Pi,scaled “n,scaled(x)) @s (27)

n=1
In which @ is the Hadamard division, respresenting element wise division and s is the
M x 1 scaling vector with M, entries s,, M, entries s and M entries s which are
calculated based on equation (6).
The surrogate model with K basis vectors from the zero centered separate snapshot
matrices can be written as:

K
Yu t+ Z ©pub,u(x)

i () =1

K] ron ) [ IK] ). & X

Vsep X) = {1¥e (X)f¢ = Ve + 2 @uebine(x) (28)
Nl n=1
Yo (X)

K
Yo+ Z (Pn,cr&n,cr(x)

n=1

When separate snapshot matrices are used a different number of basis vectors in the
truncated basis K can be chosen for each physical part. Note that, when using separate
bases for each physical quantity, one surrogate model must be fitted per basis vector per

Page 12 of 33
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physical quantity, whereas the other decomposition methods require fitting of only one
surrogate model per basis vector for all physical quantities together.
The surrogate model with K basis vectors from the zero centered snapshot matrix that

is assembled from the strain field can be written as:
K

Y0 = F+ Y @) o) () (29)

n=1

Demonstrator processes

As discussed earlier, the proposed methods for surrogate model construction described
in this paper are generally applicable and not case specific. However, in order to illustrate
the methods in concrete terms, two demonstrator process are introduced in this section.

Pure bending problem

The first demonstrator process is a rectangular beam under pure bending. The beam has
height # = 4 mm and thickness ¥ = 2 mm as depicted in Fig. 2. The beam is made of
an imaginary material with Young’s Modulus 2,10,000 MPa and a Poisson ratio of 0.3.
Furthermore the relation between the stress o and the plastic strain ¢, is modelled with
the following hardening curve:

o = oy + K(go + &p)” (30)

Herein oy is the yield stress offset, K is the strength coefficient, & is the prior plastic strain
and # is the hardening exponent.
The Hill quadratic planar isotropic yield criterion is used to determine when the material
is yielding:
oy = \/R(axx —op)? 402 + oy2y
1+R
Herein R is the Lankford coefficient. The aforementioned five parameters that describe

(31)

the hardening curve and the yield criterion vary according to Table 1. Hence, the dimen-
sionality of the input parameters space is Ngi, = 5 and a point in the parameter space
can be denoted as:

X = {1, %, X3, 44, x5) T = {0y, K €0, n, R} r (32)

The solution to several outputs is calculated at 101 points across the beam height. Note
that in Fig. 2 only 17 points are displayed for clarity of the illustration. The neutral axis
(NA) that is depicted with the dashed line in Fig. 2 is defined as the point where the strain

1 measured

in x-direction &, = 0. The beam is bent to a maximum curvature of 0.2 mm™
on the neutral axis, in a series of 101 subsequent steps, in which the curvature is gradually

increased with a constant amount.

Fig.2 Schematic representation of the pure bending process
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Table 1 Ranges and dimensions of the input and output of
the pure bending problem

Variable Minimum Maximum Unit
Input Yield stress offset () 100 200 MPa
Strength coefficient (K) 200 250 MPa
Prior plastic strain (gg) 0.01 0.1 -]
Hardening exponent (n) 0.1 04 -]
Lankford coefficient (R) 2/3 3/2 [-]
Output Equivalent plastic strain (e,)") 0.0250 0444 -]
Engineering strain in y-direction (e; ) —0.1914 0302 -]
Stress in x-direction (o) — 460 423 MPa
Stress in y-direction (ayy) — 157 05 MPa

To maintain a pure bending situation without axial forces, the neutral line will shift in
y-direction during the increments. The neutral line shift is solved iteratively based on the
condition that the axial force should be equal to zero. Within each iteration, the strains in
x-direction are fully defined by the curvature of the neutral line, and the neutral line shift.
To assure the accuracy of the calculations, the local point density is increased in the elastic
region. The stress and strain increments at all points can be solved using elastoplasticity
theory, using associated flow, the Hill yield locus of Eq. (31), isotropic hardening, and the
hardening rule of Eq. (30). The calculations have been implemented in a Matlab code.

The final solution of several outputs on the original locations of the 101 points will
be modelled. The output of the model consists of the equivalent plastic strain £f,q, the
engineering strain in y-direction £;ng, the stress in x-direction oy, and the stress in y-
direction oy,. Hence the result of one evaluation can be collected in the M x 1 result
vector:

=l

where y; is the M. x 1 part of the result vector that corresponds to the two different
strains and y is the My x 1 part of the result vector that corresponds to the two stress
components. With 101 points per output type the total length of the result vector is
M = 404.

Construction of pure bending surrogate models

The pure bending model is used to construct different surrogate models thereof. As
described in the section ‘Obtaining a training set’, the first step is to obtain a training
set. To rule out the dependency on the training set when comparing the four different
approaches in construction of a surrogate model, five distinct training sets will be used.
Each training set consists of a sample set X and a snapshot matrix Y.

Three different designs are combined to sample the Ny, = 5 dimensional parameter
space of the pure bending demonstrator: a star point design, a full factorial design and
a space-filling LHS. The star point and the full factorial designs, consists of Nsar =
5-Ngim+1 = 11 and Ng = 2° = 32 sample points respectively. To combine the star point
and full factorial design with the LHS, 250 different space-filling LHS of Nj,s = 107 sample
points are generated in the input space and the 5 best are picked based on the maximum
minimum Euclidean distance to the points in the star point and full factorial design. The
total number of experiments in each training set will be Nexp = Nstar + N + Nips = 150.
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Table 2 Scaling constants for the different training sets of the
pure bending problem

Set 1 Set 2 Set3 Set4 Set 5
Strain (s¢) 8.747 8.800 8.800 8.800 8.798
Stress (s¢/1073) 1.571 1426 1.667 1.735 1.627

Now that we have 5 different sample sets X, each sample point is evaluated using the
pure bending model as described in the section ‘Pure bending problem’. In total the model
is evaluated 11 + 32 4+ 5 - 107 = 578 times. The result vectors from each sample set are
placed in five different snapshot matrices. Each snapshot matrix can be partitioned into a
submatrix corresponding to the strain field Y, and the stress field Y:

Y — B”J (34)

To construct the four different surrogate models, first the snapshot matrices are zero
centered as defined in equation (4). The first type of surrogate model will be based directly
on the zero centered snapshot matrices.

In the construction of the second surrogate model the zero centered snapshot matrices
will be scaled as defined in equation (5). The scaling constants s, and s that are calculated
using equation (6) for each training set can be found in Table 2.

To construct the third surrogate model separate zero centered snapshot matrices will
be used for each physical part.

The fourth and fifth surrogate models are constructed by assembling the full basis
vectors from the strain and stress field respectively. The ratio between the variables in the
equivalent plastic strain field and the total number of variables in the result fields is:

% = @ =0.5 (35)
M 404
Hence, the total result field is assembled from approximately 50% of its total span. Equiv-
alently, if the basis vectors are assembled from the stress, the total result field will also be
approximated from 50% of its total span.
Summarizing, surrogate models of the pure bending problem are constructed using:

a zero centered snapshot matrix (A([)K] (x)).

a zero centered snapshot matrix that is scaled per physical part (?8[51]16 4(x)).

separate zero centered snapshot matrices for each physical part (ys[ﬁ,] (x)).

L=

a zero centered snapshot matrix with basis vectors assembled from strain field
L [K

(¥s) ().

5. a zero centered snapshot matrix with basis vectors assembled from stress field
NIS

(¥l ().

based on the 5 training sets.

Industrial bending problem

For the second demonstrator we will investigate the bending of a metal flap. A schematic
representation of the process can be found in Fig. 3. In the process a sheet metal work
piece with initial sheet thickness (x1) is bent downward to the final punch depth (x;).
Thereafter, the punch is released and the work piece finds a new equilibrium position
after springback.
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punch blankholder

workpiece

die fixed die

Fig.3 Schematic representation of the demonstrator process and Finite Element mesh

Table 3 Ranges and dimensions of the input and output of
the industrial bending problem

Variable Minimum Nominal Maximum Unit
Input Thickness (x; ) 0.295 03 0.305 mm
Punch depth (x,) 1.5 1.55 16 mm
Output Displacement (u) —1.69 n/a 0.07 mm
Equivalent plastic strain (e,,’) 0 n/a 048 ]
Stress (o) — 661 n/a 566 MPa

The process is described by two parameters, the sheet thickness (x1) and the final punch
depth (x2). Hence, we have a parameter space with Ng,, = 2. A point in the parameter
space can be denoted as:

x = {x1, 20} (36)

The process is modelled with a 2D plane strain model using the FE analysis software MSC
Marc/Mentat version 2016. The sheet metal is modelled with an elastic—plastic isotropic
material model with Von Mises yield criterion and a tabular hardening curve. The work
piece is meshed using 1200 quadrilateral elements and 1296 nodes. The elements are fully
integrated using four integration points per element with constant dilatational strain.

The output of the FE-model consists of the nodal displacement field and the equivalent
plastic strain field and stress field in the integration points. Hence the result after the final
time step of the FE-model can be collected in the M x 1 result vector:

{yu}

y = 1{ve} (37)

{yo}

where y, is the M, x 1 part of the result vector that corresponds to the displacement field
of all nodes, y is the M, x 1 part of the result vector that corresponds to the equivalent
plastic strain in all integration points and y is the My x 1 part of the result vector
that corresponds to the stress components in all nodes. With two degrees of freedom
per node M, = 2592. With four integration points per element M, = 4800. With four
integration points per element and because of the plane strain analysis there are 4 nonzero
stress components which makes My = 19200. The overall length of a result vector is
M = My + M: + Mg = 26592. An overview of the different ranges and dimensions of
both the input and output parameters is given in Table 3.
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Table 4 Scaling constants for the different training sets

Set 1 Set2 Set 3 Set 4 Set5
Displacement (SU/WOW) 1.551 1.551 1.691 1516 1.620
Equivalent plastic strain (s¢) 4784 4776 4771 4742 4.770
Stress (s¢/1 0% 8397 8458 8.386 8.446 8433

Construction of industrial bending surrogate models

Similarly as described in “Construction of pure bending surrogate models” section differ-
ent surrogate models of the industrial bending problem will be constructed. Again the first
step is to gather 5 training sets that consist of a sample set X and a snapshot matrix Y. Each
sample set will consist of a starpoint design with Ngay = 2 - Ngi, + 1 = 5 sample points
combined with a space-filling LHS of Njps = 75 sample points. The same procedure as
used for the other demonstrator is used to combine the sample points in the input space.
The total number of experiments in each training set is Nexp = Ngtar + Nins = 80.

Now that we have 5 different sample sets X, each sample point is evaluated using FE
analysis as described in the section ‘Industrial bending problem’. In total 5+ 5 - 75 = 380
FE simulations are done on the different locations in the input space according to the
proposed sampling. The result vectors from each sample set are placed in five different
snapshot matrices. Each snapshot matrix can be partitioned into a submatrix correspond-
ing to the displacement field Yy, the equivalent plastic strain field Y, and the stress field
Y,

(Yul
Y = | [Ye] (38)
[Yo]
To construct the four different surrogate models, first the snapshot matrices are zero
centered as defined in Eq. (4). The first type of surrogate model will be based directly on
the zero centered snapshot matrices.

In the construction of the second surrogate model the zero centered snapshot matrices
will be scaled as defined in equation (5). The scaling constants s, s and s that are
calculated using Eq. (6) for each training set can be found in Table 4.

To construct the third surrogate model separate zero centered snapshot matrices will
be used for each physical part.

The fourth and last surrogate model is constructed by assembling the full basis vectors
from the equivalent plastic strain field. The equivalent plastic strain is chosen as maximum
accuracy of this physical part is required. The ratio between the variables in the equivalent
plastic strain field and the total number of variables in the result fields is:

M, 4800
M 26592 ~ 0.18 (39)
Hence, the total result field is assembled from approximately 18% of its total span.

Summarizing, surrogate models are constructed using:

a zero centered snapshot matrix (3‘7([)K] (x)).
a zero centered snapshot matrix that is scaled per physical part (375[2]1 eq(X))-
separate zero centered snapshot matrices for each physical part (ys[fp] (x)).

WD =

a zero centered snapshot matrix with basis vectors assembled from equivalent plastic
strain field (ff([f)] (x)).
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based on the 5 training sets.

Comparing different bases

Due to the differences in training set, preprocessing method and decomposition meth-
ods surrogate models, different bases will be used for each surrogate model. The bases
used in the construction of the different surrogate models as presented in “Construction
of pure bending surrogate models” and “Construction of industrial bending surrogate
models” sections are analyzed to investigate their impact on the surrogate model quality.
We will first analyze the bases using the singular values as commonly done in literature
(“Basis analysis using singular values” section), thereafter a new measure is introduced that
takes into account the different physical parts in the snapshot matrices (“Basis analysis
considering physical parts” section).

Basis analysis using singular values

It is useful to assess the contribution of each basis vector to the solution to determine how
many basis vectors should be included in the truncated basis. Recall the relation between
the singular values and the eigenvalues as described in “Decomposing the output” section.
The eigenvalues are considered to give a measure for the contribution of the corresponding
basis vector. To choose the number of basis vectors to be retained in the truncated basis,
the ratio between the summation of K included eigenvalues and the summation of all of
them is often used. The ratio is also referred to as cummulative energy [29,43), contribution
[33] or in PCA the variance explained [38]. The ratio is defined as:

(K] i P

= Sp=lr (40)

Zn:l An
The ratio which is considered sufficient can be set and is called the cut-off ratio or thresh-
old. For example, in the work of Hamim [43] the cut-off ratio is set to 99%, whereas in the
work of Buljak [31] it is set to 99.999%. The ratios as defined in equation (40) are plotted
for the different obtained bases in Fig. 4 for the pure bending problem and Fig. 5 for the
industrial bending problem.

When Figs. 4 and 5 are analysed it is found that the eigenvalues of the zero centered
snapshot matrix and the eigenvalues of the submatrix containing the zero centered stress
field are almost identical. This can be explained by the fact that the numerical values of the
stress data are several orders of magnitude larger than the numerical values of the strain
and displacement data, and therefore the variation in stresses dominates the bases. In
both problems the basis vectors of the stress field have lowest cumulative energy X, the
corresponding basis vectors will therefore describe less variation compared to the other
obtained basis vectors.

For the pure bending problem, the basis vectors of submatrix that contains the strain
field have the highest contribution overall. The contribution of basis vectors from the zero
centered and scaled snapshot matrix is the lowest when using 6 or more basis vectors.

Based on Fig. 4 it can be concluded that to retain 99% of the variation in the bases, from
the zero centered snapshot matrix, the zero centered and scaled snapshot matrix and the
snapshot matrix that only contains the stress components, 3 basis vectors are needed.
The snapshot matrix that only contains the strain retains 99% of the variation with 1 basis
vector only. Similarly the number of basis vectors that are needed to retain 99.999% of
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Fig.5 Mean ratio of eigenvalues with 99% threshold over all training sets of the industrial bending problem.
The shaded area represents the range over all training sets

the variation can be determined using Fig. 4. The zero centered snapshot matrix, the zero
centered and scaled snapshot matrix, the snapshot matrix that only contains the strain
components and the snapshot matrix that only contains the stress components, need 9,
11, 5 and 9 basis vectors respectively to retain 99.999% of the variation.

For the industrial bending problem, both the zero centered snapshot matrix and the
submatrix containing the stress field have the lowest cumulative energy. The basis vec-
tors of the displacement field have the highest contribution. Scaling the snapshot matrix
within each physical part increases the contribution of the first basis vectors. Hence, the
decomposition is less dominated by the part that corresponds to the stress.

Based on Fig. 5 it can be concluded that to retain 99% of the variation in the bases, from
the zero centered snapshot matrix and the snapshot matrix that only contains the stress
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components, 10 basis vectors are needed. Using the zero centered and scaled snapshot
matrix 99% of the variation will be retained using only 5 basis vectors. The snapshot
matrices that only contain the strain and displacement components retain 99% of the
variation with 4 or 2 vectors respectively.

Basis analysis considering physical parts

When the snapshot matrix is decomposed as a whole, the analysis based on the singular
values does not take into account the contributions to the different physical parts. To
analyse the contribution of each basis vector with respect to each physical part we will
introduce the truncation error. The truncation error kE arises due to the truncation of
the basis. If all basis vectors would be used, hence K = Neyp — 1 the result vectors in the
training set y; can be reproduced without any error. The truncated approximation of the
snapshot matrix is presented in Eq. (12), and hence we can write:

Y = YK 4 (glK] (41)

The truncation error for result vector y; in the training set approximated using K basis
vectors is:

kE[! =y -y} (42)

This truncation error describes the error in all points, nodes or integration points of the
different physical parts. We can split up the errors in a part corresponding to the displace-
ment field KEES], the equivalent plastic strain field kE [gli] and the stress field ICEEfi]. The
relative error is calculated by dividing the Euclidean norm of the error, by the Euclidean
norm of the deviation in the training vector. This is done for each physical part to make
the relative error dimensionless. For example, the error in the displacement field can be
normalised with:

K
IkEL 12

" IYai = Vall2
The normalised error for the other physical parts is calculated equivalently. The truncation
Root Mean Square Relative Error (kRMSRE) is calculated over all Neyxp = 150 and Nexp =
80 results in the training set of the pure and industrial bending problems respectively. The

kRE; (43)

relative errors of each physical part are squared and summed leading to:

Figures 6 and 7 presents the RMSRE of the different preprocessing and decomposition
methods applied to the five different training sets of the pure and industrial bending
problems respectively. In each subfigure the different preprocessing and decomposition
methods are compared to separate decomposition of each physical part, which is the
theoretical best result that can be achieved for each physical quantity using that training
set. The solid line with markers in Figs. 6 and 7 describes the mean RMSRE over the 5
training sets. The shaded area describes the minimum and maximum RMSRE over all
training sets. Due to the zero centering of all snapshot matrices, a full basis consists of
K = Nexp — 1 basis vectors. When a full basis is used, the truncation error drops to 0.

Note that having an RMSRE of 1072 is comparable to having a cumulative energy
(equation (40)) of 99%. For the pure bending problem, Fig. 6, to meet this 99% threshold
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Fig.6 Truncation error (kRMSREY) using different methods compared to separate decomposition of the
pure bending problem. The solid line represents the mean over the 5 training sets with markers every 10 basis
vectors. The shaded area represents the range over all training sets

using separate snapshot matrices for each physical part, we need a basis with K = 5and 8
for the strain and stress respectively. When separate snapshot matrices for each physical
part are used for modelling the industrial bending problem, bases with K = 5, 36 and
65 for the displacement, strain and stress respectively are needed to meet this threshold

(Fig. 7).

In both demonstrator problems, the decomposition of the zero centered snapshot matrix
is dominated by the stress components (Figs. 6a and 7a). The basis vectors resulting from
the zero centered snapshot matrix, describe less variation in the displacement and strain
fields leading to higher RMSRE in those parts. When the basis vectors from the zero
centered snapshot matrix are used to construct a surrogate model, the number of basis
vectors needed to achieve error values similar to using separate snapshot matrices for the
displacement and strain goes up to K = 40 for the pure bending problem and K = 65 for

the industrial bending problem.
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Fig.7 Truncation error (kRMSREY) using different methods compared to separate decomposition of the
industrial bending problem. The solid line represents the mean over the 5 training sets with markers every 10
basis vectors. The shaded area represents the range over all training sets

When a zero centered and scaled snapshot matrix is used to obtain the basis vectors the
approximation of the displacement and strain field is improved. The approximation of
the stress components is slightly worsened for the pure bending problem (Fig. 6b), while
not significantly worsened for the industrial bending problem (Fig. 7b).

Lastly, when the basis vectors are assembled from one physical part, generally this
physical part can be approximated with the same accuracy as if separate snapshot matrices
would be used (Figs. 6¢, d, 7c). Assembling the basis vectors from one physical part
worsens the approximation of the other part(s). For the industrial bending problem the
approximation of the stress part of the snapshot matrix is worse, while the performance of
the part corresponding to the displacement field is comparable to decomposing the zero
centered snapshot matrix as a whole.

Validation set results of the demonstrator process

To validate the proposed methods for construction and decomposition of the snapshot
matrix, a validation set is used. For the pure bending problem all remaining LHS samples
are used. For example when validating the surrogate models that are based on training
set 2, training sets 1, 3, 4 and 5 are used for validation. The total number of sample points
in the validation set is thus Ny, = 4 - 139 = 428. The validation set of the industrial
bending problem is obtained by sampling a 9 x 9 grid leading to an additional Ny, = 81
simulations. The sample points in the validation set are denoted with x,,. The result vectors
from the simulation evaluated at each point x, are considered as the reference solution
and are denoted with:

Yy with:p =1.Nyy (45)

As proposed by Abdi [17] a result vector from a validation set can be mapped into
the truncated basis using a least squares projection. The amplitudes in the reduced basis
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corresponding to the reference solution can be found using:

Cpe = @, f(¥p) (46)

Note that for the basis vectors projected in the strain field the amplitudes of supplementary
observations must be found using Eq. (16). The reference solution can be approximated
in the truncated basis using any preprocessing method with K basis vectors as:

vap = £ @@L (y,) 47)

By means of example, a reference solution can be estimated with K basis vectors from
the zero centered snapshot matrix as:

K _ K K|T _
Yoo =7+ @0 (v, - ) (48)

We define the continuous approximation of a reference solution, that is the surrogate
model evaluated at point x,, as:

K
§'>[kK] (xp) =f*71 (Z P, é‘rz,*(xp)> )

n=1

Error measures

The different surrogate models approximate the reference solution yLK ] (xp) & yp. This
approximation is not exact, several sources of errors can be distinguished. First there is an
error due to the truncation of the basis, as described in “Basis analysis considering physical
parts” section. If all basis vectors are used in the bases, the result vectors in the training
set can be reproduced without any error because the obtained basis vectors can describe
all variation in the training set. However, the basis can lack in richness to describe the
variation present in the results from the validation set. In that case, even when a full basis
is used in the surrogate model, the results in the validation set cannot be approximated
without any error.

Secondly there is an interpolation error resulting from the RBF interpolation of the
amplitudes as described in “Interpolating the amplitudes” section. The amplitudes can
be approximated exactly on the sampling points in the training set, any point that is not
in the training set will have an error. Another measure is simply the error between the
reference solution and its approximation using a surrogate model. We will refer to this
measure as the total reconstruction error. We will use the RMSRE as defined in Eq. (44)
to quantify these errors. In the following sections the aforementioned error components
will be formulated.

Truncation error

As the basis becomes richer when more basis vectors are added, the truncation error
becomes smaller. However, it is not expected that a training set will contain all possible
variations that may occur inside the parameter space. Therefore, the training data will not
be able to capture all features that are present in the validation data. We can define the
truncation error as the difference between the reference solution and its approximation
using K basis vectors (Eq. (47)). The truncation error when K basis vectors are included
in the approximation of reference solution y, will be:

kEX) =y, — ylK] (50)
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wherey, is the reference solution of sample point x,, yi{;] is the reference solution approx-

imated in the truncated basis using any preprocessing method with K basis vectors. The
error between the full basis (K = Neyx, — 1) and the reference solution is also called the
lack-of-richness error [14].

By means of example, the error due to truncation of the surrogate model based on the
zero centered snapshot matrix will become:

K _ K] A [K1T -
kEf =y, — vy =y, — (Y + ol (y, - v)) (51)

Total reconstruction error

The total reconstruction error is the difference between the reference solution and its
interpolated approximation (Eq. (49)). The total reconstruction error of reference solution
Yp approximated using a surrogate model with K basis vectors will be:

£ =y, - 910 (52)

Again, by means of example, the total reconstruction error of validation sample x,,
reconstructed using K basis vectors of the centered snapshot matrix will be:

K
'rEI[f(] =Yy — ?([)K] (xp) =yp — ()" + Z (Pn,Oé(n,O(xp)) (53)

n=1

Interpolation error

The interpolation error is defined as the difference between the reference solution approx-
imated using K basis vectors (Eq. 47), and the interpolated result vector (Eq. 49). As there
is an interpolation error for every interpolated amplitude, with the addition of more basis
vectors the interpolation error tends to increase. The interpolation error of validation
sample x,, reconstructed using K basis vectors will be:

ENT =yl — 91 (x,) = 7EKT — glK] (54)

For example, the interpolation error using the zero centered snapshot matrix:

K A [K
7 =l e
T K
K K _ A
= <I)([) ]<I>g ] (yp =) — Z ©1,061,0(Xp) (55)

n=1

T
= o (d%’“ (yp — V) — écn,o(xp))

Error analysis considering physical parts

The Root Mean Square Relative Error (RMSRE) as proposed in Eq. (44) is used to quantify
the different sources of error. Note that because in this case a validation set is used,
the RMSRE is calculated over all Ny, = 428 and N5 = 81 result vectors y, for the
pure and industrial bending problems respectively. Although Eq. (54) suggests that the
total reconstruction RMSRE is simply the sum of the truncation and the interpolation
RMSRE, this is not the case. As the calculation of the Euclidean norm of a vector is a
non-linear operation, the total RMSRE will not be the sum of the interpolation error and
the truncation error.
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Fig.8 RMSRE of the strain field of the pure bending problem using 5 different methods for surrogate model

construction. The markers represents the mean over the 5 training sets. The shaded area represents the range
over all training sets

Figures. 8 and 9 display the RMSRE of the constructed surrogate models for the pure
bending problem, based on the validation set, for strain and stress components respec-
tively. Figs. 10, 11, and 12 display the RMSRE of the constructed surrogate models of
the industrial bending problem, based on the validation set, for the displacement, equiv-
alent plastic strain and stress components respectively. The markers represent the mean
RMSRE over the 5 different training sets. The shaded area represents the minimum and

maximum RMSRE found in the 5 different training sets. In Tables 5 and 6 the RMSRE of
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the different surrogate models using a basis that consists of all K' = Nexp — 1 basis vectors
can be found.

The interpolation error as proposed in Eq. (54) can never be decreasing if an additional
orthogonal basis vector is included in the surrogate model. With the addition of an orthog-
onal basis vector, the length of the vector describing the difference between the amplitude
of the reference solution (Eq. 46) and the interpolated amplitude will stay the same or
increase. This behavior can indeed be seen in Figs. 8 and 9c¢ and Figs. 10, 11, 12c when
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separate snapshot matrices are used and thus only orthogonal basis vectors are added to
the model. In all other surrogate models the interpolation error can decrease as the part
of two basis vectors which correspond to one physical part are not orthogonal if the basis
vector is determined based on the whole snapshot matrix.

When the snapshot matrices consisting of different physical parts are decomposed with-
out taking into account the magnitudes of the physical parts, the components with larger
magnitude will dominate the decomposition. Without scaling the data, the results for the
stress are comparable for all preprocessing methods while the results for the displace-
ment and strain are poorer. Overall, applying scaling to the snapshot matrix does not
significantly deteriorates the performance of the surrogate models compared to separate
decomposition.

When more basis vectors are included, the total and interpolation error stabilize around
one value, because the interpolation error from previous modes dominates the error,
making small improvements from additional vectors insignificant. Although in the work of
Havinga [22] and Hamdaoui [5] different error measures are used, this flattening behavior
can also be observed in their error plots. When the error has stabilized, adding more

basis vectors will reduce the truncation error, but it will not result in a better performing
surrogate model.
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For the pure bending problem, the surrogate models that use separate decomposition
or assembly from the strain perform best for the strain, as can be seen in Table 5. For
the stress the surrogate model that is only zero centered performs best. For the industrial
bending problem the surrogate model based on a separate snapshot matrices performs best
for the equivalent plastic strain, while the surrogate model based on the scaled snapshot
matrices performs best for the displacement and the stress, as can be seen in Table 6.
A major advantage in scaling the snapshot matrix and decomposing all physical parts at
once is in the fact that far less amplitude functions need to be interpolated. Hence one
wins computational time without losing much accuracy.

Note however that the error from the scaled surrogate models of the industrial bending
problem converge slower towards the stabilized error values. Hence more basis vectors
will be needed to achieve the same performance compared to using separate snapshot
matrices. Depending on the number of physical parts that need to be modelled, this slower
convergence outweighs the computational costs of interpolating many more amplitudes.

We define the bandwidth as the difference between the minimum and maximum error
found in the validation set results. A narrow bandwidth indicates that the results are robust

and independent of the initial sampling in the training set, whereas a wider bandwidth
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Table 5 Mean of the total reconstruction RMSRE (-1072) using a full basis (K = 149) over 5 training

sets of the pure bending model

Strain (e)

Stress (o)

Zero centered

Zero centered, scaled

Zero centered, separate

Zero centered, assembly from ¢
Zero centered, assembly from o

16.676 (14.236— 20.854)
1.586 (1.340— 1.928)
0.717 (0465—1.187)
0.717 (0465—1.187)
16410 (14.837—18.275)

5.980 (5.240— 6.584)
6.104 (5.209—6.951)
6.052 (5.275—6.583)
7.904 (6.496— 9.138)
6.052 (5.275—6.583)

Best performances are in italics, between brackets the minimum and maximum values over the five training sets are given

sets

Table 6 Mean of the total reconstruction RMSRE (-1072) using a full basis (K = 79) over 5 training

Displacement (u)

Equivalent plastic
strain (ep”)

Stress (o)

Zero centered
Zero centered, scaled
Zero centered, separate

6.71(3.73—9.55)
2.67(227—3.19)

2.78 (249—3.23)
Zero centered, assembly from )} 5.72 (4.58— 6.66)

8.01(6.93—8.95)
6.82 (6.38— 7.25)
6.75(6.53—7.05)

(
6.75(6.53—7.05)

12.00 (11.24—13.10
11.95(11.05—12.76
12.28(11.24—13.16
14.32 (13.39—14.81

Best performances are in italics, between brackets the minimum and maximum values over the five training sets are given
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indicates a stronger dependency to the randomly generated initial training sets. For both
the pure bending problem and the industrial bending problem, the stress part has the most
narrow bandwidth independent of the preprocessing method, which implies a more robust
performance that is less dependent of the approach in surrogate model construction. For
the pure bending problem, the surrogate model that uses a separate snapshot matrix for
the strain or assembly from the strain has the widest bandwidth for the strain (Fig. 8c,
d). For the industrial bending problem using separate snapshot matrices results in the
smallest bandwidth for all physical parts. The bandwidth of the displacement field that is
modelled using a zero centered snapshot matrix is the widest (Fig. 10a).

When the basis vectors are assembled from another physical part, the part that was
dominating the decomposition deteriorates. For both the pure bending problem and the
industrial bending problem, the RMSRE in the stress is larger when the basis vectors are
assembled from the equivalent plastic strain compared to when a zero centered snap-
shot matrix is used. However, for the industrial bending problem when the basis vectors
are assembled from the equivalent plastic strain, the RMSRE of the displacement field
decreases with respect to the RMSRE from the zero centered snapshot matrix. Similarly,
for the pure bending problem, when the basis vectors are assembled from the stress, the
RMSRE of the strain field decreases with respect to the RMSRE from the zero centered
snapshot matrix.

In the pure bending problem, the truncation error of the basis with basis vectors assem-
bled from another physical part increases in the higher order basis vectors (Figs. 8e and
9d). This behaviour is a numerical artefact of the novel method. The basis vectors are
sorted based on the variance in the data of the main physical part. The lower basis vec-
tors describe the most variation in the data of the main physical part, while the higher
basis vectors describe less variation in the data or even noise. The assembled basis vectors
including the data from the secondary physical part are not orthonormal, allowing for
larger fractions of the variation in the data of the secondary physical part to appear in
the higher order basis vectors. These higher order basis vectors become unbalanced and
contain relatively high values for the secondary physical parts, leading to an increase in the
truncation RMSRE, despite the low amplitudes for these higher modes. This behaviour
does however only seem to become significant for the highest modes, and may therefore
not be relevant for practical applications of the method.

Comparing Figs. 8, 9 with Fig. 4 and Figs. 10, 11, 12 with Fig. 5 it can be concluded that
the ratio based on the eigenvalues as in Eq. (40) does not give a good indication of how
many basis vectors should be included to reach a certain accuracy, nor does it indicate
when the error due to interpolation and the total error stabilize. At that specific K value
adding additional basis vectors does not improve the surrogate model. Based on the ratio
of the eigenvalues the error analysis is far more optimistic than the final performance.

Conclusion

In this work four different approaches for interpolation of field data from FE simulations
are presented. Two of these approaches are based on different preprocessing methods of
the snapshot matrix and two approaches are based on decomposition of different parts of
the snapshot matrix. Based on 5 training sets, 5 surrogate models are constructed using
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each approach for two different bending problems. The different approaches are analyzed
based on a validation set.

When different physical fields are modelled, scaling the data improves the quality of
the surrogate model in most physical parts of the snapshot matrix compared to only
zero centering the data. In this study the surrogate model based on the scaled snapshot
matrix of the industrial bending problem performs best for the displacement field and
stress field. For both demonstrator problems, separate decomposition or assembly from
the strain performs best for the strain.

Taking separate snapshot matrices has the advantage that one can choose per physical
quantity how many basis vectors should be included. The disadvantage is that the basis vec-
tors of each physical quantity must be interpolated independently, whereas decomposing
data with different physical quantities together, only requires the construction of a single
interpolation model per joint basis vector. Consequently, for the examples presented in
this work, two or three times as many interpolation models must be fitted when separate
decompositions with the same number of basis vectors are used. More amplitudes need to
be interpolated without decreasing the error drastically. All surrogate models are based on
the same training sets, hence the computational times for expensive model evaluations are
the same. However, as there are two or three different physical parts, the computational
costs of fitting the interpolation functions for the separate snapshot matrices are two or
three times as high. When advanced interpolation algorithms are used, these computa-
tional costs can become significant compared to doing the expensive model evaluations.
When different physical parts need to be modelled it is therefore recommended to use one
snapshot matrix and scale the data per physical part, as it has the advantage of less compu-
tational cost in fitting the interpolation model and in evaluating the reduced order model,
without a significant reduction in model accuracy. The novel approach, assembly from
one physical field, can be used to assemble physical quantities based on their covariance
with the physical quantity that is considered as the main modelling objective. Although
there is a loss in accuracy in the physical fields that are assembled from the main physical
quantity, the novel approach provides a cheap method to model different physical fields.
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