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Abstract

Standard numerical simulations for optimization or inverse identification of welding
processes remain costly and difficult due to their multi-parametric aspect and inherent
complexity. The aim of this paper is to propose a non-intrusive strategy for building
computational vademecums dedicated to real-time simulations of nonlinear
thermo-mechanical problems. There is in essence, a set of precomputed space–time
parametric solutions (snapshots), selected by an appropriate approach in the
parameter space and stored in memory as quasi-optimal reduced bases (RBs) provided
by the proper orthogonal decomposition method. Once the RBs are obtained, the
computational vademecums can be used online and provide real-time space–time
transient nonlinear thermo-mechanical solutions for any desired parameter value. The
contributions of the paper consist in a space–time RBs interpolation approach with the
Grassmann manifolds method, and a localized multigrid selection method that allows
an automatic selection of snapshots in the parameter areas of interest for a given level
of accuracy. As application, the welding simulation is considered with a transient
non-linear thermo-mechanical model using the finite element method. It is shown that
the moving frame allows an optimal design of the RBs. A good efficiency of the
proposed approach is demonstrated. Computational vademecums can be used for
optimization or inverse identification problems of welding.

Keywords: Computational vademecums, POD, localized multigrid selection,
Grassmann manifold interpolation

Introduction
Despite the increasing computer efficiency over the last decades, numerical simulations
of welding processes remain prohibitive in terms of CPU time and storage, due to their
multi-parametric aspect. To estimate the welding quantities of interest (residual stress,
distortion, etc.) depending on different input parameters (typically, the geometry, materi-
als properties, boundary conditions and the imposed loading), larges computations have
to be re-run. Thus, the construction of computational vademecums [1] (called also vir-
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tual charts [2,3] or meta-model computations) with standard computations remains a
cumbersome task.
The idea of computational vademecums consists in computing at the offline stage

general solutions of a parametric problem, so as to make available a database of solu-
tions. Engineers can then use these vademecums at the online phase for design, opti-
mization or identification, etc. Although the offline computation can be costly, it is
advantageous to lose time at this stage compared to that earned at online phase, espe-
cially in the case of repetitive tasks. This paper focuses on the construction of numer-
ical vademecums and the reduction of the associated costs for a given level of accu-
racy.
As mentioned earlier, the construction of computational vademecums with standard

computations based on full order models for welding simulations is out of reach. It seems
important to make use of reduced-order model (ROM) techniques in order to develop
models with a minimal number of degrees of freedom.
Reduction methods consist in finding a reduced basis (RB) {Λi}ki=1, with an expected

small value of k compared to the number of degrees of freedom of the finite element
approximation or to the number of time steps, that spans the subspace of the original
solution function X(x, t)

X(x, t) ≈
k∑

i=1
λi(t)Λi(x) (1)

Generally speaking, methods for building RBs can be classified into two families: a
posteriori approaches and a priori approaches. Either, RBs are built a posterior from
snapshots in the parametric space, or a priori (on the fly) during the calculation of
the meta-model. A posteriori approaches require prior solutions (the so-called snap-
shots) precomputed with standard full models and the accuracy of online solutions
depends strongly on the quality of RBs computed with snapshots. The proper orthog-
onal decomposition (POD) method [4], also known as Principal Component Analysis
(PCA) [5–7] and Karhunen–Loeve Transform (KLT) [8,9], is often employed to build
the RBs. It is worthwhile to mention that the computed POD basis is optimal with
respect to given measures. This preliminary phase is called the offline phase and can
be costly. Such approaches have been applied to tackle many different problems in sci-
ences and engineering [10–15]. Their main drawback resides in their inefficiency when
one deals with non-linear problems, since the full tangent stiffness matrix needs to be
rebuilt.
On the contrary, proper generalized decomposition (PGD) methods [16–19], i.e. a pri-

ori approaches, assume a priori a separated variable representation and do not require
any prior precomputed snapshots to built the RBs. Indeed, the RBs are computed
and updated during iteration procedures at the online phase, although they are usu-
ally not optimal as it is the case of POD approaches. The proper generalized decom-
position is firstly introduced by Ladevèze [20] under the name “radial approxima-
tion” in the frame of the LArge Time INcrements (LATIN) method [21], for solving
high nonlinear problems. It has been then successfully applied to different problems:
visco-plastic problems [22–24], transient dynamic problems [25], contact problems [26],
etc.
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Efficient ROMs lie usually on a mixed approach between a posteriori and a priori
approaches. They consist of a reduction step based on POD and an enrichment stage
in order to improve the quality of these RBs. Interested readers can be referred to [27] for
an enrichment technique originally proposed by Ryckelynck. This approach is of success
applied to solve complex fluid flows [28,29] and speeds up thermomechanical simulations
[30,31].
Recently, Chinesta successfully extended the separated representation, i.e. PGD meth-

ods, for solving parametric (and thus multi-dimensional) problems [16,32–34], by adding
extra-coordinates, related to model parameters or boundary conditions, to standard
space–time solutions, and developed a series of computational vademecums methods
for different problems in sciences and engineering such as thermal control of industrial
furnaces [35], shape optimization [36], computational surgery [37], etc. These results are
very encouraging. The PGDmethodsmake possible efficient simulations of complex high-
dimensional problems and the resulting computational vademecums that give real-time
responses open numerous possibilities in the context of simulation based engineering,
e.g. optimization or inverse identification which is also at the heart of the construction of
computational vademecums for welding.
Nevertheless, one relies on the a posteriori POD approaches, because preliminary

computed snapshots are sometimes available and it is obviously advantageous to use
them for constructing optimal RBs instead of leaving behind the previous knowledge. As
encountered in nonlinear problems, recomputing the tangent matrix makes inefficient
the standard POD approaches. Although several approaches, e.g. the Discrete Empirical
InterpolationMethod (DEIM) [38], the hyper-reduction methods [11,27] and the asymp-
totic numerical method that allows eliminating the recomputation of the tangent matrix
[4,39,40], are introduced to accelerate the computations, real time requirements remain
intractable. In addition, RBs lack robustness with respect to the variation of parameter
value when one deals with parametric problems. In the works of [31], a hyper-reduced
model coupled with an interpolation technique [41] based on Grassmann manifolds has
been applied for the adaptation of the space RBs to tackle the robustness issue. However
computing of the remaining parts (generally the time RBs) is still time-consuming work.
This work presents a methodology to overcome the above issues that go with the a pos-

teriori approaches for space–time nonlinear parametric problems. The space and time
RBs are both adapted by intensive use of the Grassmann manifolds interpolation. The
recomputing of stiffness tangent matrix online can be then avoided. Once the snapshots
are computed offline, there is no computation anymore and thus real-time parametric
responses at online phase can be expected both in space and time. Furthermore, this
approach is not intrusive, which can make available existing industrial software for differ-
ent problems.
A challenge in the field of constructing the computational vademecums is the control

of accuracy. Accurate solutions will be provided by computational vademecums when
the retained snapshots are engendered with large training parameter. However, exhaus-
tive generation of the RBs, at the expense of the expensive cost of the offline phase, is
not possible. Unlike the PGD based computational vademecums that generate possible
solutions by offline computations combined with a greedy algorithm [42–45], a posteriori
approaches need adaptation step at the online stage in order to well control the error
associated to the RBs for parametric studies. This paper proposes a methodology, based
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on a localized “multi-grid” approach (in the parameter space), allowing a quasi-optimal
computational vademecum (quasi-optimal RB for a given level of accuracy), that provides
reliable solutions.
The purpose of the strategy is to construct a space–time (4 dimensional) “computational

vademecums” with controlled error for welding problems. To this end, the concerned
transient nonlinear thermo-mechanical problem is presented in “Thermo-mechanical
formulation” section. A brief review ofmodel reduction techniques is proposed in “Design
of reduced basis” section. The adaptation approach dedicated to parametric studies is
detailed in “ROM adaptation for parametric studies” section. An academic example of
welding is studied in terms of reducibility aspect in “Reducibility of welding simulations”
section. In “Quasi-optimal computational vademecums with error control-application
to welding simulations” section the quasi-optimal computational vademecums are built.
Finally, This paper is closed by some remarks in “Conclusion” section.

Thermo-mechanical formulation
In this section, a standard Lagrange formulation for transient nonlinear thermo-elasto-
plastic problems is presented.More particularly, an alternative formulation in themoving
frame is considered. For the application in welding processes, a sequentially coupled
thermo-mechanical analysis is performed. The temperature is assumed to be independent
on the mechanical fields.

Thermal analysis

Let us consider a material domainΩ of density ρ, specific heat capacityC , and conductiv-
ity tensor k, with an initial temperature field T0. The body Ω is subjected to a heat source
r, a prescribed temperature T over the subspace ∂ΩT and a surface flux q on the comple-
mentary subspace ∂Ωq (∂Ω = ∂Ωq ∪ ∂ΩT ). Denoting by θ = T − T0 the difference of
temperature between the actual and initial states, the governing equations, boundary and
initial conditions to be satisfied by the thermal problem read as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρC dθ (X,t)
dt + div q(X, t) = r(X, t)

q(X, t) = − k · ∇θ (X, t)
q(X, t) · n(X, t) = q(X, t) on ∂Ωq

θ (X, t) = θ (X, t) on ∂ΩT

θ (X, t = 0) = 0

(2)

where “div •” (resp. “∇ •”) is the divergence (resp. gradient) operator with respect to the
initial position X and d•/dt the material time derivative.
In order to improve the computational efficiency for processes withmoving heat loading

like welding, [46,47] have proposed to solve thermal problems in moving frame, where
the heat flux is fixed in space and the material flows through a reference configuration.
Indeed, it is shown that for welding problems the quasi-state transient thermal problem
can be simplified to a steady-state problem in a such configuration [47].
In this system, the reference can be considered fixed in space and time. The material

configuration is moving with respect to the reference configuration. The reference con-
figuration is a control volume Ω̃ to be defined through which the material flows. At any
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given time t, the coordinate x (with respect to the material configuration) of a material
point which occupied the initial position X at initial time in Ω can be given by a smooth
motion mapping f :

x = f (X, t) (3)

Hence, the material time derivative in the flowing body reads:
dθ (x, t)

dt
= ∂θ (x, t)

∂t
+ v.∇θ (x, t) (4)

where ∂θ (x,t)
∂t represents the local temperature variation over time, v = dx

dt is the velocity
vector which depends on the mapping f and v.∇θ (x, t) is the advection term.
By replacing this derivative expression in the previous Eq. (2), the heat equation defined

in the control volume Ω̃ is expressed as:

div q(x, t) + ρC
∂θ (x, t)

∂t
+ ρCv.∇θ (x, t) = r(x, t) (5)

For steady-state processes, the local temperature variation over time in the control
volume can be neglected [47], which yields to:

div q(x, t) + ρCv.∇θ (x, t) = r(x, t) with
∂θ (x, t)

∂t
= 0 (6)

It should be notified that the solutions are solved in the control volume Ω̃ , where
boundary conditions (BCs) are not defined and should be chosen in an appropriate way to
approximateoriginal solutions in thefixed frame.Recently, similar useofmoving reference
is proposed for thermal analysis within a computational framework ofVademecum-based
GFEM [48]. In this method, boundary conditions of the control volume are not needed
to impose, because they are treated as extra-coordinates and considered in general cases.
But it is not the case of this paper.

Mechanical analysis

Themechanical analysis is carried in the fixed frame, although the thermal analysis can be
performed in themoving frame. In this case, a reverse of change of variables is particularly
used for obtaining the representation of thermal temperature in the fixed frame:

θ (X, t) = θ (f −1(x), t) (7)

Otherwise, special techniques such as streamline integration [49,50] must be employed
for dealing with this problem.
For themechanical problems, the displacement and transformation are small. Hence the

governing equations are solved on the undeformed initial material configuration. Then,
the infinitesimal strain tensor ε is linked to the displacement field u by the linearized
relationship:

ε = ∇su(X, t) (8)

where∇s denotes the symmetric gradient operator. The total strain ε is the sum of elastic,
plastic and thermal strains denoted by εe, εp, εθ respectively, and only the elastic strain
contributes to the Cauchy stress σ , i.e.

σ(X, t) = D : εe(X, t) = D : (ε(X, t) − εp(X, t) − εθ (X, t)) (9)
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where D denotes the fourth order elasticity tensor and εθ = αθI (I is the second-order
identity tensor) results from thermal expansion, (• : •) is the double-contracted product.
Considering the domain Ω subjected to a body force f with prescribed forces F and

displacement u on boundaries ∂ΩF and ∂Ωu respectively (∂Ω = ∂ΩF ∪ ∂Ωu), static
elasto-plastic analysis consists in seeking the admissible fields σ, u and εp satisfying the
following balance equations and boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

div σ(X, t) + f(X, t) = 0

σ(X, t) · n(X, t) = F(X, t) on ∂ΩF

u(X, t) = u(X, t) on ∂Ωu
(10)

with a complementary plastic behavior law, e.g. the associative J2 plasticity theory incor-
porated with an isotropic hardening R reads:

⎧
⎨

⎩
f (σ, p) =‖ σd ‖ −σy − R(p)

ε̇p = H (f )<σd :σ̇d>
Rg

σd‖σd‖
(11)

where σy denotes the initial yield stress, H (•) the Heaviside function, σd the deviatoric
stress tensor, 〈A〉 the positive part of A, p the equivalent plastic strains and g = dR

dp .

Weak formulation of the thermo-elasto-plastic problem

The principle of virtual work is employed to develop the weak forms of governing equa-
tions and the boundary conditions. Denoting byH1(Ω) the variational first order Sobolev
space, the transient thermal problemdefined in the fixed framehas the variational descrip-
tion:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

find θ ∈ Θ such that
∫
Ω

ρC θ̇ θ∗dΩ + ∫
Ω

∇θ .k.∇θ∗dΩ + ∫
∂Ωq qθ∗ds = ∫

Ω
rθ∗dΩ ∀θ∗ ∈ Θ0

with Θ = {
θ (X, t)|θ (X, t) ∈ H1(Ω), θ |∂Ωθ = θ

}

Θ0 = {
θ∗(X, t)|θ∗(X, t) ∈ H1(Ω), θ∗|∂Ωθ = 0

}

(12)

The transient thermal problem defined in the moving frame is expressed as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

find θ ∈ Θ̃ such that∫
Ω̃

ρC
(

∂θ
∂t + v.∇θ

)
θ∗dΩ̃ + ∫

Ω̃
∇θ .k.∇θ∗dΩ̃ + ∫

∂Ω̃q qθ∗ds = ∫
Ω̃
rθ∗dΩ̃ ∀θ∗ ∈ Θ̃0

with Θ̃ =
{
θ (x, t)|θ (x, t) ∈ H1(Ω̃), θ |∂Ω̃θ = θ̃

}

Θ̃0 = {
θ∗(x, t)|θ∗(x, t) ∈ H1(Ω̃), θ∗|∂Ω̃θ = 0

}

(13)

In the same way, the steady-state problem formulation is obtained by neglecting the
variation of temperature, i.e. ∂θ

∂t = 0:
∫

Ω̃

ρCv.∇θθ∗dΩ̃ +
∫

Ω̃

∇θ .k.∇θ∗dΩ̃ +
∫

∂Ω̃q
qθ∗ds =

∫

Ω̃

rθ∗dΩ̃ ∀θ∗ ∈ Θ̃0 (14)

The weak formulation in Lagrangian description for the static mechanical problem
reads:



Lu et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:3 Page 7 of 27

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

find u ∈ U such that

− ∫
Ω

σ(u) : ε(u∗)dΩ+ ∫
Ω
f.u∗dΩ+ ∫

∂ΩF F̄.u∗ds = 0 ∀u∗ ∈ U0

with u ∈ U , U = {u(X, t)|u(X, t) ∈ H1(Ω),u|∂Ωu = u}

U0 = {u∗(X, t)|u∗(X, t) ∈ H1(Ω),u∗|∂Ωu = 0
}

(15)

Finite element semi-discretized formulation

For numerical implementation, the space H1(Ω) is replaced by finite dimensional sub-
space (subspace of shape function). The semi-discretized problem associated to the tran-
sient heat load reads:

Kthθ(t) + Cθ̇(t) = Q(t) (16)

where Kth and C are the usual thermal conductivity and capacity matrices, θ and Q are
respectively the nodal temperature and external flux vector.
In the moving frame configuration, the semi-discretized equation has a similar form:

K̃thθ̃(t) + C̃ ˙̃θ(t) = Q̃(t) (17)

where ˜(•) denotes the quantity defined in the control volume Ω̃ . The difference from
the usual thermal conductivity matrix in (16) consists in a modified thermal conductivity
matrix with an additive advection term:

K̃th =
∑

elements
(BT

thkBth + NTρCvTBth) (18)

where the Bth and N are the usual matrices respectively for temperature gradient and
interpolation of the element temperature θ .
The mechanical solutions are given when the following residual vanishes:

⎧
⎪⎪⎨

⎪⎪⎩

R(U(t)) = Fext (U(t)) − Fint (U(t))
with Fext (t) = ∫

Ω
NT f dΩ + ∫

∂ΩF NT F̄ ds

Fint (t) = ∫
Ω
BT
m.σ dΩ

(19)

where U is the nodal displacement vector, Fext and Fint are respectively the associated
external and internal force vectors. Bm is the usual matrix for displacement gradient.
This residual problem can be solved with the Newton–Raphson scheme and incorpo-

rated with the radial return mapping algorithm for plasticity flows. The transient thermal
problem is solved by a first order time integrator.

State vector of the thermo-mechanical problem

The state vector corresponds to the minimal vector needed for storing the space–time
history of all the thermal and mechanical fields. It is the only data vector one keeps at the
end of the FE computations. The necessary memory for the storage completely depends
on the size of X. Therefore, the state vector should be chosen so that its size is as small as
possible.
For the transient thermo-elasto-plastic problem, the state vector can be defined as:

X(X, t) = {
θ ,U, εp, σ, p

}T (20)

An alternative state vector when the thermal analysis is performed in moving frame
reads:

X(X, t) = {
θ̃ ,U, εp, σ, p

}T (21)
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Moreover, the state variables are represented in an approximate way with the compres-
sion tools. The concerning model reduction methods and space–time separated variable
representation are presented in the next section.

Design of reduced basis
This section presents the generation of the reduced basis (RB) using the popular POD
method. Among the various techniques for obtaining a reduced basis, POD constructs a
RB that is optimal in the sense that a certain approximation error concerning the snapshots
is minimized. Thus, the space spanned by the basis from POD often gives an excellent
low-dimensional approximation.

Snapshot proper orthogonal decomposition

Given a set of snapshots X = {X(t1), ...,X(tm)} ∈ R
n×m, the PODmethod seeks an orthog-

onal projector ΠΦ,Φ = ΦΦT that minimizes the summed projection error:

argmin
Ψ

ΨTΨ=I

m∑

i=1
‖ X(ti) − ΠΨ ,ΨX(ti) ‖22 (22)

It can be proved that the solution of the previousminimization problem can be provided
by the Singular Value Decomposition (SVD) of the space–time snapshot X:

X = Φ�VT (23)

where Φ = [Φ(1), . . . ,Φ(n)] ∈ R
n×n and V = [V(1), . . . ,V(m)] ∈ R

m×m are orthogonal and
respectively the so-called space and time bases. And � ∈ R

n×m contains positive singular
values σi (with i ≤ r = min(n,m)) in decreasing amplitudes. Then the optimal solution
of (22) is ΦK = {Φ(i)}|i=1,...,k (with k ≤ r). The minimum 2-norm error [51] from the
approximated snapshots using the POD basis is then given by:

‖X − ΠΦK ,ΦKX‖F =
√∑r

i=k+1
σ 2
i (24)

where ‖ • ‖F denotes the Frobenius norm.
Generally, k is chosen in such a way that a great compression is gained as far as the

amount of the RB to store is concerned and the corresponding low rank approximation is
sufficiently accurate. One adopts the following definition:

Definition 1 k-compressibility
A space–time field is said to be k-compressible if the number of the space–time modes

needed to obtain the solution within a given tolerance is k .

ROM adaptation for parametric studies
Reduced bases often lack robustness with respect to parameter variations and updating of
snapshots. This section tackles the actualization of the RB for parametric studies. A local
interpolation strategy based on the Grassmann manifolds interpolation is presented and
will be applied in our case to the adaptation of both the space and time RBs.

Grassmannmanifolds interpolation

Let Y0 ∈ R
p×k , where k ≤ p, denote a full-rank orthogonal matrix associated with a

POD-basis. Thematrix naturely belongs to the so-called compact Stiefel manifold [52,53]
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ST (k, p) , which is defined as the set of all p×k orthonormalmatrices. Besides, the columns
of Y0 form a basis of the subspace S0 of dimension k in R

p. This subspace S0 belongs to
the Grassmann manifold [52,53] G(k, p) which is defined as the set of all k-dimensional
subspaces of Rp. Generally, each k-dimensional subspace S can be viewed as a point of
G(k, p) at which there exists a tangent space of the same dimension [52,53]. This tangent
space, denoted by T , is a “flat” space in which interpolation can be performed as usual
[41] and can be represented by a matrix 	 ∈ R

p×k .
Let y(t) be a geodesic path uniquely defined by its initial and final points y0, y1 ∈ G(k, p)

or initial point and velocity y(0) = y0, ẏ(0) = ẏ0 ∈ T , the exponentialmapping is defined as
the final extremity point, whichmaps a tangent space to themanifold itselfG(k, p)[52,54]:

Expy0 (ẏ0) = y(1) = y1 (25)

The inversemap, known as the logarithmicmap, permits the backmapping from a point
of the manifold to the tangent space.

Logy0 (y1) = ẏ0 (26)

Different analytic formulas for exponential and logarithmic mappings of matrix man-
ifolds can be found in [55]. Coupled with a standard interpolation in the tangent space,
exponential and logarithmic mappings allow defining a manifold-based interpolation
(Fig. 1).
In the caseofGrassmannmanifold, a computational framework for this interpolationhas

been proposed in [41]. Given a set of RBs Yi|i=0,n ∈ R
p×k precomputed at different oper-

ating points Si|i=0,n (corresponding to different parameter values si|i=0,n), the geodesic of
the Grassmann manifold, to which the subspace Si spanned by the RBs belong, can be
described by the following equation [52,56]:

Ÿ + Y(YTY)−1ẎT Ẏ = 0 with YTY = I (27)

In the same manifold, the following procedure permits the adaptation of the available
RBs to a new operating point S for a value s different from si.
Let S0 be the origin point, the tangent space spanned by the columns of 	i at this point

is given by the logarithmic map [57]:

(I − Y0YT
0 )Yi(YT

0 Yi)
−1 = Ũ�̃ṼT (Thin SVD) (28)

	i = Ũtan−1(�̃)ṼT (29)

Fig. 1 Manifold-based interpolation vs direct interpolation
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The usual interpolation in this plane is then performed by calculating the FE basisNi in
the parameter space:

Ni =
∏

i �=j

s − sj
si − sj

(30)

	N =
n∑

i=0
Ni	i (31)

where 	N can be viewed as the mapping point of S in the tangent space having S0 as
origin point. Herein a special case of 1D FE interpolation is presented. The application
to 2 or 3 dimensional parameter cases is straightforward. More generally, a multivariate
interpolation scheme (e.g [58,59]) can be used for multi-parameter cases.
The exponential map returns the adapted RB, which reads:

	N = ŨN �̃N ṼT
N (Thin SVD) (32)

Y(s) = [Y0ṼN cos(�̃N ) + ŨN sin(�̃N )
] ṼT

N (33)

where ṼT
N appears to guaranty the homogeneity of unity. In standard POD-Garlerkin

models, the homogeneity for the interpolated basis is often abandoned (e.g [31,41]), since:

y(s) = span
(Y0ṼN cos(�̃N ) + ŨN sin(�̃N )

)
(34)

In those models, only the space RB is interpolated for adaptation of the solution subspace,
the homogeneity can be therefore abandoned. The loss of homogeneity is compensated by
solving the equilibrium equation with FE computations when computing the remaining
part (usually the time RB). Herein, keeping the homogeneity of interpolated bases is a
crucial point and should be respected, since there is no resolution of equilibrium equa-
tion for computing the time RB in the proposed method (both space and time RBs are
interpolated in the Grassmann manifold).
A simplified form is obtained when there are only two RBs that are taken into account.

Equations from (29) to (32) can be reduced to one equation:

Y(s) =
[
Y0Ṽ cos

(
s − s0
s1 − s0

tan−1(�̃)
)

+ Ũ sin
(

s − s0
s1 − s0

tan−1(�̃)
)]

ṼT (35)

Finally, It should be mentioned that the above computational framework is a special
case of one varied parameter. We refer the readers to [41,52] for more details about the
general case.

Space–time bases adaptation

Given two space–time solutions X0(X, t) and X1(X, t) pre-computed for two different
parameter values μ0 and μ1 respectively, then the POD basis is provided by SVD:

X0 = Φ0�0VT
0 (36)

X1 = Φ1�1VT
1 (37)

where the space and time bases are respectively Φi|i=0,1 and Vi|i=0,1. The new basis
{Φ(μ),V(μ)} corresponding to a new parameter value μ ∈ [μ0,μ1] can be both obtained
by interpolations using the previous Grassmann manifolds interpolation method (see
Algorithm 1). As mentioned before, homogeneity of unity with respect to Φi|i=0,1 and
Vi|i=0,1 should be kept here when interpolating the new basis Φ(μ) and V(μ) , otherwise
new solutions combined with these interpolated bases loss homogeneity with respect to
Xi|i=0,1.
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The singular value matrix �(μ) can be directly interpolated with FE method, which
yields to

�(μ) =
∑

i
Ni(μ)�i (38)

with Ni(μ) is the FE basis in the parameter space.
Finally, the new solution X(X, t) corresponding to the new parameter value μ can be

then obtained by the combination of the interpolated matrices:

X = Φ(μ)�(μ)VT (μ) (39)

Remark 1 Contrary to standard POD-Galerkin models, the proposed approach does not
require new transient nonlinear FE computations with respect to the new parameter
value. The space and time bases are both interpolated using Grassmann manifold inter-
polation, which signifies that the variables homogeneity must be retained throughout
interpolations. It can be highlighted that this interpolation-based procedure presents
high efficiency in terms of time-cost. This provides a practical framework for parametric
studies with low cost time computations as it will be shown hereinafter, even for transient
nonlinear problems.

Remark 2 Application of the proposed approach to a 2D/3D parametric case can be
simply carried out by employing the corresponding FE basis in Eqs. (31) and (38) for
interpolation.

Remark 3 Due to the nature of themanifold-based interpolation, the solution rebuilt with
this approach presents a notably better accuracy compared to a space–time adaptation
with standard Lagrange interpolation methods. This point will be illustrated in the next
part.

Local interpolation strategy

The space–time adaptation of the RB highly depends on the generated snapshots in the
parameter space. In order to pre-compute the snapshots with a small number of trial
points and a high fidelity, a local controlled error strategy is developed. Considering a
transient nonlinear thermo-mechanical problem, the prior known solutions, correspond-
ing to different parameter valuesμi=1,n ∈ [μ1,μn], are pre-computedwith full FEmethod.
The POD snapshots Φi,�i,Vi are provided by the truncated SVD method according to a
k-compressibility criterion.
Note that while the local interpolation is performed for the space and time bases, the

singular value matrix can be interpolated globally, i.e.

� =
n∑

i=1

( ∏

i �=j

μ − μj

μi − μj

)
�i (40)
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Remark 4 Though a global interpolation can indeed improve the accuracy of the rebuilt
solution, the space and time bases are interpolated locally in view of the numerical cost
increasing in the online phase and for the interpolation scheme stabilization.

Comparison with traditional interpolation methods

In order to show the efficiency of the proposed interpolation method, two examples of
comparison are depicted in this section. As the first example, the comparison is performed
between traditional methods and the proposed method for interpolating the seperated
RBs. With two snapshots appropriately drawn in a 1D parameter space, the resulting
equivalent plastic strain fields (recombined with the interpolated RBs) are illustrated in
Fig. 2. Compared with that obtained from full FE computations, the proposed approach
can provide a good approximation (with a standard 2-norm error less than 1%). However,
the Lagrange interpolation fails to interpolate RBs for new parameter values, the resulting
solution shows a global error about 17%. Indeed, the RBs interpolated with traditional
interpolation methods loss orthogonality (which should be guaranteed for POD-bases),
while this property can be kept when using the proposed manifold-based interpolation.
The second example consists in comparing the Grassmann interpolation with tradi-

tional methods that interpolate straightforwardly solutions stemming form FE computa-
tions (direct interpolation of snapshots). Given two snapshots calculated for two extremity
values in the parameter space of thermal capacityμ : Cp ∈ [432, 900]

(
J · kg−1 · K−1

)
(see

Fig. 3), the state variables are then interpolated for seven selected intermediate parameter
values (called assessment points) using two different methods: piecewise linear interpo-
lation and proposed manifold-based interpolation. Figure 4 depicts the standard 2-norm
error at assessment points for both thermal and mechanical variables interpolated with
these two methods. It shows that the proposed manifold-based method improves more
or less the quality of interpolated solutions both in thermal and mechanical cases with
respect to piecewise linear interpolation. This can be explained by the fact that the pro-
posed method takes into account the evolution of solutions at different time which may
improve the interpolation accuracy. In addition, the proposed approach seems more suit-
able for nonlinear cases. As shown in Fig. 4, for the thermal problem, the proposedmethod
improves only slightly the precision, while remarkable improvement can be observed in
mechanical cases.
This confirms the efficiency of the proposed method with respect to the traditional

interpolation methods, when only two snapshots are given. The comparison for higher
order cases with more snapshots points in the parameter space is not taken into account
here, since only local interpolation strategy is considered in our cases (see Algorithm 2).
Remark 5 For the stability of methods, the space and time bases are interpolated mode

by mode in the above examples.

Reducibility of welding simulations
In this section, a numericalmodel ofwelding is presented. For that purpose, a 3Dnonlinear
thermo-mechanical model with a moving heat source is considered. The approach based
on the moving frame, presented in the previous section, is applied to analyze this model.
The reducibility of the problem is studied through a SVD analysis.
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Fig. 2 Equivalent plastic strain field comparisons [reference calculations (a) and online Lagrange (b and d)
and Grassmann (c and e) interpolation]. a Solution from full FE computations. b Solution rebuilt by RBs
interpolated with the Lagrange interpolation. c Solution rebuilt by RBs interpolated with the proposed
method. d Local error resulted from RBs interpolated with the Lagrange interpolation. e Local error resulted
from RBs interpolated with the proposed method

Fig. 3 Snapshots and assessment points in the 1D parameter space of Cp
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a b

dc

Fig. 4 Interpolation error for some assessment points in the parameter space (traditional piecewise linear
interpolation vs proposed manifold-based interpolation). a Error of temperature field. b Error of displacemen
field. c Error of stress field. d Error of plastic strain field

Welding finite element model

The work-piece with prescribed boundary conditions is shown in Fig. 5. The heat source
moves along the line of symmetry. The usedmaterial properties as well as the load param-
eters are given in Table 1. All the material properties are assumed independent on the
temperature.
Since the problem (geometry, material, loading, BCs) is x–z plane symmetric, only one

half of the actual problem is modeled Fig. 6a. The mesh characteristics are presented in
Table 2.
Concerning the analysis in the moving frame, the control volume is defined as a domain

of 0.25 m long (see Fig. 7), in which the material flows through with the same constant
velocity as loading in the X direction. The laser can be therefore viewed as a fixed loading
in the control volume and is located 0.09 m from the inlet boundary. The inlet boundary
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Fig. 5 Welding work-piece: geometry and boundary conditions

Table 1 Material properties and load data

Notation Name Values

Cp Specific heat capacity 432 J · kg−1 · K−1

λ Thermal conductivity 46 W · m−1 · K−1

α Thermal expansion 1.2 × 10−5 K−1

E Young’s modulus 210 × 109 Pa

ν Poisson ratio 0.3

σy Initial yield stress 300 × 106 Pa

H Linear isotropic hardening parameter 21 × 109 Pa

Q Heat flux 8 × 106 W · m−2

V Velocity of loading 0.001 m · s−1

a b

Fig. 6 Problem definition with boundary conditions. a Half model. b FE mesh

Table 2 Geometry parameter of FEmodel

Lx (m) Ly (m) Lz (m) E.T. E.N. N.N. G.N.

0.3 0.1 0.02 CUB8 (P1) 7200 9317 8

E.T. element type, E.N. element number,N.N. node number,G.N. Gauss point number per element

is prescribed with the initial temperature θ0 = 0, while the outlet boundary is prescribed
with zero heat flux. The relation between the initial position of a material point and its
actual position (3) can be written as:

x = X + vt with v = Vex (41)
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Fig. 7 Control volume with boundary conditions

Reducibility of problem

The investigation of the problem reducibility is performed for the components of the state
vector X defined in the previous section with a SVD analysis. For comparison purpose, the
thermal solution (i.e. θ or θ̃ ) is solved in both the fixed and moving frames. In the sequel,
the following definitions are used:

Definition 2 Relative SVD error
According to the Eckart–Young’s theorem [51], a relative error between the snapshot

matrix X and the truncated SVD X̂ accounting k modes is given by:

εk (X) = ‖ X − X̂ ‖F
‖ X ‖F = ‖ X − ΠΦK ,ΦKX ‖F

‖ X ‖F =
√∑r

i=k+1 σ 2
i√∑r

i=1 σ 2
i

(42)

Definition 3 Energy SVD error estimator
A global space–time energy estimator Ek can be defined for a state vector X (or one field

of this state vector) through an integration over the time interval of a space-norm of X,
e.g:

⎧
⎨

⎩
Ek (Û) = 1

2
∫ T
0 û(t).û(t)dt = 1

2
∑k

i=1 σ 2
i

Ek (Û) = Ek
Etot = 1 − ε2k

(43)

where Û designates a low rank approximation for the displacement field U ∈ R
n×m, Ek

defines a cumulative associated energy with k modes and Ek denotes a energy indicator
with respect to the total associated energyEtot which is equal to 1when k = r = min(n,m).

Definition 4 Reducibility condition
In this analysis, a field is assumed to be reducible if the number of needed modes for its

k-compressibility is less than 20% of the total number of modes r, i.e. kr < 20%.

Similarly, an energy error indicator can be defined for the thermal field. As shown in
Fig. 8, for the transient state solutions, more than 50modes are required to satisfy a energy
ratio of 99.99% corresponding to a relative error of 1% in fixed frame, while only 3 modes
are needed to capture the same energy in the moving frame, this amount can be reduced
again to 1 with a steady state assumption in the moving frame. The reducibility of this
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a

cb

Fig. 8 Modes contribution for θ (top) and θ̃ (bottom). a Transient state solution in the fixed frame.
b Transient state solution in the moving frame. c Steady state solution in the moving frame

a b

dc

Fig. 9 Modes contribution for mechanical variables. aModes contribution for U. bModes contribution for σ .
cModes contribution for εp . dModes contribution for p
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thermal problem is significantly improved in the moving frame, since the thermal field
is 3-compressible whereas it is 50-compressible in the fixed frame. Figure 9 illustrates
the application of SVD analysis to the mechanical problem solved in the fixed frame. A
truncation energy of 99.99% requires less than 30 modes for each of these mechanical
state variables, which makes the reducibility condition be satisfied.
The moving load and flowing heat flux induce the non-reducibility of the thermal prob-

lem in the fixed frame. Whereas the resolution in the moving frame, which makes the
moving load be fixed in reference configuration, leads to an hyper-reducible model. Fur-
thermore, only onemode leftwith steady state assumption is required inour case.Contrary
to the thermal problem, the mechanical problem is reducible in the fixed frame. Indeed,
the mechanical field does not diffuse and is located in the domain of laser torch, while this
is not the case for the temperature field that diffuses over time.
Thus, in order to guaranty theoptimality of theRBs in the constructionof computational

vademecums of this welding model, the thermal problem is solved independently with a
steady-state assumption in the moving frame. The mechanical problem is solved in the
fixed frame. Finally, the state vector X is chosen as:

X = {
θ̃ ,U, εp, σ, p

}T (44)

Quasi-optimal computational vademecumswith error control-application to
welding simulations
This section tackles the precision problem of computational vademecums. A multi-
grid based method is proposed to control the error produced in the construction
of computational vademecums by Grassmann manifolds interpolation. Finally, the
computational vademecums with error control are built based on the above welding
model. In the following, the considered error is measured with respect to High Fidelity FE
Models (HFM) and model discretization errors are not taken into account [44].

Reduced basis error indicator

Given XROM ∈ R
n×m rebuilt with the approach proposed in “ROM adaptation for para-

metric studies” section, a reducedbasis error indicatorwith respect toHFM is thendefined
as:

ε(X) = ‖ XROM(tm) − XHFM(tm) ‖2
‖ XHFM(tm) ‖2 (45)

where (•)(tm) denotes the solution at the final time step and XHFM the solution computed
with HFM.
This definition can be similarly applied to a state variable in the state vector. Note that

the defined ε is a summation of the SVD-mode truncation and RB interpolation errors.
The SVD-mode truncation error depends on the truncation order k chosen in such a
way that the error is lower than 1%. The interpolation error depends on the accuracy of
the RB adaptation method and the location of pre-computed snapshots in the parameter
space. The multigrid based method presented hereafter gives an automatic choice of the
snapshots locations (i.e. choice of the parameter sampling points) in the parameter space
in order to control and optimize the RB error.
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Localized multigrid selection method

It is clear that an exhaustive generation of snapshots in the parameter space can ensure
a reliable solution rebuilt by interpolation. However, the resulting offline time-cost is
too much expensive. Herein, an efficient multigrid selection method that allows local
refinements in the parameter space is presented.
For simplification purpose, only two parameters are considered: μ ∈ Dμ, ξ ∈ Dξ . We

start by the coarse first-order grid, given by the four snapshots associated to the four
corners of the parameter space D = Dμ × Dξ . The error indicator ε is then calculated
at the assessment point located in the center of the subspace. The grid is refined only
when the error for that point is greater than a critical value, by adding other snapshots to
the second-order grid. The quality of the refined grid is assessed by the error indicator at
each center of these sub-domains. The refinement is carried out until the error reaches
the prescribed accuracy. The refinement algorithm is outlined in Algorithm 4. Figure 10
shows an example of localized refinement in a two dimensional parameter space. The
above method can be extended to more than two parameters. Grid refinements should be
specific to each one of state variables.
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Fig. 10 Successive localized refinements for a 2D parameter space

4D⊗1D thermal computational vademecum

An application of the proposed method to construct computational vademecums is pre-
sented herein. The notation 4D⊗1D means that solutions provided by the vademecums
is 4D (in physical space: Ω × [0 tm]) and the concerned parameter space is 1D. Para-
metric studies are performed with respect to the thermal capacity Cp(J · kg−1 · K−1) ∈

Fig. 11 Localized multigrid refinement in the 1D parameter space: the final sampling points obtained by the
final grid are {432, 490.5, 549, 666, 783, 900}

Table 3 Illustration of parameter refinement

Grid order Corners of the grid Assessment points Error (σMV ) (%) Error test

1 432, 900 666 4.89 0

2 432, 666 549 1.5 0

2 666, 900 783 1.21 0

3 432, 549 490.5 1.19 0

3 549, 666 607.5 0.97 1

3 666, 783 724.5 0.93 1

3 783, 900 841.5 0.98 1

4 432, 490.5 461.25 0.80 1

4 490.5, 549 519.75 0.75 1
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D = [432, 900]. The quantity of interest is chosen as residual stress induced by welding,
represented here by von Mises stress. In order to satisfy a level of accuracy of 1%, the
localized multigrid refinement in the parameter space is shown in Fig. 11. Table 3 reports
the corresponding errors at assessment points for each refinement order. As one can see,
the final sampling points that should be taken into account for an accuracy of 1% are
{432, 490.5, 549, 666, 783, 900}.
The prescribed accuracy is satisfied after two successive refinements. A computational

vademecumwith an error of 1% with respect to parameter variation for the residual stress
is thus developed. The full space–time solution can then be obtained for any value in the
parameter interval. Similar analysis can be done for the other state variables of the state
vector X.
A demonstrator has been programmed for the visualization of the resulting space–time

(4D) computational vademecum (see Fig. 12). One recalls that there is no FE computation
at the online phase. Interpolating a new space–time solution with the proposed adapta-
tion approach is done in real time. CPU time for the thermo-mechanical fields of a new
parameter is less than 0.1 s, whereas it takes about 7 h to perform a full FE computations
with a single processor (see Table 4). Although the offline CPU time for constructing the
snapshotsmay be expensive, it will reducemuchmore time in the use of the computational
vademecum at the online phase for computing parametric solutions with optimization or
identification purpose. Furthermore, the necessary memory to perform the online inter-
polation is less than 500Mb in this example. It means that the computational vademecum
can be used either with a laptop or even a smartphone.

Fig. 12 Demonstrator of Space–time computational vademecum developed in matlab

Table 4 CPU time for a new solution

Phase Proposed approach (6 snapshots, error< 1%) Standard FEM

Offline ≈ 42 h –

Online < 0.2 s ≈ 7 h
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Fig. 13 Space–time yield stress computational vademecum

4D⊗1Dmechanical computational vademecum

A similar computational vademecum is made for a mechanical parameter: the material
initial yield stress σy (MPa) ∈ D = [300, 500]. The minimal set of snapshots that should
be taken into account for building the computational vademecum (see Fig. 13) with an
error smaller than 2% is obtained by the sampling points {300, 350, 400, 450, 500} (see
Table 5). The online space–time response is given in real time with a high computation
time reduction (Table 6). Optimal memory storage is obtained by space–time separated
variable representation of the RBs.

4D⊗2D computational vademecum

Let D = DC × Dσ be a 2D parameter space with Cp(J · kg−1 · K−1) ∈ DC = [432, 900]
and σy (MPa) ∈ Dσ = [300, 500]. This time, parametric studies are considered in the
square 2D-domain D. The snapshots selected by the proposed approach are shown in
Fig. 14 for an guaranteed error smaller than 7% (see Table 7). A 4D⊗2D computational

Table 5 RB errors of vonMises stress and plastic strain

Corners of the grid Assessment points Error (σMV ) (%) Error (p) (%)

300, 350 325 1.82 1.62

350, 400 375 1.97 1.73

400, 450 425 1.89 1.65

450, 500 475 1.73 1.90

Table6 CPU time andmemory (yield stress computational vademecum)

Phase CPU time (5 snapshots, error< 2%) Memory

Full calculations ≈ 35 h 10 Gb

RB storage – 100 Mb

Online < 0.2 s < 500 Mb
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Fig. 14 Snapshots (black circles) selected in the 2D parameter space

Table7 RB errors of vonMises stress and plastic strain in the 2D parameter space

Assessment points Error (σVM) (%) Error (p) (%)

(549, 350) 4.51 5.68

(783, 350) 4.45 5.09

(783, 450) 5.62 6.49

(490.5, 425) 2.57 1.92

(607.5, 425) 2.52 2.02

(607.5, 475) 2.65 2.24

(490.5, 475) 2.67 2.71

Fig. 15 Space–time 2D computational vademecum

vademecum (Fig. 15) is thus constructed. Only two refinements are needed to satisfy the
error condition. Limited memory is required for storing the RB snapshots. Parametric
space–time solutions can be provided by the 2D interpolation in real time (see Table 8).
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Table8 CPU time andmemory (4D⊗2D computational vademecum)

Phase CPU time (14 snapshots, error< 7%) Memory

Full calculations ≈ 98 h 10 Gb

RB storage – 220 Mb

Online < 0.5 s < 500 Mb

Fig. 16 Front sight of 3D welding with variable loading power

Computational vademecum for real-time process control of welding

Let us consider a welding problem with a moving thermal load at a constant velocity over
the work-piece with a possible change of input power at mi-time tf

2 (see Fig. 16). In order
to control the quality of welded piece and make real-time decisions to adapt Q1 and Q2,
real-time simulations are required.
Assuming thatQi|i=1,2 ∈ [8 12]×106 W ·m−2, the real-time computational vademecum

is then constructed using the proposed approach in the 2D parameter space for an error

Fig. 17 Evolution of stress during the welding for Q1 = 8.5, Q2 = 11.5
(×106 W.m−2

)
. a t = 47.5 s. b

t = 122.5 s. c t = 210s. d t = 290 s
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less than 5%. Real time solutions are obtained for any value of input power in the parameter
space. As depicted in Fig. 17, one can modify the input power according to the real-time
evolution of stress, here is an example obtained forQ1 = 8.5, Q2 = 11.5

(× 106 W · m−2).
The online use of computational vademecum can help engineersmake real time decisions
for the input power of welding to control the quality of work-pieces.

Conclusion
Quasi-optimal space–time computational vademecum dedicated to parametric studies
of welding process is constructed with a non-intrusive strategy. The reducibility of the
full transient thermo-elasto-plastic model is studied by SVD analysis. It is shown that
the reducibility of the transient thermal problem is significantly improved when the RBs
are pre-computed in the moving frame. The proposed approach is based on a space–
time Grassmann manifold interpolation of the reduced bases. This ensures high level of
efficiency and accuracy for real time simulations and significantly reduces the high cost of
computations for parametric studies. Furthermore, a localizedmultigrid selectionmethod
is presented. It leads to an appropriate selection of the sampling points in the parameter
space that guarantee the accuracy of the space–time computational vademecum. Thus,
the exhaustive generation of snapshots in the parameter space is avoided.
The proposed approach is applied to a 3D transient non-linear thermo-mechanical

welding model with a moving heat Source. space–time computational vademecums are
obtained for a given quantity of interest (residual stress), for both thermal andmechanical
parametric studies. Excellent results have been obtained for the RBs accuracy, memory
storage and the online phase computations (real time). Indeed, online phase CPU time
is less than 0.5s and limited memory storage is required with a guaranteed acceptable
error. As one of applications of the computational vademecum (parametric solutions), fast
identification of problem parameters can be straightforwardly expected. In addition, real
time process control can be expected as well by considering loading-related parameters.
Extension tomultiparametric (high-dimensional) analysis is in progresswith application

to industrial software. In this case, themain challengewill be the development of a strategy
sampling efficiently the parameter space for high-dimensional problems.
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