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Abstract

In this paper, we introduce and comment some recent efficient solvers for time
dependent partial differential or ordinary differential problems, considering both linear
and nonlinear cases. Here “efficient” may have different meanings, for instance a
computational complexity which is better than standard time advance schemes as well
as a strong parallel efficiency, especially parallel-in-time capability. More than a review,
we will try to show the close links between the different approaches and set up a
general framework that will allow us to combine the different approaches for more
efficiency. As a complementary aspect, we will also discuss ways to include
reduced-order models and fast approximate exponential integrators as fast global
solvers. For developments and discussion, we will mainly focus on the heat equation, in
both linear and nonlinear form.
Keywords: IMEX, LATIN, PARAEXP, PARAREAL, Performance, Reduced order model

Background
This paper deals with efficient numerical approaches to solve time-dependent problems,
possibly including parallel-in-time sub-domain decomposition andmaking help of coarse
reduced-order model solvers. As a typical problem of discussion, we will consider the
classical heat equation: let � be a bounded domain in R

m, m ∈ {2, 3} with a Lipschitz-
continuous boundary. Let κ be a positive constant. Consider T > 0, u0 ∈ H1

0 (�) and
f ∈ L2((0, T ), L2(�)). The linear heat problem with u0 an initial value, homogeneous
boundary conditions, for time t in the interval [0, T ] reads

⎧
⎪⎨

⎪⎩

∂tu − ∇ · (κ∇u) = f in � × [0, T ],
u(., t) = 0 on ∂� × [0, T ],
u(., 0) = u0 in �.

(1)

The problem (1) has a unique solution u in L2((0, T ), H1
0 (�)). Semi-discretizing the prob-

lem (1) in space (method of lines) will classically lead to a high-dimensional ordinary
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differential problem set in R
d with generally large discrete dimension d. For simplicity,

we will assume that the semi-discrete problem is written
{
u̇ + Au = f in [0, T ],
u(0) = u0,

(2)

with u0 ∈ R
d , f ∈ L2((0, T ),Rd) and A ∈ Md(R) typically symmetric positive definite,

with a sparse structure. In this paper we will also consider nonlinear versions of the heat
problemwith a thermal conductivity coefficient κ(u) depending onu itself.Wewill assume
that there exists a constant κ > 0 and a constant κ > 0 such that

κ ≤ κ(u) ≤ κ ∀u.
The nonlinear heat problem reads

⎧
⎪⎨

⎪⎩

∂tu − ∇ · (κ(u)∇u) = f in � × [0, T ],
u(., t) = 0 on ∂� × [0, T ],
u(., 0) = u0 in �

(3)

and we will assume that its semi-discretized form reads
{
u̇ + A(u)u = f in [0, T ],
u(0) = u0

with A(u) sparse, symmetric positive definite for any u, uniformly bounded. Let us now
consider time discretization. Usually, time advance schemes for such kind of problems are
chosen implicit or semi-implicit for stability purposes. As an exemple, the pure explicit
Euler time advance scheme

un+1 − un

�t
− ∇ · (κ(un)∇un) = f

where un � u(., tn), tn+1 = tn + �t has a too restrictive numerical stability domain with
typically �t = O(h2), h being representative of the space step size. Semi-implicit linear
schemes in the form

un+1 − un

�t
− ∇ · (κ(un)∇un+1) = f

show a far better stability domain but require the update of the stiffness matrix with the
solution of a large linear sparse system at each time step. Finally, full implicit schemes

un+1 − un

�t
− ∇ · (κ(un+1)∇un+1) = f

provide strong numerical stability but require fixed-point (Newton or quasi-Newton)
algorithms for their numerical solution, what becomes computationally time-consuming.
This paper gives an overview of recent alternative time advance schemes with interest-

ing algorithmic features, including the possibility of parallel computations. First for linear
problems, we will introduce the PARAEXP algorithm based on a superposition principle
for achieving parallel-in-time computation. For nonlinear problems, the iterative LATIN
method is a kind of splitting approach by alternating global linear solutions and local non-
linear projections.We will then discuss more general fixed point algorithms with a special
focus on Newton and quasi-Newton methods, separation of linear terms and nonlinear
residuals in an implicit-explicit discretization strategy, then time sub-domain decompo-
sition and parallel-in-time computing involving coarse global and fine local propagators
in the PARAREAL method.



De Vuyst Adv. Model. and Simul. in Eng. Sci. (2016) 3:8 Page 3 of 14

The PARAEXP algorithm
Numerical methods allowing parallelization in the time direction have been thought since
a long time (see Nievergelt [20] in 1964) and have known great developments particularly
in the last decade because of today’s growingHPCplatforms. Among time-parallel solvers,
the PARAEXP algorithm introduced by Gander and Güttel [10] in 2013 is dedicated to
linear ordinary differential problems, that is problems in the form

{
u̇ + Au = f (t), t ∈ [0, T ],
u(0) = u0 (4)

especially when f (t) is varying fastly in time. Problem (4) has a solution written in integral
form thanks to the variation-of-constant formula:

u(t) = exp(−tA)u0 +
∫ t

0
exp(−(t − τ )A)f (τ ) dτ . (5)

If we want to take advantage of (5) for deriving a numerical computational method, in
particular we need a high-order quadrature formula of the integral term. If the f (t) are
fast varying source terms, quadrature may become irrelevant from the accuracy point of
view. Gander and Güttel rather propose to split the problem over p sub-domains in time
and use a superposition principle based on independent problems set onto different time
domains:

1. First, define a partitioning of the time domain [0,T] into p time sub-intervals
[Tj−1, Tj], j = 1, ..., p, 0 = T0 < T1 < ... < Tp = T ;

2. For each j = 1, ..., p, solve the initial zero value problem

v̇j(t) = −Avj(t) + f (t), vj(Tj−1) = 0, t ∈ [Tj−1, Tj]; (6)

3. For each j = 1, ..., p, solve the homogeneous problem

ẇj(t) = −Awj(t), wj(Tj−1) = vj−1(Tj−1), t ∈ [Tj−1, T ] (7)

(with the notation v0(T0) := u0).

It is clear that by a superposition principle, on can synthesize a solution u of (4) by the
summation formula

u(t) = vk (t) +
k∑

j=1
wj(t) for k such that t ∈ [Tk−1, Tk ], k ∈ {1, ..., p}. (8)

The PARAEXP algorithm is dedicated to parallel computing architectures, otherwise of
course there is no benefit to execute it sequentially on one processor. It is remarkable to
notice that good implementations of PARAEXP do not require any communication until
the solution synthesis step, so the theoretical optimal efficiency is 1 before synthesis. Of
course there is an issue of load balancing between processors because for a uniform time
domain partitioning, some processors (especially the first one) are doing more work than
others. The algorithm is graphically summarized in Fig. 1.
Another key of performance is the fast computation of the matrix exponentials. The

solution of the homogeneous problem (7) in [Tj−1, T ] is

wj(t) = exp(−At)vj−1(Tj−1)

and thus has to be evaluatedmany times (at any time t in fact). There aremany approaches
to compute accurate approximate matrix exponentials as commented in [10]. A way is to



De Vuyst Adv. Model. and Simul. in Eng. Sci. (2016) 3:8 Page 4 of 14

Fig. 1 Schematics of the PARAEXP algorithm [10]. Solid red lines represent the solutions of inhomogeneous
problems with zero initial value on each time slice [Tj−1 , Tj ], computed in parallel. Blue dashed lines represent
the solutions of homogeneous problems on time intervals [Tj , T ], also computed in parallel

search approximations into the Krylov subspace KM of dimensionM:

KM = span(u0, Au0, . . . , AM−1u0),

looking for a best approximation into the truncated series expansion. We will come back
on this issue when reduced order models (ROM) will be introduced below.

Nonlinear problems: an implicit-explicit IMEX time advance scheme
Hereafter, we switch to the nonlinear case considering the nonlinear heat equation as
reference example. Before going into iterative and parallel algorithms, let us first consider
a variant implicit-explicit (IMEX) time advance scheme introduced by Filbet, Negulescu
and Yang [8] in 2012. The idea is to consider an implicit linear diffusion term with an
upper bound of the thermal conductivity, and explicit remainding terms at the right hand
side:

un+1 − un

�t
− ∇ · (κ∇un+1)

︸ ︷︷ ︸
linear, constant coefficients

= −∇ · (
[κ − κ(un)]∇un

)

︸ ︷︷ ︸
varying coefficients, depend on u

+ f, (9)

with

κ ≥ sup
x,t

κ(u(x, t)).

As demonstrated in [8], let us show that the semi-discrete in time scheme is stable in the
one-dimensional case for a certain norm. Consider the homogeneous case f = 0 with
homogeneous Neumann boundary conditions to simplify. We multiply (9) on un+1 on
the domain � = (0, 1), hence we have

1
2

∫ 1

0
|un+1|2 ds − 1

2

∫ 1

0
|un|2 ds ≤

∫ 1

0

(
(un+1)2 − un+1un

)
ds

≤ �t
∫ 1

0

(
(κ − κ(un))∂xun∂xun+1 − κ(∂xun+1)2

)
ds

Let us recall the Peter-Paul inequality (extended Young’s inequality): for any nonnegative
real numbers a and b, we have ab ≤ εa2/2+b2(2ε) for every ε > 0. Using the assumption
that κ(un) ≤ κ , and applying Peter-Paul’s inequality with a = |∂xun| we obtain

(κ − κ(un))∂xun∂xun+1 ≤ ε

2
(∂xun)2 + (κ − κ(un))2

2ε
(∂xun+1)2

≤ ε

2
(∂xun)2 + κ2

2ε
(∂xun+1)2.
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Therefore with the choice ε = κ , we have the weighted Sobolev norm decrease

1
2

∫ 1

0
(un+1)2dx + κ

2
�t

∫ 1

0
|∂xun+1|2 dx ≤ 1

2

∫ 1

0
(un)2dx + κ

2
�t

∫ 1

0
|∂xun|2 dx.

This semi-discretization leads to a full discrete scheme in the form

un+1 − un

�t
+ Aun+1 = g(un) (10)

with g(u) in the form g(u) = (A − A(u))u + f . What is interesting of course is that
the matrix of the implicit part is constant, and thus has to be assembled and factorized
once. Moreover the system is linear in the variable un+1. Unfortunately, the PARAEXP
algorithm cannot be applied directly here because the right hand side g(un) depends on
the solution itself.

Iterative methods: the LATIN approach
A usual way to deal with nonlinear equations numerically is to use an iterative process
within a fixed point algorithm. The LATIN (LArge Time INcremental) method pioneered
by Ladevèze [15] and since then broadly used in computational structural Mechanics and
material science (see [16] for a recent reference) solves time-dependent problems (linear
or nonlinear) according to a two-step iterative process. To separate the difficulties, equa-
tions are partitioned into two groups: (i) a group of equations being local in space and time,
possibly nonlinear (representing equilibrium equations for example); (ii) a group of linear
equations, possibly global in the spatial variable. Then ad-hoc space-time approximations
methods are used for the treatment of the global problem. Of course, space-time local
equations can be solved in parallel, what makes the LATIN method efficient and suitable
for today’s HPC facilities. Let us emphasize that with LATIN, it is possible to solve hard
nonlinear mechanics problems including thermodynamics irreversible problems (plastic-
ity, friction as examples).
As an llustration, let us describe the LATIN method on the (rather simple) nonlinear

heat problem:

1. Initialization (k = 0): let u(0) ∈ L2((0, T ), H1(�)) an approximate solution (in space
and time) of the nonlinear problem (it can be an approximate solution obtained with
a coarse solver for example); compute κ̃(0) = κ(u(0));

2. Iterate k , step 1 (global linear solution). Solve the linear problem

∂tu(k+1) − ∇ · (κ̃(k)∇u(k+1)) = f

with given initial and boundary conditions.
3. Iterate k , step 2 (local projection over the admissible manifold). Compute

κ̃(k+1) = κ(u(k+1)).

4. Check convergence, k ← k + 1 if not and go to 2.

The step 1 performs a global (linear) evolution of the solution whereas a pointwise
nonlinear projection on the equilibrium conductivity coefficients is done in step 2. We
have a natural convergence indicator in terms of distance between the frozen conductivity
κ̃ and κ(u(k)):
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e(k) = ∥
∥κ(u(k+1)) − κ̃(k)

∥
∥ .

In particular, if κ is Lipschitz continuous with Lipschitz constant L, then

e(k) ≤ L‖u(k+1) − u(k)‖.
Remark that step 2 can be performed in parallel (in time).
For better and faster convergence, one can imagine variant approaches using a relaxation

approach: remark first that κ(u) is (formally) solution of the partial differential equation

∂tκ(u) − ∇ · (κ(u)∇κ(u)) = κ ′(u)f − κ ′′(u)κ(u)|∇u2|.
If κ is a strictly convex function for example, then the second term at the right hand side
is negative. One may consider the approximate (augmented) problem

⎧
⎨

⎩

∂tu − ∇ · (κ̃∇u) = f,

∂t κ̃ − ∇ · (κ ∇κ̃) = κ ′(u)f + κ(u) − κ̃

ε
.

(11)

where ε > 0 is a given relaxation time (assumed to be rather small). By this way, it
is expected that κ̃ evolves much closer toward the value κ(u). One can then derive an
iterative process with again two steps (linear solution + projection) as in the LATIN
method.

Newton and quasi-Newton approaches
For the sake of simplicity, let us consider here the initial value problem with general
autonomous system of ordinary differential equations

u̇ = f (u), t ∈ (0, T ], (12)

with f assumed to be differentiable and Lipschitz continuous, and initial condition u(0) =
u0. The solution u ∈ L2((0, T ),Rd) can be seen as the zero of a nonlinear operator G,

G(u) := u̇ − f (u) = 0.

The directional derivative of G at point u in the direction v is
DG(u)v = v̇ − Df (u) v.

Then the standard Newton-Raphson method applied to G reads for the k-th iterate

DG(u(k))(u(k+1) − u(k)) = −G(u(k))

that simplifies into

u̇(k+1) = f (u(k)) + Df (u(k))(u(k+1) − u(k))

= Df (u(k))u(k+1) + (f (u(k)) − Df (u(k))u(k)
)

(13)

Hence, theNewton-Raphsonmethod provides a sequence of linear problems (of unknown
u(k+1)) with variable coefficients and sources (depending on f and u(k)).

Spectral structure of the linearized problem

Let us emphasize that, at a given k , the linear system has the expected spectral structure
for approximate solutions near an equilibrium u, that is f (u) = 0. For u(k+1) close to u,
we have

d
dt

(u(k+1) − u) = Df (u(k))(u(k+1) − u) +
[
f (u(k)) − f (u) − Df (u(k))(u(k) − u)

]
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For u(k) close to u and f ∈ C 2 we have

f (u(k)) − f (u) − Df (u(k))(u(k) − u) = O(|u(k) − u|2),
then

d
dt

(u(k+1) − u) � Df (u)(u(k+1) − u)
which is the expected linearized system.

Quasi-Newton approach

As an additional approximation, a quasi-Newton method will replace the Jacobian matrix
Df (uk ) by an approximate oneA(k) � Df (uk ), simpler to compute, thus giving the iterative
process

u̇(k+1) = f (u(k)) + A(k) (u(k+1) − u(k))

= A(k) u(k+1) + (f (u(k)) − A(k)u(k)
)

If we are able to build some coarse approximation g of f such that the quasi-Newton
secant condition

A(k) (u(k+1) − u(k)) = g(u(k+1)) − g(u(k)) (14)

is satisfied, we get the Jacobian-free quasi-Newton iteration

u̇(k+1) = f (u(k)) + (g(u(k+1)) − g(u(k))
)

(15)

or equivalently

u̇(k+1) = g(u(k+1)) + (f (u(k)) − g(u(k))
)
. (16)

In (16), g(u(k+1)) can be seen as a predictor term, whereas (f (u(k))− g(u(k))) is a corrector
term toward f depending on the iterate (k) only. By construction we retrieve the accuracy
of f at convergence. A quasi-Newton secant condition ensures superlinear convergence
according to the Dennis and Moré theorem.

The PARAREALmethod
The recent PARAREAL method, initially proposed by Lions et al. [17] in 2001, is nothing
else but a parallel-in-time version of the quasi-Newtonmethod (16) above. In PARAREAL,
the time domain is decomposed into p subdomains. Then we define a double-index
sequence of approximate solutions uj

(k), where k still denotes the current index of the
iterative process and j is the number of the time subdomain [Tj−1, Tj]. In its regular
current form (see [3,4]), the PARAREAL algorithm is defined as follows:

1. Define a partition in time [Tj−1, Tj], 0 = T0 < T1 < ... < Tp = T ;
2. Define a cheap coarse propagator G and a fine propagatorF .
3. Initialization (k = 0): u0

(0) = u0, uj+1
(0) = G (uj

(0));
4. Loop on the iterates k :

uj+1
(k+1) = G (uj

(k+1)) +
(
F (uj

(k)) − G (uj
(k))

)
(17)

5. Check convergence, test the stop criterion.

ThePARAREALalgorithm is graphically represented in the schematics of Fig. 2. From (17)
and the graph dependency of Fig. 2, one can understand that each corrector term on time
slice j
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Fig. 2 Schematics and graph dependency into the PARAREAL algorithm

(
F (uj

(k)) − G (uj
(k))

)

can be evaluated in parallel over the p processors.On the other hand the coarse propagator
term G (uj

(k+1)) induces a persistent sequential part into the algorithm but it is expected
to be evaluated quite fast. The trade-off is to design a fast, “accurate enough” coarse
propagator which does not affect the whole performance of the algorithm.
One can imagine different choices of coarse solvers: low-order accurate time advances

schemes, simplified equations, simplified models, discretizations on coarser meshes, etc.
Reference papers like Bal and Maday [4] and Baffico et al. [3] show general convergence
theorems for nonlinear ordinary differential systems using coarse time integrators as
coarse solvers. Gander and Hairer in [9] also show a superlinear convergence of the
parareal algorithm.

Putting all together
Actually, there are different ways to mix the strategies seen so far. As an example, let us
still consider the nonlinear heat equation with time-varying source term:

∂tu − ∇ · (κ(u)∇u) = f (t).

In the spirit of IMEX and LATIN, let us define the following iterative approach:

∂tu(k+1) − ∇ · (κ∇u(k+1)) = f (t) + ∇ · ((κ − κ(k))∇u(k)), (18)

κ(k+1) = κ(u(k+1)). (19)

On the left-hand side of the equation, we have replaced the thermal conductivity κ(u) by
some supremum as suggested by IMEX. In semi-discrete form, we get an equation in the
form

u̇(k+1) + Au(k+1) = f (t) + r(k). (20)

We get a linear equation for the unknown u(k+1) with constant coefficient matrix A, and
the right hand side only depends on time through f (t) and u(k)(t). Then the PARAEXP
algorithm can be applied at each iterative k . The remaining nonlinear operations like (19)
and the assembling of r(k) can be done in parallel (in time). In conclusion, we have replaced
a nonlinear problem by a sequence of linear problems where some nonlinear evaluations
have been sent into the right hand side, and so can be computed in parallel.
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The Newtonmethod to handle nonlinear terms with ROMs of dynamical
systems
Reduced-ordermodeling is a generalmethodology to determine the principal information
of a general high-dimensional problem and then reduce the problem, for example by
projection. Reduction is generally possible when theM-Kolmogorov width

δM(U ) = inf
VM linear space, VM⊂V

dim(VM )=M

sup
x∈U

inf
yM∈VM

‖x − yM‖V .

into an admissible close set U of a Banach space V is rather small for a rather small
integer M (the dimension of the approximate space). One of the main motivations to
do that is to strongly reduce the computational cost for the numerical solution. Even
if there are recent advances in nonlinear reduced order modeling, in particular with the
empirical interpolationmethod (EIM) proposed byMaday et al. [18], or discrete empirical
interpolation method (DEIM) by Chaturantabut and Sorensen [5], there are still some
issues and open problems for nonlinear time-dependent problems. Dealing with general
nonlinear terms and reduced-order modeling for dynamical systems may be a difficult
task, because:

• reduced-order models are expected to reproduce the stability of the system (for
instance in the sense of Lyapunov, see [14] on this subject);

• the local dynamics has to be reproduced, at least “at first order”, involving a compat-
ibility of the spectral properties between full and reduced systems;

• the area visited by the trajectories into the state-spacemay be defined over a nonlinear
manifold rather than in a linear subspace. Thus nonlinear dimensionality reduction
methods would be better candidates for reduction.

Balanced truncation strategy [1,22] for example is a trade-off in the reduction process
to provide sufficient accuracy for controllability and observability of dynamical systems.
However the theory mainly deals with linear time-invariant (LTI) systems.
For time-dependent problems, one can adopt a greedy incremental strategy during time

by adapting/enriching the low-dimensional subspace when the principal components are
changing during time. But the price to pay is to online evaluate some (high-dimensional)
nonlinear terms to control the error, what can be a penalizing factor of performance. If
there is no other choice, parallel-in-time computing once again appears to be a comple-
mentary tool to keep global performance of the method.

Newtonmethod and Galerkin projection method

Let us go back to the Newton method (13) that we rewrite here again

u̇(k+1) = Df (u(k))u(k+1) + f (u(k)) − Df (u(k))u(k).

Let us consider a Galerkin approximation into the linear vector space

VM
(k) = span(w1

(k), . . . ,wM
(k))

and assume that (w	
(k),wm

(k)) = δ	m, 1 ≤ 	, m ≤ M. We are looking for an approximate
rank-M solution uM

k+1(t) in VM
(k), i.e.

uM
(k+1)(t) =

M∑

m=1
am(k+1)(t)wm

(k) (21)
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for some real coefficients am(k+1)(t), 1 ≤ m ≤ M at time t. In order to get a reduced system,
the Eq. (13) is projected onto the vector space VM

(k). Multipling (13) by any test function
vM ∈ VM

(k), we look for a low-order solution uM
(k+1)(t) in the form (21) such that

(
u̇M
(k+1), vM

)
=

(
Df (u(k))uM

(k+1), vM
)

+ (f (u(k)) − Df (u(k))u(k), vM
)
, ∀vM ∈ VM

(k).

Taking vM = wm
(k), 1 ≤ m ≤ M, by orthogonality of the eigenvectors we get

ȧm(k+1) =
M∑

	=1
a	
(k+1)(Df (u(k))w	

(k),wm
(k)) + (f (u(k)) − Df (u(k))u(k),wm

(k)).

In vector form, one obtains a reduced system in the form

ȧM(k+1) = ÃM
(k)(t)aM(k+1) + rM(k)(t)

with aM(k+1)(t) = (am(k+1)(t))m, (Ã
M
(k))	m(t) = (Df (u(k)(t))w	

(k),wm
(k)) and (rM(k)(t))m =

(f (u(k)(t)) − Df (u(k)(t))u(k),wm
(k)). Remark that when the initial system is linear, i.e.

f (u) = Au, we retrieve the classical Galerkin projection over the space VM :

ȧM(k+1) = ÃM
(k) aM(k+1)

with a constant matrix ÃM
(k), (Ã

M
(k))	m = (Aw	

(k),wm
(k)). The assembling of both ÃM

(k)(t)
and rM(k)(t) requires high-dimensional operations, but, fortunately, one can do this task
in parallel (in time). Thus, one can nonetheless expect to get rather high performance.
To summarize, at this stage of analysis, the algorithm of reduced-order modeling is the
following:

1. (initialization). Use a coarse solver and compute u(0). Loop over (k):
2. Compute M principal components wm

(k), m = 1, . . . ,M or a suitable reduced basis
from the knowledge of u(k).

3. Assemble and compute in parallel ÃM
(k)(t) and rM(k)(t) at all the discrete times.

4. Solve the linear problem

ȧM(k+1) = ÃM
(k)(t)aM(k+1) + rM(k)(t), t ∈ (0, T ]

aM(k+1)(0) = a0(k+1) ∈ R
M,

and compute

uM
(k+1)(t) =

M∑

m=1
am(k+1)(t)wm

(k).

5. Test convergence after iterate k .

Remark 1 For the computation of the basis functions wm
(k), one can of course use Proper

Orthogonal Decomposition (POD) [22] or any other dimensionality reduction method.
The update the reduced basis may also be done by incrementing the basis set within an
adaptive learning algorithm.

Remark 2 In the step 3, it is assumed that both Ã(k)(t) and r(k)(t) have to be assembled
and computed at all the discrete times. Of course, that may appear too penalizing for
achieving high performance. Actually, one can consider additional reduction strategies
for approximating both Jacobian matrix and right hand sides. This will be the aim of the
following “Discussion” section.
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Discussion about further reduction
There are many options to improve the whole numerical complexity of the algorithm
using some additional approximations or reduction strategies.

Freezing up the Jacobian matrices

Let us go back to the Newton method

u̇(k+1) = f (u(k)) + Df (u(k))(u(k+1) − u(k))

where the correction term Df (u(k))(u(k+1) − u(k)) ensures quadratic convergence when
it is converges. As already discussed in “Newton and quasi-Newton approaches”, one
can approximate the Jacobian matrix by some approximation A(k)(t) which is cheaper to
evaluate, leading to the quasi-Newton approach

u̇(k+1) = f (u(k)) + A(k)(t) (u(k+1) − u(k)).

The matrices A(k) still depend on time t a priori. But one could consider frozen approxi-
mates JacobianmatricesAj

(k) of time slices [Tj, Tj+1], further inviting for a parallel-in-time
strategy.

Adding coarse models

If we do not want to worry about Jacobian matrices, then the other option is to consider
a coarse model g of f as mentioned in “Newton and quasi-Newton approaches” section.
In this case, the quasi-Newton iteration reads

u̇(k+1) = f (u(k)) + (g(u(k+1)) − g(u(k))
)
.

In order to achieve an efficient reduced-order model, one have now to deal with the
nonlinear term g(u(k+1)). An efficient and tractable way to proceed is to use an empirical
interpolation method (EIM, [18]) for that. In that case, we can even make g depend on
(k), according to some adaptive learning process (greedy algorithm, inflating basis, etc).
Remark finally that the iterative process can once again be set up into a parallel-in-time
framework following ideas from the PARAREAL algorithm.

Achieving dimensionality reduction for f
If possible, one can also use a reduced-order approximation for f . If the iterative algorithm
is expected to converge towards a solution that has the same order of accuracy than
the original one, one have to consider an accurate reduced-order model for f . Once
the empirical interpolation method may help us for that. However, if a global-in-time
reduction strategy is considered, it is possible that the dimension M of the low-order
vector space becomes too large, leading to a degradation of the whole performance.
An alternative approach would be to consider a family of local-in-time empirical inter-

polation methods for f . In this case, we should also consider local models f j(k) available in
the time slice [Tj, Tj+1[ which can also be updated at each k from a learning process.

Approximate exponential integrators
In order to make the PARAEXP algorithm globally efficient, it is essential to compute fast
and accurate approximate exponential integrators. In the case of the linear heat equation,
we have to compute the exponential of a large scale, symmetric sparse matrix A. More
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precisely, for the the problem u̇ = Au with initial data u(0) = u0, we have to compute the
solution u(t) = exp(tA)u0 for any t ∈ [0, T ].
As mentioned in [9], there are numerous techniques to determine accurate exponential

matrices. Among then, one can for example mention Padé approximants, exponentially
fitted integrationmethods, or approximations based on projections over Krylov subspaces

KM = [u0 Au0 A2u0 . . . (AM−1u0)].

through Arnoldi orthogonalization iterations [12]. Actually the Krylov-Galerkin projec-
tion can be seen as a reduced-order technique, with a suitable reduced basis that fits action
of matrix exponentials. But of course there are other choices of suitable basis functions
like the first eigenvectors φm of A:

Aφm = λmφm.

For A symmetric positive definite with eigenvalues arranged in increasing order, that is
0 < λ1 ≤ λ2 ≤ . . . λM ≤ . . ., it is natural to consider from the approximation error point
of view the M first eigenvectors of A as vectors spanning the reduced approximation
subspace. We will denote Ã the projection of A on this discrete subspace and of course
we have rank(A) = M. Considering the iterative approach of linear problems

u̇(k+1) = Ãu(k) + (A − Ã)u(k), t ∈ [0, T ], (22)

u(0) = u0, (23)

by superposition principle, one can first consider the low-order homogeneous problem

v̇(k+1) = Ã v(k+1),

v(k+1)(0) = u0

for which we have an efficient low-order exponential solution, and on the other side the
high-dimensional problem with zero initial value

ẇ(k+1) = Ãw(k+1) + (A − Ã)u(k),

w(k+1)(0) = 0,

then u(k+1)(t) = v(k+1)(t) + w(k+1)(t). In the spirit of the PARAEXP algorithm, one
can set up the superposition principle within a parallel-in-time time decomposition to
deal separately with low-order homogeneous exponential solution and high-dimensional
inhomogeneous problems.

Closing discussion
From this review on efficient time-advance solvers including IMEX, LATIN, PARAEXP
andPARAREALalgorithms,we try to show thedifferentways and tracks to dealwith large-
scale dynamical systems, linear and/or nonlinear terms. For the sake of an easy discussion,
we have taken the example of the heat equation (linear or nonlinear). We are aware that
this may be too restrictive and nonlinear computational mechanics including for example
thermodynamics irreversible problems need more efforts and technical developments.
Among the methods discussed above, some of them have been designed to address these
problems. This is the case for the LATIN approach for example.
Time parallelization appears to be a promising key element of speedup. For prob-

lems with a small Kolmogorov width, reduced-order modeling may be a supplementary
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methodology to accelerate the whole time advance solution. For numerous reasons, it is
interesting to cast a nonlinear problem into a sequence of linear problems within an iter-
ative process. Linear problems are easier to deal with, and there are dedicated tools like
the parallel-in-time PARAEXPmethod. On the other hand, an iterative process allows for
achievingmulti-fidelity adaptive solvers, using incremental, greedy or learning algorithms.
Of course, we have to keep in mind that iterative methods may not converge. So in the
design process of the numerical approach, one has to answer to the following questions: is
the whole iterative process stable, is it possible to prove the convergence ? If themethod is
convergent, what is the rate of convergence ? Is it possible to accelerate the convergence ?
At convergence, is it sure that the iterative algorithm converges to the solution obtaines
with the accuracy we paid at the finest level ? For parallel algorithms, what is the effective
speedup ?
Last but not least,managingmulti-fidelitymodels andmulti-level reduced-ordermodels

as well as parallel-in-time algorithms and learning algorithms implemented on distributed
memory computer architecture necessarily require data management efforts and smart
software engineering.

Conclusions
The first aim of this paper is to review different efficient time-advance solvers (including
IMEX, PARAEXP, LATIN, PARAREAL) and show connections between them. We also
try to show the links with quasi-Newton approaches and relaxation/projection methods
to deal with nonlinear terms. Parallel-in-time algorithms appear to be a complemen-
tary and promising framework for the fast solution of time-dependent problems. Finally,
reduced-order models (POD-based, principal eigenstructure, a priori reduced bases, ...)
can be possibly included to achieve better performance. In a future paper, we will achieve
numerical experiments on different hybrid approaches.
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