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METHODOLOGY

Identification of carnivore kill sites 
is improved by verified accelerometer data
Tyler R. Petroelje1,3*  , Jerrold L. Belant1,3, Dean E. Beyer2 and Nathan J. Svoboda1,4

Abstract 

Background:  Quantifying kill rates is central to understanding predation ecology. However, estimating kill rates and 
prey composition in carnivore diets is challenging due to their low densities and cryptic behaviors limiting direct 
observations, especially when the prey is small (i.e., < 5 kg). Global positioning system (GPS) collars and use of collar-
mounted activity sensors linked with GPS data can provide insights into animal movements, behavior, and activity.

Methods:  We verified activity thresholds for American black bears (Ursus americanus), a bobcat (Lynx rufus), and 
wolves (Canis spp.) with GPS collars containing on-board accelerometers by visual observations of captive individuals’ 
behavior. We applied these activity threshold values to GPS location and accelerometer data from free-ranging car-
nivores at locations identified by a GPS cluster algorithm which we visited and described as kill sites or non-kill sites. 
We then assessed use of GPS, landscape, and activity data in a predictive model for improving detection of kill sites 
for free-ranging black bears, bobcats, coyotes (C. latrans), and wolves using logistic regression during May–August 
2013–2015.

Results:  Accelerometer values differed between active and inactive states for black bears (P < 0.01), the bobcat (P < 
0.01), and wolves (P < 0.01). Top-performing models of kill site identification for each carnivore species included activ-
ity data which improved correct assignment of kill sites by 5–38% above models that did not include activity. Though 
inclusion of activity data improved model performance, predictive power was less than 45% for all species.

Conclusions:  Collar-mounted accelerometers can improve identification of predation sites for some carnivores as 
compared to use of GPS and landscape informed covariates alone and increase our understanding of predator–prey 
relations.

Keywords:  Activity, American black bear, Bobcat, Canis latrans, Canis lupus, Coyote, Lynx rufus, Predation, Ursus 
americanus, Wolf
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Background
Kill rate is the central process of predation and estima-
tion of kill rates, and prey composition in carnivore diets, 
is important for understanding the effects of predators 
on their prey [1]. However, due to typical low densities 
and often cryptic behavior, estimating carnivore diet and 
predation is challenging. Coupling global positioning 

system (GPS) technology with field investigations can 
provide estimates of kill rates to address effects of car-
nivores on prey populations [2–4] without the need for 
direct observation.

Monitoring animal movements from GPS collars is 
common in studies of carnivores and other species dif-
ficult to observe [5–8], including use of clusters of GPS 
locations to detect potential predation sites [9–11]. 
Unfortunately, discerning among behaviors using GPS 
location data alone can be difficult for species that are 
central place foragers (e.g., ring-billed gulls [Larus 
delawarensis]; [12]) or species that forage and sleep in 
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close proximity (e.g., American black bear [Ursus amer-
icanus]; [13]). In addition, challenges exist in identify-
ing predation sites for species predating on small- and 
medium-sized prey when handling time is short and 
prey remains are limited [11, 14]. While GPS collars 
can track spatial movements, obtaining reliable infor-
mation regarding animal activity can be problematic 
[5, 15, 16]. Integrating landscape characteristics with 
behavior can improve identification of activities at loca-
tion clusters [17], but multiple behaviors may occur at 
each cluster and relating behavior to activity may prove 
more informative. The ability to differentiate between 
inactive and active states when paired with GPS data 
could be used to discern rest sites from areas used 
while active (e.g., foraging [18]).

Accelerometers can lend insight into animal behavior 
by measuring their movement at short intervals over long 
periods of time [19]. Accelerometers have been used to 
monitor and verify activity in mammals including moose 
(Alces alces [20]), elk (Cervus elaphus [21, 22]), bears (U. 
maritimus and U. arctos [23]), brown hares (Lepus euro-
paeus [24]), African elephants (Loxodonta africana [25]), 
Japanese macaques (Macaca fuscata [26]), and dingoes 
(Canis dingo [27]). Identifying active and inactive periods 
within areas of intensive use can provide information on 
behaviors associated with habitat use (e.g., foraging, rest-
ing, or traveling) and clarify benefits of that area [28]. In 
addition, knowing when animals are active or inactive is 
important when investigating travel efficiency or energy 
expenditure [29] or behaviors such as foraging or preda-
tion events [19, 30]. Thus, pairing activity data with GPS 
movement data can improve our understanding of move-
ments, resource selection, and inactivity [31] as it relates 
to carnivore predation ecology. Linking activity data with 
GPS data has improved detection of carnivore predation 
sites, most notably with cougar (Puma concolor) where 
prey items are typically large and prey remains at clusters 
are identifiable [30, 32].

We build on the GPS cluster model to predict kill 
sites by incorporating activity data collected by accel-
erometers on GPS collared American black bears, bob-
cats (Lynx rufus), coyotes (Canis latrans), and wolves 
(C. spp.) to identify kill sites during May–August when 
prey are typically of small or medium size [11, 14, 33]. 
We validated accelerometer values to discern active from 
inactive behaviors then incorporated activity data into a 
competing model framework to assess performance of 
cluster characterization as kill sites or non-kill sites. We 
hypothesized that measured activity from accelerometers 
could be used to discern active from inactive behaviors 
and improve detection of kill sites by defining behavior 
state at each cluster. We predicted clusters with greater 
numbers of active locations and greater proportion of 

time spent active would be positively associated with the 
likelihood of a cluster being a kill site.

Methods
Identifying activity thresholds
We observed captive black bears during August–Septem-
ber 2011 and a captive bobcat and wolves during August–
September 2013 at the DeYoung Family Zoo, Menominee 
County, Upper Peninsula of Michigan, USA. Carnivores 
were housed in open-air enclosures and fed twice daily 
at prescheduled times by zoo personnel. Three male and 
2 female black bears shared a 0.3-ha enclosure, 8 male 
and 5 female wolves shared a 0.2-ha enclosure, and the 
male bobcat occupied a 36-m2 2-story enclosure by itself. 
Zoo personnel conducted immobilizations in conjunc-
tion with each individual’s biannual health check and 
fitted 3 black bears (2 male, 1 female), 1 male bobcat, 
and 2 wolves (1 male, 1 female) with a Lotek 7000 GPS 
collar (Lotek Wireless, Newmarket, Ontario, Canada) 
equipped with an on-board tri-axial accelerometer. In the 
default pre-programmed mode, collar-mounted accel-
erometers measured gravitational acceleration along 
two axes (X [anterior-to-posterior] and Y [side-to-side]) 
and did not report measurements about the third axis 
(i.e., Z [up-and-down]). Accelerometers measured activ-
ity four times per second simultaneously on each axis, 
where the difference in acceleration between two con-
secutive measurements was given a value from 0 to 255. 
Collars averaged and stored activity data over the default 
pre-programmed sampling interval of 300 s with associ-
ated date and time. As accelerometers functioned on 8-s 
loops, the true measure of mean activity was 296 s. We 
chose this interval to match free-ranging collared carni-
vores where collars had storage limitations for activity 
data due to deployment length.

We had 4 observers directly recorded black bear, bob-
cat, and wolf behaviors (e.g., inactive, walking, running) 
during observation segments conducted in 300-s inter-
vals (up to 4  h in duration) and recorded the time to 
the nearest second at each behavior change. We did not 
use a double observer study design to verify categorized 
behavior groups between individuals. We initially cat-
egorized behavior as resting (i.e., inactive), loafing (e.g., 
minor head movement while lying, sitting, or standing), 
feeding/drinking, walking/trotting/running (i.e., loco-
motion), and other movements (e.g., play, dominance 
interactions, etc.). We summed the duration of each 
behavior observed for each 300-s interval and assigned 
the dominant behavior to that interval. As there were no 
accelerometer values provided for the Z axis, we could 
not directly replicate common metrics such as over-
all dynamic body acceleration [34] and instead used the 
sum of the accelerometer X and Y axis values recorded 
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during each interval to quantify activity and used this as 
the sampling unit to test for differences among behaviors. 
Although an analysis of variance [35] identified differ-
ences for some behaviors, there was significant overlap 
within inactive and active behaviors when we used the 
Tukey–Kramer method [36] for unequal sample sizes 
as a post-hoc test (see Additional file 1) so we collapsed 
behaviors into inactive (i.e., resting or loafing) and active 
(all other behaviors) states. We used Welch’s t test for 
unequal variances to identify differences between active 
and inactive states’ means with α = 0.05. We used the 
upper confidence limits of the means for loafing behav-
iors (i.e., head movement only) as determined by accel-
erometer data from captive carnivores as the breaking 
value between active and inactive states. Though we 
did not collar captive coyotes we used the wolf activity 
threshold for coyotes as locomotion and morphology are 
similar for these canids, though body mass of wolves is 
2–3 times greater than that of coyotes [37, 38]. Missis-
sippi State University’s Institutional Animal Care and Use 
Committee approved collaring and observation of cap-
tive carnivores (protocols 09-004, 12-012).

Field study site
We conducted our field study in portions of Iron and 
Baraga counties in Michigan’s Upper Peninsula, USA 
(46.27ºN, 88.23ºW) spanning about 1000  km2. Forested 
lands (86%) dominated the landscape and consisted of 
northern hardwood and boreal forest types with wet-
lands and limited agricultural lands interspersed [39]. 
May–August temperatures ranged from average highs of 
25.8  °C during July to lows of 1.7  °C during May. Aver-
age rainfall during May–August was 36.7  cm [40]. Car-
nivore densities within the study area were 25.9/100 km2 
for black bears, 3.8/100  km2 for bobcats, 23.8/100  km2 
for coyotes, and 2.8/100 km2 for wolves and density for 
white-tailed deer adults and fawns (Odocoileous virgin-
ianus), a dominant prey during the study period, was 
571/100 km2 during 2013–2015 [41].

Cluster investigations
During February–June of 2013–2015, we captured free-
ranging black bears, bobcats, coyotes, and wolves using 
culvert traps, #3 Victor Soft-Catch padded foothold traps 
(Oneida Victor, Euclid, Ohio, USA) or modified cage 
traps, #3 Victor Soft-Catch padded foothold traps, and 
modified MB 750 foothold traps (Minnesota Brand, Pen-
nock, Minnesota, USA), respectively. We used an intra-
muscular injection of ketamine hydrochloride (Ketaset®, 
Fort Dodge Laboratories, Inc., Fort Dodge, Iowa, USA) 
and xylazine hydrochloride (X-Ject E™, Butler Schein 
Animal Health, Dublin, Ohio, USA) to immobilize bob-
cats (10:1.5  mg/kg), coyotes (4:2  mg/kg), and wolves 

(10:2  mg/kg) and used an intramuscular injection of 
tiletimine/zolazopam (Telazol®) to immobilize black 
bears (7  mg/kg [42]). We fitted each carnivore with a 
Lotek 7000MU (black bears) or 7000SU (bobcats, coy-
otes, and wolves) GPS collar (Lotek Wireless, Newmar-
ket, Ontario, Canada) programmed to attempt a GPS-fix 
every 15  min and collect activity data averaged and 
stored over the default pre-programmed interval of 300 s. 
We administered yohimbine hydrochloride (0.15 mg/kg; 
Hospira©, Forest Lake, Illinois, USA) to antagonize the 
xylazine hydrochloride before we released bobcats, coy-
otes, and wolves at the capture site to facilitate recovery. 
Mississippi State University’s Institutional Animal Care 
and Use Committee approved all capture and handling 
procedures (protocols 09-004, 12-012). We downloaded 
GPS data using ultra-high frequency communication 
with a handheld unit twice weekly by airplane.

We identified potential kill sites using a rule-based 
algorithm [11] developed in R (version 3.0.2; R Core 
Team 2018) that delineated clusters of ≥ 4 GPS locations 
within 50  m of each other and occurring within 24  h, 
then calculated a geometric mean for each cluster center. 
Two personnel, with or without a trained detection dog, 
investigated cluster sites within 10 days of cluster forma-
tion to increase detection of kills [11]. Detection dogs 
were trained to locate hair, feathers, bones, and other 
prey remains. In all cases we searched the area system-
atically throughout the 50  m radius that included the 
locations used to identify the cluster. At each cluster we 
recorded carnivore tracks, scat, prey remains, and other 
animal sign to determine site use (i.e., kill or non-kill 
site). We confirmed presence of a predation (i.e., kill site) 
by detection of prey remains with the presence of fresh 
blood, minor decomposition of carcass remains, and 
hemorrhaging on the hide or muscle tissue of remains 
[9, 10]. If prey remains were present but lacked evidence 
of predation we considered the cluster a non-kill site. 
Where we identified bed or den sites at clusters with no 
evidence of kill site, we considered these non-kill sites. 
We confirmed den sites where pups, kittens, or dens were 
present. We confirmed a bed site when matted vegetation 
or soil with hair was present to confirm species use. If we 
identified evidence of a kill site and a bed site at a clus-
ter, we recorded the site as a kill site. We did not inves-
tigate clusters formed within 5 days of predator capture 
to reduce potential effects of their recovery from capture 
and handling.

Modeling kill sites
We coded clusters as kill sites (1) or non-kill sites (0) as 
the response variable for logistic regression models. For 
each cluster we recorded covariates derived from GPS 
data (number of GPS locations, time of day of formation, 
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number of days at cluster) and landscape data (distance 
to nearest road, hydrologic feature, and edge, and patch 
size) thought to improve identification of kill sites [10, 
11]. We used the number of 24-h periods at a cluster as 
the number of days and the total number of GPS loca-
tions the algorithm used to create each cluster as the 
number of GPS locations. We calculated time of day 
as a binary variable with 0 forming at night (between 
local sunset and sunrise) and 1 forming during the day 
(between local sunrise and sunset). We calculated dis-
tance to nearest road (Michigan Geographic Framework, 
all roads v17a), hydrologic feature (Michigan Geographic 
Framework, hydrography lines v17a), and nearest edge 
(National Land Cover Database [39]) from the geometric 
mean of the cluster in ArcMap 10.3 (Environmental Sys-
tems Research Institute, Redmond, California, USA). We 
calculated patch size as the area of the land cover clas-
sification [39] that contained the geometric mean of the 
cluster in Geospatial Modeling Environment [43].

We also identified covariates of activity we predicted 
would improve identification of kill sites. We matched 
each 15-min GPS relocation in the cluster with the over-
lapping 300-s accelerometer interval and used that value 
to determine the activity state of that individual using the 
captive carnivore active and inactive state thresholds. We 
did not use all 300-s intervals that occurred throughout 
the duration of the cluster as individuals would leave the 
cluster and return throughout the start and end periods 
as defined by the algorithm (i.e., ≥ 4 locations within 
50 m within a 24-h period). We counted the number of 
active 300-s intervals within each cluster (NACT) and 
calculated proportion of time active (i.e., number of 
active intervals/total number of intervals; PACT) within 
each cluster as covariates of cluster activity. We also 
summed the accelerometer values for all 300-s intervals 
that overlapped with GPS relocations within the cluster 
for the sum of cluster activity (SACT) and calculated 
the mean of those overlapping 300-s interval acceler-
ometer values for the mean of cluster activity (MACT). 
We included the quadratic term for MACT and SACT as 
individuals may rest where kills occur, and we therefore 
did not expect the relationship of activity and kill sites 
to be linear. For example, if kill clusters are associated 
with resting at the same site then kill probability would 
peak at middle values for MACT or SACT where lesser 
values would be non-kill sites where only resting or loaf-
ing occurred and greater values would be non-kill sites 
where only play or continuous foraging (e.g., black bears 
foraging on herbaceous vegetation) occurred.

We built three base models organized by the covari-
ate data type used to predict kill sites (i.e., GPS model, 
landscape model, and activity model). We excluded any 
covariates that were highly correlated (|r| > 0.8) to reduce 

model complexity. The GPS model included number of 
cluster locations, number of days cluster was visited, and 
time of day the cluster was initiated. The landscape model 
included distance to nearest edge, hydrologic feature, and 
road, and patch size at the geometric mean of the clus-
ter. The activity model included the SACT, MACT, and 
the quadratic term for SACT and MACT. We used these 
three base models to construct seven models a priori as 
our model set for each species which included all com-
binations of the GPS, landscape, and activity models. We 
used a likelihood ratio test to assess the use of a global 
fixed- or mixed-effect generalized linear model with a 
random effect for individual [17, 44]. As these models 
did not differ for any species (black bear, χ2 = 3.30, P = 
0.07; bobcat, χ2 = 0.89, P = 0.35; coyote, χ2 = 0.00, P 
= 1.00; wolf, χ2 = 0.55, P = 0.50), we used the simpler 
model structure of the fixed-effect generalized linear 
model with the “logit” link for all analyses using package 
‘stats’ within program R [45]. We ran all model set com-
binations and identified the top-ranked model for each 
species with Akaike Information Criterion for small sam-
ple sizes (AICc) and calculated Akaike weights to meas-
ure model support and aid in model selection [46]. We 
considered the model with the lowest AICc score as the 
most supported model and used that model in assessing 
performance. As models within 2 AICc of the top model 
are often considered equally supported [46], we report 
model-averaged parameter estimates where applicable 
to facilitate predictive ability. We calculated the prob-
ability output (i.e., the cut-off value) for each species 
top-ranked model as the minimum difference among 
classification rate (proportion of correctly classified kill 
and non-kill sites), sensitivity (proportion of true kill sites 
correctly classified), and specificity (proportion of true 
non-kill sites correctly classified) to optimize the cor-
rect assignment of kill sites for all classification metrics. 
We validated model accuracy by bootstrapping with 999 
iterations of the top model for each species and randomly 
selecting 70% of the data for each run and withheld 30% 
of the data to test the model upon and report the means 
and 95% confidence intervals for the iterations.

Results
Identification of behavior groups
We directly observed and recorded the behaviors of 
the 3 captive black bears for 4835  min ( x = 1578.0, SD 
= 1622.0) on 21 occasions, the bobcat for 1440 min on 
7 occasions, and 2 wolves for 5245 min ( x = 2582.5, SD 
= 272.2) on 26 occasions. Black bears, the bobcat, and 
wolves were inactive 45.1%, 68.2%, and 72.4% of the time, 
respectively, and active 54.8%, 29.3%, and 18.9% of the 
time, respectively. Active and inactive states were differ-
entiated by accelerometer values (Fig. 1) for black bears 
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(active x = 91.5, inactive x = 22.9, P < 0.01), the bobcat 
(active x = 73.1, inactive x = 17.5, P < 0.01), and wolves 
(active x = 83.3, inactive x = 12.7, P < 0.01). The break-
ing values for active and inactive behaviors were 35.9 for 
black bears, 36.8 for bobcats, and 30.7 for coyotes and 
wolves (see Additional file 2).

Kill site determination and modeling
We obtained GPS and activity data from 15 black bears 
(7 males, 9 females), 6 bobcats (4 males, 2 female), 13 
coyotes (2 males, 11 females), and 6 wolves (1 male, 5 
females). We paired 280,180 black bear ( x = 10,809, SD = 
4308.9), 67,531 bobcat ( x = 8970, SD = 3787.1), 106,444 
coyote ( x = 7789, SD = 3084.0), and 88,740 wolf ( x = 
8081, SD = 2564.7) locations with activity data. Overall 
fix success for 7000SU collars (on bobcats, coyotes, and 
wolves) and 7000MU collars (on black bears) was 95.9% 
and 83.5%, respectively.

We investigated 2591 clusters with an average of 
4.6 days following formation (range 1–11 days) with (n 
= 1143) or without (n = 1448) detection dogs. Though 
detection dogs were generally better at finding kill sites 

(Additional file  3) we pooled cluster investigations as 
the trends of cluster determination were similar and the 
number of known kill sites in the sample was small. Of 
the investigated clusters 2110 had all necessary covari-
ates for analysis of visited black bear (n = 755), bobcat 
(n = 350), coyote (n = 549), and wolf (n = 456) clus-
ters. Average number of locations at black bear, bobcat, 
coyote, and wolf clusters was 21.4 (SD = 24.7, range = 
5–300), 20.6 (SD = 24.7, range = 5–246), 21.3 (SD = 
16.58, range = 5–110), and 26.9 (SD = 23.3, range = 
5–247), respectively. We found kill sites at 2.1% of black 
bear (n = 16), 16.9% of bobcat (n = 59), 8.0% of coyote 
(n = 44), and 11.0% of wolf (n = 50) clusters. Prey types 
were dominated by white-tailed deer fawns (34% of 
kill sites) as well as other small-bodied species includ-
ing snowshoe hares (Lepus americanus), beavers (Cas-
tor canadensis), muskrats (Ondontra zibethicus), red 
squirrels (Tamiasciurus hudsonicus), raccoons (Pro-
cyon lotor), ruffed grouse (Bonasa umbellus), sandhill 
crane colts (Grus canadensis), turkeys (Meleagris gal-
lopavo), Canada geese (Branta canadensis), and vari-
ous songbirds. Adult or yearling white-tailed deer were 

Fig. 1  Mean activity (unit-less; 0–255) recorded by internal collar-mounted accelerometers averaged over 300-s intervals for observed inactive and 
active behavior states worn by captive black bears (n = 3), a bobcat (n = 1), and wolves (n = 3) with 95% confidence intervals, Upper Peninsula of 
Michigan, USA, 2011 and 2013



Page 6 of 10Petroelje et al. Anim Biotelemetry            (2020) 8:18 

the largest bodied prey, found only at wolf clusters, and 
represented 16% of kill sites.

We excluded NACT and PACT as covariates for activ-
ity data as these were highly correlated (|r| ≥ 0.8) with 
SACT and MACT of clusters, respectively. The top sup-
ported models for each species included activity data 
(Table 1) and each had one equally supported model for 
which we calculated model-averaged parameter estimates 
(Table 2). The top supported model for bobcats, coyotes, 
and wolves included MACT as a significant term. In 
addition, MACT​2 and LOCS were significant terms in 
the bobcat and wolf top models. Kill site probability was 
greater for ROAD in the top coyote model and HYDRO 

in the top wolf model. No model terms were significant 
for black bear. Classification rate was above 53% for all 
carnivore models, the greatest for coyote clusters at 68% 
(Table  3). Predictive power (sensitivity) was relatively 
low across species (28–44%) but greatest for wolves. Top 
models were generally better at classifying non-kill clus-
ters (56–72%; specificity) than kill clusters.

Discussion
We demonstrated substantial improvements in identifica-
tion of kill sites in 4 species of carnivores by considering 
behavior state (active or inactive). Activity was included 
in the top model for each species and identification of 

Table 1  Competing model rankings by Akaike Information Criterion for small sample sizes (AICc) for factors influencing 
prediction of carnivore kill clusters

‘GPS’ includes number of cluster locations, number of days cluster was visited, and time of day the cluster was initiated. ‘Activity’ includes the sum of cluster activity, 
mean cluster activity, and the quadratic term for mean cluster activity and sum of cluster activity. ‘Landscape’ includes distance to nearest edge, hydrologic feature, 
and road, and patch size at the geometric mean of the cluster. ‘Global’ model includes all previous covariate terms. Upper Peninsula of Michigan, USA, 2013–2015
a  Number of parameters in the model
b  Difference between AICc score

Species Model Ka AICc Δ AICcb AICc weight Cumulative 
weight

Black bear Activity 5 159.23 0 0.53 0.53

GPS 4 160.85 1.62 0.24 0.77

Landscape 5 162.87 3.65 0.09 0.86

GPS+Activity 8 162.96 3.73 0.08 0.94

Activity+Landscape 9 164.39 5.16 0.04 0.98

GPS+Landscape 8 166.71 7.48 0.01 0.99

Global 12 167.93 8.7 0.01 1

Bobcat GPS+Activity 8 297.24 0 0.62 0.62

Global 12 298.63 1.39 0.31 0.94

GPS 4 302.94 5.71 0.04 0.97

GPS+Landscape 8 303.46 6.22 0.03 1

Activity+Landscape 9 313.55 16.31 0 1

Landscape 5 316.35 19.12 0 1

Activity 5 316.42 19.18 0 1

Coyote Activity+Landscape 9 278.67 0 0.55 0.55

Activity 5 279.47 0.8 0.37 0.93

Global 12 283.81 5.14 0.04 0.97

GPS+Activity 8 284.44 5.77 0.03 1

Landscape 5 299.48 20.81 0 1

GPS 4 302.73 24.07 0 1

GPS+Landscape 8 303.71 25.04 0 1

Wolf GPS+Activity 8 305.2 0 0.66 0.66

Global 12 306.99 1.79 0.27 0.93

Activity 5 310.14 4.94 0.06 0.98

Activity+Landscape 9 312.77 7.57 0.01 1

GPS 4 316.93 11.73 0 1

GPS+Landscape 8 318.12 12.92 0 1

Landscape 5 319.19 13.99 0 1
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clusters as kill or non-kill sites was improved 5–38% 
across species compared to uninformed GPS-only clus-
ter models for prey of black bears, bobcats, coyotes, and 

wolves during summer. Activity data from on-board 
accelerometer sensors have been used to identify differ-
ences in mobile and immobile behaviors for species such 

Table 2  Model averaged parameter estimates and  95% confidence intervals for  prediction of  kill sites from  clusters 
of black bear, bobcats, coyotes, and wolves

Parameters include mean activity (MACT), sum of activity (SACT), number of global positioning system locations (LOCS), number of days spent at the cluster 
(DAYS), time of day the cluster was initiated (TOD), land cover patch size the cluster was within (PATCH), distance to nearest hydrologic feature from cluster center 
(HYDRO), distance to nearest land cover edge from cluster center (EDGE), and distance to nearest road from cluster center (ROAD). Upper Peninsula of Michigan, USA, 
2013–2015

Species Model term Estimate 2.5% 97.5% z-value P

Black Bear Intercept − 4.01 − 4.90 − 3.12 8.84 0.00

MACT​ 0.49 − 0.20 1.18 1.39 0.16

MACT​2 − 0.03 − 0.21 0.14 0.36 0.72

SACT​ 0.13 − 0.41 0.68 0.48 0.64

SACT​2 0.16 − 0.42 0.74 0.53 0.60

LOCS 0.30 − 0.19 0.78 1.20 0.23

DAYS − 0.52 − 1.75 0.71 0.83 0.41

TOD(N) − 0.36 − 1.52 0.80 0.61 0.54

Bobcat Intercept − 1.20 − 1.84 − 0.55 3.64 0.00

LOCS 0.76 0.36 1.15 3.75 0.00

DAYS − 0.35 − 1.00 0.30 1.05 0.29

TOD(N) 0.50 − 0.21 1.22 1.38 0.17

MACT​ 1.22 0.48 1.96 3.22 0.00

MACT​2 − 0.87 − 1.60 − 0.15 2.36 0.02

SACT​ 0.17 − 0.16 0.49 1.02 0.31

SACT​2 − 0.08 − 0.44 0.27 0.46 0.64

PATCH 0.26 − 0.15 0.68 1.26 0.21

HYDRO 0.22 − 0.14 0.57 1.19 0.24

EDGE 0.20 − 0.15 0.55 1.10 0.27

SECRD − 0.19 − 0.52 0.15 1.09 0.27

Coyote Intercept − 2.22 − 2.79 − 1.65 7.64 0.00

MACT​ 0.97 0.37 1.57 3.17 0.00

MACT​2 − 0.16 − 0.36 0.05 1.51 0.13

SACT​ 0.13 − 0.30 0.56 0.58 0.56

SACT​2 − 0.39 − 0.85 0.07 1.65 0.10

PATCH − 0.38 − 1.56 0.80 0.64 0.52

HYDRO 0.15 − 0.24 0.53 0.75 0.46

EDGE − 0.36 − 1.03 0.31 1.05 0.29

ROAD 0.68 0.11 1.25 2.34 0.02

Wolf Intercept − 2.16 − 2.72 − 1.60 7.51 0.00

LOCS 0.56 0.21 0.91 3.15 0.00

DAYS − 0.46 − 1.04 0.13 1.53 0.13

TOD(N) 0.16 − 0.59 0.91 0.41 0.68

MACT​ 1.01 0.47 1.55 3.69 0.00

MACT​2 − 0.15 − 0.30 − 0.01 2.07 0.04

SACT​ − 0.25 − 0.57 0.07 1.55 0.12

SACT​2 − 0.02 − 0.38 0.34 0.09 0.93

PATCH 0.09 − 0.50 0.67 0.29 0.77

HYDRO 0.34 0.03 0.65 2.14 0.03

EDGE − 0.26 − 0.84 0.31 0.90 0.37

ROAD 0.22 − 0.20 0.64 1.02 0.31
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as puma [30] and improved kill site detection by 10% 
from GPS data alone [32]. The accelerometers we used to 
collect activity data are commercially available alone or 
in combination with tracking devices, and are consistent 
in collection and inexpensive.

Kill sites were best identified for black bear using activ-
ity and GPS covariates. As black bears often forage and 
sleep in the same locations [13], identifying clusters with 
greater proportions of active locations can help differ-
entiate sleeping sites from mixed-use sites and reduce 
the need for field investigation of up to 64% of clus-
ters. Though activity was included in the top model for 
bobcats and improved model performance over GPS 
covariates alone, the predictive power (34%) and over-
all classification rate (60%) was similar to Svoboda et al. 
[11] where only GPS-derived covariates were in their 
top model. This could be a result of a large percentage 
of bobcat clusters being classified as unknown (> 70.0%; 
see Additional file 3), where we did not find evidence of 
a kill site or resting site and may have misclassified pre-
dation events as non-kill sites which confounded results. 
Coyote classification of kill sites (28%) was less than for 
other species; which may be due to their omnivorous diet 
where foraging on fruits, insects, or small mammals [47] 
could result in undetected predation events by leaving no 
remains or their short duration. In contrast, the classifi-
cation of non-kill sites (72%) for coyotes was the greatest 
for any species due to high levels of overlap between kill 
and non-kill cluster covariates which may be better dif-
ferentiated with more refined behavioral classifications. 
The greater identification of wolf kill sites (44%) may be 
attributed to wolves being the only carnivore that killed 
large-bodied prey. Killing larger prey increases energy 
expenditure and handling time, making detection of kill 
sites easier as observed with other carnivores taking large 
prey [30, 32].

We emphasized maximizing the overall classification of 
clusters for accuracy, sensitivity, and specificity. Predic-
tive power can be improved by changing the cut-off value 
but at the cost of increasing the number of false-positives 

(i.e., incorrect prediction of kill sites), which would 
increase the number of incorrect sites investigated by 
researchers [11]. Although including activity data offers 
improved detection of predations over GPS and land-
scape covariates alone, further refinement is necessary 
as our predictive power was < 45% for all species, which 
points to the challenges of identifying kill sites when prey 
are small.

Though we distinguished only active from inactive 
behaviors, using visual observations of collared animals 
can improve our ability to detect differences in activity 
values for similar behaviors (e.g., capture of different prey 
[48]). Because individuals may perform several behaviors 
with a similar accelerometer response, applying and veri-
fying accelerometer values to varying behavioral charac-
teristics is important to improve interpretation of activity. 
The sampling interval we used for the accelerometer to 
define activity could have influenced our ability to accu-
rately estimate behavior [30]; we recognize that activity 
data averaged across a 300-s sampling interval may be 
less informative when bursts of activity and periods of 
inactivity occur within the sampling interval. Examining 
activity through validation of several sampling intervals 
for analyses may improve the categorical assignment of 
behaviors identified beyond inactive and active states. In 
addition, as model accuracy and predictive ability can be 
further reduced for clusters where both kill sites and rest-
ing sites occur, we recommend consideration of multino-
mial response models that incorporate activity to further 
refine behavior at clusters. Alternatively, using activity 
thresholds to remove all inactive GPS locations before 
creating clusters may reduce problems with confounding 
influence of inactive locations. However, if inactive han-
dling time is important to reach the defined cluster inter-
val (i.e., number of locations) or the location interval is 
too great, some predations may be missed.

Table 3  Assessment of  top model performance (selected by  the  lowest Akaike Information Criterion score) 
by  classification rate (proportion of  correctly classified kill and  non-kill sites), sensitivity (proportion of  true kill sites 
correctly classified), and specificity (proportion of true non-kill sites correctly classified)

The cut-off value was determined by the minimum distance between the three metrics for model assessment to maximize correct classification of kill and non-kill 
sites. Standard error (SE) for each metric is also displayed. Upper Peninsula of Michigan, USA, 2013–2015

Species Cut-off Classification rate SE Sensitivity SE Specificity SE

Black bear 0.50 0.64 0.01 0.36 0.12 0.64 0.00

Bobcat 0.54 0.60 0.02 0.34 0.06 0.66 0.01

Coyote 0.52 0.68 0.01 0.28 0.07 0.72 0.01

Wolf 0.52 0.54 0.01 0.44 0.07 0.56 0.01
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Conclusions
Activity data can improve our ability to detect preda-
tion events and our understanding of predation ecology 
through measures of kill rates and identifying prey com-
position in carnivore diets. The model-averaged esti-
mates presented here can be used to decrease the effort 
in searching for and identifying kill and non-kill clusters 
by 54–68% as compared to naive investigations. How-
ever, we agree with Palacios and Mech [14] that further 
improvements are needed for detecting predation events 
of small- and medium-size prey since correct assignment 
of kill sites was only 28–44%. We recommend future 
studies consider using finer scale accelerometer data, 
with a measurable unit of acceleration, to separate behav-
iors into individual behavior groups to examine carnivore 
predation ecology and further refine investigation of kill 
rates. In addition, refining behavior beyond active and 
inactive may allow for development of hypotheses that 
examine carnivore use of the landscape in a behaviorally 
based view of kill rates that can examine the influence of 
prey size and handling time.
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org/10.1186/s4031​7-020-00206​-y.

Additional file 1. Pairwise comparisons using the Tukey–Kramer method 
for unequal sample sizes of accelerometer values (unit-less, 0–255) 
categorized by observed behavior groups of collared captive carnivores 
including two American black bears (Ursus americanus), a bobcat (Lynx 
rufus), and two wolves (Canis spp.). Included are the difference in mean 
accelerometer value, lower and upper 95% confidence intervals (CI) and 
adjusted P values, Upper Peninsula of Michigan, USA, 2011 and 2013.

Additional file 2. Mean activity levels ( x ) for summed X- and Y-axis 
accelerometer values (unit-less; 0–255) collected on collars worn by cap-
tive carnivores including two American black bears (Ursus americanus), a 
bobcat (Lynx rufus), and two wolves (Canis spp.) for 5 observed behavior 
groups with 95% confidence intervals (CI), Upper Peninsula of Michigan, 
USA, 2011 and 2013.

Additional file 3. Designation of carnivore GPS clusters investigated by 
two personnel with (n = 1,143) or without (n = 1,448) a detection dog. 
Clusters were identified as ≥ 4 GPS locations occurring ≤ 24 hours apart 
and within a 50 m radius. Included is the percentage of bed sites, preda-
tion sites, scavenging sites, foraging sites (including evidence for vegeta-
tion or fruit consumption), and unknown sites for American black bears 
(Ursus americanus; n = 936), bobcats (Lynx rufus; n = 405), coyotes (Canis 
latrans; n = 636) and wolves (C. spp.; n = 614) clusters. Upper Peninsula of 
Michigan, USA, 2013–2015.
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