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Abstract 

Background: Reaching optimal vaccination rates is an essential public health strategy to control the coronavirus dis‑
ease 2019 (COVID‑19) pandemic. This study aimed to simulate the optimal vaccination strategy to control the disease 
by developing an age‑specific model based on the current transmission patterns of COVID‑19 in Wuhan City, China.

Methods: We collected two indicators of COVID‑19, including illness onset data and age of confirmed case in 
Wuhan City, from December 2, 2019, to March 16, 2020. The reported cases were divided into four age groups: group 
1, ≤ 14 years old; group 2, 15 to 44 years old; group 3, 44 to 64 years old; and group 4, ≥ 65 years old. An age‑specific 
susceptible‑exposed‑symptomatic‑asymptomatic‑recovered/removed model was developed to estimate the 
transmissibility and simulate the optimal vaccination strategy. The effective reproduction number (Reff) was used to 
estimate the transmission interaction in different age groups.

Results: A total of 47 722 new cases were reported in Wuhan City from December 2, 2019, to March 16, 2020. Before 
the travel ban of Wuhan City, the highest transmissibility was observed among age group 2 (Reff = 4.28), followed by 
group 2 to 3 (Reff = 2.61), and group 2 to 4 (Reff = 1.69). China should vaccinate at least 85% of the total population 
to interrupt transmission. The priority for controlling transmission should be to vaccinate 5% to 8% of individuals in 
age group 2 per day (ultimately vaccinated 90% of age group 2), followed by 10% of age group 3 per day (ultimately 
vaccinated 90% age group 3). However, the optimal vaccination strategy for reducing the disease severity identified 
individuals ≥ 65 years old as a priority group, followed by those 45–64 years old.
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Background
Currently, the coronavirus disease 2019 (COVID-19) 
pandemic has become a heavy burden worldwide. As 
of November 15, 2021, 253  163  330 confirmed cases 
have been reported by the World Health Organization 
[1]. Several effective non-pharmaceutical interventions 
(NPIs) such as travel bans, social distancing, case isola-
tion, and mask-wearing have been applied in China to 
mitigate the epidemic [2]. However, the implementa-
tion of NPIs has varied considerably across countries 

[3]. Therefore, vaccine and antiviral therapies are essen-
tial to prevent the spread of COVID-19 and control 
the epidemic [4]. Recently, studies have shown that 
the vaccine efficacy (VE) ranged from 90 to 94% (with 
two doses of vaccination) for controlling infection of 
the ancestral virus [5–7], and even 67% to 88% (with 
two doses) for the Delta variant [8]. Furthermore, the 
vaccine’s effectiveness for controlling disease severity 
and death was higher than that for reducing infection, 
especially with the great heterogeneity in different age 

Conclusions: Approximately 85% of the total population (nearly 1.2 billion people) should be vaccinated to build an 
immune barrier in China to safely consider removing border restrictions. Based on these results, we concluded that 
90% of adults aged 15–64 years should first be vaccinated to prevent transmission in China.
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groups [9]. Therefore, optimal vaccination protocols for 
different age groups should be simulated to help guide 
an appropriate vaccine strategy.

Most current studies used dynamic models of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
such as the susceptible-exposed-infectious-removed 
(SEIR) model to clarify early transmission, and the 
multi-host model to estimate transmissibility [10, 11]. 
Moreover, our previous study adopted an age-specific 
susceptible-exposed-symptomatic-asymptomatic-recov-
ered/removed (SEIAR) model to estimate the relative 
transmissibility in different age groups, but did not simu-
late the vaccine effects [12]. Furthermore, the other study 
adopted a SEIR model to access the vaccine effects in dif-
ferent populations suggested that a VE ≥ 50% would be 
sufficient to mitigate the pandemic [13]. Some modeling 
studies recommended targeting older age groups as an 
optimal strategy for controlling death [14, 15], which was 
suitable for reducing the disease severity and death rates 
in some Western countries. Furthermore, some studies 
have simulated vaccine effectiveness based on the con-
tact matrix and assumption of basic reproduction num-
ber (R0) [13, 15, 16], but did not analyze the transmission 
pattern in different age groups through first-hand data. In 

this study, we employed an age-specific SEIAR model to 
explore the transmission features, compare the transmis-
sibility and assess the vaccine effectiveness in different 
age groups.

Methods
Data collection and study design
Data including age and date of onset of COVID-19 in 
Wuhan City from December 2, 2019, to March 16, 2020, 
were collected from a previous study [17] (Additional 
file 1: Table S1). Our study included four phases includ-
ing model development, parameter estimation, transmis-
sion assessment, and vaccination simulation (Fig. 1). The 
subscripts i and j (i ≠ j) are referred to as age groups 1 to 
4, respectively. Age group 1 was defined as ≤ 14 years old; 
group 2, 15–44 years old; group 3, 45–64 years old; and 
group 4, ≥ 65 years old.

Model development
We adopted an age-specific SEIAR model to estimate the 
transmissibility (Model 1), and two vaccinated age-spe-
cific SEIAR models (Model 2 and Model 3) to simulate 
the vaccination effects.

Fig. 1 The flowchart of the study design
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According to our previous study, we developed a multi-
host model and age-specific model and further applied the 
age-specific SEIAR model to estimate the disease trans-
mission [11, 12]. In the model, the total population (N) 
was divided into five categories, susceptible (S), exposed 
(E), symptomatic (I), asymptomatic (A), and recovered/
removed (R). Table 1 presents the definitions in detail.

The model conditions or assumptions were as follows:

(a) Susceptible individuals infected by contact with 
symptomatic or asymptomatic patients. SARS-
CoV-2 can be transmitted within a given age group 
i with a relative transmission rate (βii) and between 

age groups i and j with a relative transmission rate 
(βij).

(b) The proportion of asymptomatic infections was 
defined as p. The exposed individuals would 
become symptomatic and asymptomatic after an 
incubation period (1/ω) and a latent period (1/ω’). 
In the model, the incubation period was assumed to 
be equal to the latent period.

(c) The transmissibility of the virus from asymptomatic 
and symptomatic patients differs by factor κ.

(d) The symptomatic and asymptomatic patients are 
converted to recovered/removed persons after an 
infectious period of 1/γ and 1/γ’, respectively.

A flowchart of Model 1 is presented in Fig. 2. The equa-
tions of the model are as follows:

i  = j

dSi

dt
= −βiiSi(Ii + κAi)− βjiSi

(

Ij + κAj

)

− δiSi

dEi

dt
= βii(V 1i + (1− �)V2i + Si)(Ii + κAi)

+ βji(V 1i + (1− �)V2i + Si)
(

Ij + κAj

)

− (1− p)ωEi − pω
′

Ei

Table 1 Variables in the age‑specific model

Variables Description Unit

S Susceptible individuals Individuals

E Exposed individuals Individuals

I Infectious individuals Individuals

A Asymptomatic individuals Individuals

R Recovered/Removed individuals Individuals

V1 Vaccinated individuals without immunity Individuals

V2 Vaccinated individuals with immunity Individuals

N Total number of population Individuals

Fig. 2 The flowchart of the age‑specific SEIAR model (Model 1)
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The left side of the differential equation shows the 
instantaneous change rates of S, E, I, A, and R, at time t. 
The subscripts i and j (i ≠ j) represent age groups 1–4.

In the age-specific SEIAR model, two compartments 
were added, which were defined as vaccinated individuals 
without immunity (V1) and vaccinated individuals with 
immunity (V2). We built two models (Model 2 and Model 
3) based on the following assumptions:

dIi

dt
= (1− p)ωEi − γ Ii − fiIi

dAi

dt
= pω

′

Ei − γ
′

Ai

dRi

dt
= γ I i + γ

′

Ai

dV1i

dt
= δiSi − βiiV1i(Ii + κAi)− βjiV1i

(

Ij + κAj

)

− ϕV1i

dV2i

dt
= ϕV1i − (1− �)β iiV2i(Ii + κAi)

− (1− �)β jiV2i

(

Ij + κAj

)

dSj

dt
= −βjjSj

(

Ij + κAj

)

− βjiSj(Ii + κAi)− δSj

dEj

dt
=βjj(V 1j + (1− �)V2j + S

j
)
(

Ij + κAj

)

+ βji(V 1j

+ (1− �)V2j + S
j
)(Ii + κAi)− (1− p)ωEj − pω

′

Ej

dIj

dt
= (1− p)ωEj − γ Ij − fiIj

dAj

dt
= pω

′

Ej − γ
′

Aj

dRj

dt
= γ I j + γ

′

Aj

dV1j

dt
= δjSj − βjjV1j

(

Ij + κAj

)

− βijV1j(Ii + κAi)− ϕV1j

dV2j

dt
=ϕV1j − (1− �)β jjV2j

(

Ij + κAj

)

− (1− �)βijV 2j
(Ii + κAi)

N = Si + Ei + Ii + Ai + Ri + V1i + V2i

A flowchart of Model 2 is shown in Fig.  3. The fol-
lowing assumption should be added to the age-specific 
SEIAR model:

(a) Assuming that only susceptible individuals were 
vaccinated, δ is considered the daily vaccination 
rate.

(b) Vaccinated individuals without immunity, infected 
by contact with symptomatic or asymptomatic 
cases; the relative transmission rate is also βii within 
the age group and βij between age groups.

(c) Vaccinated individuals without immunity will 
become immune after a period. Protective antibod-
ies will occur within 1/φ days, which is described as 
the period in which vaccinated individuals without 
immunity will become immune.

(d) The COVID-19 vaccine has a VE defined as λ. Vac-
cinated individuals with immunity are infected 
by contact with symptomatic or asymptomatic 
patients. The infection rate is defined as 1–λ.

The equations used in the model (Model 2) are in Addi-
tional file 2: Text S1.

We assumed that the VE of COVID-19 was similar to 
what was previously reported for the H1N1 pandemic 
[18] (Model 3), which quantified the different protective 
effects as follows:  VES refers to VE against susceptibility, 
 VEI as VE against infectiousness, and  VEP as VE against 
pathogenicity or symptomatic illness has given infection. 
In addition, according to the theory of herd immunity 
[19], we have considered the coefficient of herd immunity 
(θ), defined as the proportion of herd immunity, which 
was calculated as follows:

Here, we added three parameters into the model, 
including x referring to a decreased proportion of VE 
against susceptibility, y referring to as a decreasing pro-
portion of VE against infectivity, and z referring to as a 
decreasing proportion of VE against pathogenicity. The 
equations used for calculation are as follows:

A flowchart of Model 3 is presented in Fig. 4. The fol-
lowing assumption should be added to the age-specific 
SEIAR model:

θ = 1−
Total number of new cases

N

x = 1− VES

y = 1− VEI

z = 1− VEp
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(a) Once herd immunity has been attained, suscepti-
ble individuals are infected following contact with 
symptomatic or asymptomatic patients. The pro-
portion of herd immunity is θ.

(b) Vaccinated individuals without immunity (V1) 
would be infected by contact with two types of 
cases, namely, non-vaccinated symptomatic/
asymptomatic cases and vaccinated symptomatic/
asymptomatic cases. Meanwhile, the infectivity of I2 
and A2 would decrease by a proportion of y.

(c) Vaccinated individuals with immunity (V2) would 
be infected following contact with two types of 
cases, namely, non-vaccinated symptomatic/
asymptomatic cases and vaccinated symptomatic/
asymptomatic cases. The susceptibility of V2 would 
be decreased by a proportion of x and the patho-
genicity of SARS-CoV-2 would decrease by a pro-
portion of z.

The equations used in the model (Model 3) are Addi-
tional file 2: Text S1.

Vaccination simulation scenarios
In this study, we simulated the vaccine’s effects based on 
the stage before travel ban in Wuhan City (stage 1). We 
developed two scenarios (referred to as scenario I and 
scenario II) to assess the vaccine’s effects (Fig. 5). There-
after, we built 19 sub-scenarios (defined as scenes) based 
on the above two scenarios. The conditions of the scenar-
ios were as follows:

(a) Scenario I: According to Model 2, we assumed that 
susceptible people could be vaccinated at a rate of 
δ and achieve immunity after 1/φ days. Previously 
immune individuals could be infected at a rate of 
1−λ. We assumed the VE of COVID-19 is similar 
to that of measles and influenza vaccines and simu-
lates effects by changing the parameters δ, φ, and λ. 
The conditions of the 11 scenes (I to XI) are shown 
in Additional file 3: Table S2.

(b) Scenario II: Model 3 also assumes that susceptible 
people could be vaccinated at a rate of δ and achieve 
immunity after 1/φ days. Furthermore, we assumed 

Fig. 3 The flowchart of vaccinated age‑specific SEIAR model (Model 2). i and j represent age ≤ 14, 15‒44, 45‒64, and ≥ 65, respectively (i ≠ j)
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that if immune people become ill, infectivity could 
be reduced after vaccination; the remaining ratio 
after reduction is y. Susceptibility could be reduced 
after vaccination if immune people contacted dis-
ease cases, and the remaining ratio after reduction 
was x. If contact occurred between immune people 
and cases, both parameters could be reduced. The 
future vaccine has similar effects as influenza A 
(H1N1) and simulated vaccine effects by changing 
the parameters δ, x, y, and z. The total population 
was divided into two groups, vaccinated and non-
vaccinated. The conditions of the eight scenes (XII 
to XIX) are shown in Additional file 3: Table S2.

Additionally, we assumed that the severity of disease 
would be decreased after vaccination, and the coefficient 

was the same as the parameter z = 0.33 (decreasing the 
proportion of VE) in scenes XIV–XVII of scenario II.

Parameter estimation
In this study, several parameters were adopted to develop 
the model, and the description, value, and method were 
listed in Table  2. The parameter κ refers to the relative 
transmissibility rate of asymptomatic to symptomatic 
individuals. In the model, κ is set to 0.65. The most 
important reason is that a study reported that 4.11% of 
individuals would become infected after close contact 
with asymptomatic patients, versus 6.3% for individuals 
infected after close contact with symptomatic patients 
[20]. In addition, it has been reported that the trans-
missibility of symptomatic patients is 3.9 times that of 
asymptomatic patients, and an asymptomatic individual 

Fig. 4 The flowchart of vaccinated age‑specific SEIAR model (Model 3, considering the vaccine efficacy of susceptibility and infectivity). i and j 
represent age ≤ 14, 15‒44, 45‒64, and ≥ 65, respectively (i ≠ j)
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may contribute to 11 infectious cases [21, 22]. In their 
dynamic model, the parameter κ was set to 1.0 [12].

Several parameters are summarized in Fig. 6. The pro-
portion of asymptomatic cases in the Diamond Princess 
cruise ship was 17.9% (95% confidence interval [CI]: 
15.5–20.2%) and a study estimated the asymptomatic 
ratio as 30.8% (95% CI: 7.7–53.8%), by binomial distribu-
tion [23, 24]. Meanwhile, the asymptomatic proportion 
was reportedly 20.75% in Ningbo City, while another 
study indicated that it was much greater (78%). There-
fore, we set the asymptomatic proportion (p) to 0.36 in 
the model (Fig. 6A).

According to published research, the incubation period 
during the early epidemic was 4 days (interquartile range: 
2–7) in Wuhan City [25] and 5.1 days (95% CI: 4.5–5.8), 
based on publicly reported data [26]. Still, there is a wide 
range of incubation periods reported including incuba-
tion period in Ningbo City (2–18) and 95% CI in Wuhan 
City (2–14) [20, 27]. In the model, the incubation period 
was set to 5 days (ω = ω’ = 0.2).

In this study, it was assumed that the diagnosed cases 
would be immediately removed from the population. 
In the epidemiological characteristics of COVID-19 
in Hong Kong, the period from symptom onset to con-
firmed diagnosis was 6.39 days (range: 1–8.83) [28]. The 

right truncation data indicated that the time from ill-
ness onset to hospitalization ranged from 2.7 to 8  days 
[27]. Meanwhile, other studies reported various findings 
regarding the time from symptom onset to hospitaliza-
tion was, such as 7 days, 4–6 days, and 4.1–7.5 days [29–
31]. In this model (Fig. 6C), the infectious period was set 
to 5 days (γ = 0.2). However, another study indicated that 
the median communicable period of 24 asymptomatic 
cases was 9.5 (range: 1–21) days [32]. We set γ’ to 0.1 in 
the current model.

In Wuhan City, the total population was set to 11 
080 996 (≤ 14 years: 1 256 552; 15–44 years: 5 210 885; 
45–64 years: 3 374 388; ≥ 65 years: 1 239 171) for mod-
elling purposes; according to the data analyses, the 
case fatality rate (f) was set to 0.1681% for age group 1, 
0.5490% for age group 2, 3.4168% for age group 3, and 
14.8424% for age group 4.

In the model, the vaccination rate (δ) was set to 
0.00001, 0.0001, 0.001, 0.01 0.02, 0.03, 0.04, 0.05, 0.06, 
0.07, 0.08, 0.09, and 0.1 based on the assumption of vac-
cination priority. In addition, we assumed that the effects 
of the COVID-19 vaccine would be similar to those of 
influenza A, influenza B, or measles vaccine in the sce-
nario I. Most studies indicated that the time of devel-
opment of influenza immunity ranged between 7 and 

Fig. 5 The process of vaccination in Model 2 and Model 3. Parameter δ, λ, β, φ, x and y represent vaccination rate, vaccine efficacy, transmission 
rate, immune relative rate, decreasing proportion of vaccine efficacy against susceptibility, and decreasing proportion of vaccine efficacy against 
infectivity, respectively
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14  days [33–35]. Meanwhile, the highest rate of immu-
noglobulin G positivity in measles occurred in weeks 4 
and 5 post-vaccination [36, 37]. In the model, immunity 
was set to 30  days after measles vaccination. Therefore, 
according to the effect of influenza A, influenza B, and 
measles, we set the immune relative rate (φ) to 1/7, 1/14, 
and 1/30, respectively. In addition, we simulated a scene 
to explore the conditions in which φ was equal to 1/5, 
1/15, 1/20, 1/25, and 1/30, respectively. Several studies 
have reported that the VE of influenza ranged from 19 to 
91%, with an especially wide range for influenza A (Fig. 6-
D) [38–42]. In contrast, the VE of measles was reported 
to range from 45 to 99%, and the median was approxi-
mately 90% (Fig. 6-E) [43–50]. In this study, VE (λ) was 
set to 0.3, 0.7, and 0.9. Meanwhile, a scene based on dif-
ferent VE was simulated in the model, set λ to 0, 0.1, 0.2, 
…, 0.9, and 1. Thereafter, the parameters of scenario II 
were collected from a study that indicated  VES = 0.4, 
 VEI = 0.4, and  VEP = 0.67. In the model, x = 0.6, y = 0.6, 
and z = 0.33. Meanwhile, the immune relative rate (φ) 
was set to 0.1 in scenario II, according to the vaccine 
effect of H1N1.

Most studies have reported that the mean value of 
VE was more than 90%  (with two-dose administration) 
for controlling ancestral virus (Fig.  6-F) [5–7, 9, 51], 
68%–95% (with two-dose administration) for controlling 
infection of the Alpha variant, and more than 62% (with 
two-dose administration) for controlling infection of the 
Delta variant (Fig. 6G) [8].

Estimated transmission
In this study, we adopted two indicators to estimate the 
transmissibility and risk of infection, including the effec-
tive reproduction number (Reff, the mean number of 
secondary cases an infected person can cause in a popu-
lation after implementation of intervention measures), 
and the probability of infection from a single contact 
(q, the possibility of the susceptible person becoming 
infected after effective contact).

The equation of Reff is as follows:

The equation of q is as follows:

In the above equation, α is defined as the contact fre-
quency per day, which was calculated from a previously 
published paper [52].

To compare the transmission in different areas, we cal-
culated the median of the normalized Reff, in four stages. 
The relative transmissibility in the different age groups 
was quantified by an equation, and the min–max normal-
ized (the lower and upper bounds of relative transmissi-
bility) version was used:

Reff = βN (
1− p

γ
+

κp

γ
′
)

βN = 1− (1− q)α

Normalized Reff =
x −min(x)

max(x)−min(x)

Table 2 Description and source of parameters in the age‑specific model

– Not applicable

Parameter Description Unit Value Range Method

βii 
* Transmission relative rate among age group i Individuals‑1·days‑1 –  ≥ 0 Curve fitting

βij 
* Transmission relative rate from age group i to j Individuals‑1·days‑1 –  ≥ 0 Curve fitting

βji 
* Transmission relative rate from age group j to i Individuals‑1·days‑1 –  ≥ 0 Curve fitting

βjj 
* Transmission relative rate among age group i Individuals‑1·days‑1 –  ≥ 0 Curve fitting

κ Relative transmissibility rate of asymptomatic to symptomatic individuals 1 0.65 0–1 [12, 21, 22]

p Proportion of the asymptomatic 1 0.36 0.016–0.78 [23, 24]

ω Incubation relative rate Days‑1 0.2 0.05556–0.5 [20, 25–27]

ω’ Latent relative rate Days‑1 0.2 0.05556–0.5 [20, 25–27]

γ Recovered/Removed rate of the infectious Days‑1 0.2 0.1111–0.3333 [27–31]

γ’ Recovered/Removed rate of the asymptomatic Days‑1 0.1 0.04762–1 [32]

fi Fatality of the disease of age group i 1 – 0–1 Analysis of data

δ Vaccination rate Days‑1 – 0–1 Assumption

φ Immune relative rate 1 – 0–1 [33–37]

λ Vaccine efficacy 1 – 0–1 [38–50]

θ Proportion of herd immunity 1 0 0–1 Assumption

x Decreasing proportion of vaccine efficacy against susceptibility 1 0.6 0–1 [18]

y Decreasing proportion of vaccine efficacy against infectivity 1 0.6 0–1 [18]

z Decreasing proportion of vaccine efficacy against pathogenicity 1 0.33 0–1 [18]
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x is the value of Reff-ij (subscript i and j (i ≠ j) equals 1 
to 4, respectively). Thereafter, we further compared the 
normalized results of Wuhan City, Hunan Province, and 
Jilin Province to explain the heterogeneity of age-related 
transmission in different areas. The results of the above 
provinces were from a previously published paper [12]; 
we re-calculated Reff according to the parameter β results.

To explore transmission interactions (infected and 
infected by others) in the four age groups, we adopted 
two indicators to estimate the infectivity and susceptibil-
ity of each group in four stages. RI indicated infectivity, 

and Rs was the susceptibility in a specific age group, 
which was calculated as follows:

RI−i =

n
∑

j=1

Reff−ij

RS−i =

n
∑

j=1

Reff−ji

Fig. 6 Summary of reported parameters of model about natural history and vaccination. A Proportion of asymptomatic (p). B Incubation period (ω) 
and latent period (ω’). C Infectious period of symptomatic (γ). D VE of influenza. E VE of measles. F VE after two doses vaccinating for the ancestral 
virus of COVID‑19. G VE after two doses vaccinating for new variants of COVID‑19
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In the above equation, n is equal to four. For example, 
the RI of age group 1 is the sum of Reff-11, Reff-12, Reff-13, 
and Reff-14, and the RS of age group 1 is the sum of Reff-11, 
Reff-21, Reff-31, and Reff-41.

Vaccine effectiveness
We evaluated the vaccination effects for controlling 
transmission and disease severity.

The transmission was estimated using six indicators, 
including the total number of new cases (TN), total 
attack rate (TAR ), and the number of new cases at peak 
(NP), and two positive indicators, duration of outbreak 
(DO) and peak time (PT). The equation is as follows:

In the above equation, N, t0, t1, and tp refer to the num-
ber of total population, illness onset date of the first case, 
illness onset date of the last case, and the peak of the 
infection curve, respectively.

The disease severity was estimated based on the total 
number of deaths (ND). The equation is as follows:

Because of the competitive relationship between vac-
cination rate (δ) and the relative transmission relative 
(β), we cannot directly consider vaccination rate as vac-
cination coverage. In the model, we assumed that the 
start time of vaccination was ts, and the end time (the 
vaccination time of the last susceptible person) was te. 
We calculated the vaccination coverage for the total 
population and each age group. The vaccination cov-
erage for each day was calculated from the differential 
equation of the vaccination model. Model 2 was calcu-
lated as follows:

Model 3 was calculated as follows:

TN = Total number of new cases

TAR =
TN

N
× 100%

DO = t0 − t1

PT = tp

NP = Number of new cases at peak

ND = Total number of death

Vaccination coverage(n) =
δi

βii(Ii + κAi)+ βji
(

Ij + κAj

)

+ δi

n refers to vaccination coverage of nth day. Thereafter, 
the total vaccination coverage was calculated by integrat-
ing vaccination coverage of the vaccination period (from 
ts to te). The equation is as follows:

In the equation, ts and te refer to the start time of the 
vaccination period and the end time (the vaccination 
time of the last susceptible person), respectively.

Simulation and statistical analysis
According to previously published studies [53–55], we 
assumed that heterogeneity of transmissibility existed 
as an ascending trend and then a descending trend. 
The data were divided into several segments (defined as 
stages); for example, Wuhan City was divided into four 
stages in the disease transmission period (Fig.  7). The 
period of each stage was as follows:

(a) Stage 1 refers to the illness onset date from Decem-
ber 2, 2019, to January 23, 2020.

(b) Stage 2 refers to the illness onset date from January 
24 to February 2, 2020.

(c) Stage 3 refers to the illness onset date from Febru-
ary 3 to February 18, 2020.

(d) Stage 4 refers to the illness onset date from Febru-
ary 19, 2020, to March 16, 2020.

Vaccination coverage(n) =δi/(β ii((I1i + κA1i)+ y(I
2i + κA2i))

+ βji((I1j + κA1j)+ y(I
2j + κA2j))

+ βiiθi(x(I1i + κA1i)+ z(I2i + κA2i))

+β jiθi(x(I1j + κA1j)+ z(I2j + κA2j))+ δi)

Total vaccination coverage =

∫ te

ts

vaccination coverage(t)dt

Fig. 7 Epidemic curve of four age‑group and key interventions in 
Wuhan City. A Epidemic curve. B Intervention measures
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Curve fitting and model simulation adopted the least 
root-mean-square deviations. The simulation method 
used the Runge–Kutta method of order four with a 
tolerance set to 0.001. The differential equations were 
solved in steps of 0.02  days. The goodness of fit was 
judged by the coefficient of determination (R2).

Results
Epidemiological characteristics and model effectiveness
From December 2, 2019, to March 16, 2020, a total of 
47 722 new cases (cumulative incidence: 431 cases per 
10 000 persons) were reported in Wuhan City (Fig. 7). 
In those ≤ 14  years old, there were 595 reported cases 
(cumulative incidence: 47 cases per 10 000 persons); 12 
933 cases were reported in 15–44-year-olds (cumula-
tive incidence: 248 cases per 10  000 persons), 20,106 
cases reported among 45–64-year-olds (cumulative 
incidence: 596 cases per 10  000 persons) and 14,088 
cases reported among those ≥ 65 years old (cumulative 
incidence: 1 134 cases per 10 000 persons).

The date of the first case onset was on December 2, 
2019. The National Health Commission of China set up 
a response group on January 1, 2020. Thereafter, several 
intervention measures were adopted by Wuhan City, 
such as travel ban (January 23, 2020), close-contact 
management (February 3, 2020), mobile cabin hospitals 
(February 5, 2020), and contactless delivery (February 
17, 2020).

In Wuhan City, the age-specific model (Fig. 8) fits the 
total reported data for the four age groups most effec-
tively (≤ 14  years: R2 = 0.823, P < 0.0001; 15–44  years: 
R2 = 0.944, P < 0.0001; 45–64  years: R2 = 0.948, 
P < 0.0001; ≥ 65 years: R2 = 0.940, P < 0.0001). However, 
the model fits the reported data in stage 2 and is not 
significant in stage 3 in those ≤ 14 years of age.

Transmissibility and risk of infection
According to the simulated results (Fig. 9), in stage 1, the 
highest transmissibility occurred among the members 
of age group 2 (β22 = 1.50 ×  10-7, Reff-22 = 4.28), followed 
by age group 2 to 3 (β23 = 1.57 ×  10-7, Reff-23 = 2.61), age 
group 2 to 4 (β24 = 3.26 ×  10-7, Reff-24 = 1.69), among the 
members of group 3 (β33 = 8.43 ×  10-8, Reff-33 = 1.44), and 
age group 4 to 3 (β43 = 8.39 ×  10-8, Reff-43 = 1.44). In stage 
2, the highest transmissibility occurred from age group 
2 to 4 (β24 = 2.12 ×  10-7, Reff-24 = 1.10), while the other 
group combinations had a Reff value lower than 1. There-
after, all the values of Reff were lower than 1 in stages 3 
and 4. Our results suggest that transmission was effec-
tively controlled after travel ban in Wuhan City.

In stage 1, the highest infectivity was in age group 2 
(RI = 8.58), followed by age group 4 (RI = 3.58), age group 

3 (RI = 2.58), and age group 1 (RI = 1.62). The highest sus-
ceptibility was observed in age group 3 (RS = 6.44), fol-
lowed by age group 2 (RS = 6.14), age group 4 (RS = 3.75), 
and age group 1 (RS = 0.03). In stage 2, the infectivity and 
susceptibility were as follows: in age group 1 (RI = 1.10, 
RS = 0.04), age group 2 (RI = 2.45, RS = 2.42), age group 
3 (RI = 1.42, RS = 2.10), and age group 4 (RI = 1.49, 
RS = 1.07), respectively. The values of RI and RS were all 
lower than 1 in stages 3 and 4 (Fig. 10). In addition, sus-
ceptibility tended to increase in age group 1 from stage 1 
to 3 (Fig. 11).

The highest contact frequency in stage 1 occurred 
among the members of age group 2 (α = 53.32), fol-
lowed by age group 2 to 3 (α = 24.05), age group 2 to 1 
(α = 21.89), and among the members of age group 3 
(α = 15.82). In the elderly, we found the highest prob-
ability of infection to be from a single contact (Fig. 12). 
When considering the probability of infection from a 
single contact, the highest value in stage 1 occurred 
among the members of age group 2 (q = 15.144%), fol-
lowed by age group 2 to 4 (q = 6.647%), age group 4 to 2 
(q = 5.101%), and age group 3 to 4 (q = 4.797%). In stage 
2, the highest probability of infection from a single con-
tact was occurred from age group 2 to 4 (q = 63.831%), 
followed by age group 1 to 4 (q = 22.763%), age group 1 
to 3 (q = 17.410%), and age group 4 to 2 (q = 14.462%). In 
stage 3, the highest probability of infection from a single 
contact was found in age group 1 to 4 (q = 16.177%), fol-
lowed by age group 2 to 4 (q = 5.779%), among the mem-
bers of age group 4 (q = 5.728%), and age group 3 to 4 
(q = 5.466%). In stage 4, the highest value was found in 
age group 1 to 4 (q = 0.397%), followed by age group 1 
to 3 (q = 0.344%), age group 2 to 4 (q = 0.223%), and age 
group 4 to 3 (q = 0.217%).

We found differing age-specific transmission patterns 
in several areas (Fig. 13). The highest relative transmissi-
bility in Wuhan City was from age group 2 to 4, followed 
by group 4 to 2, 3 to 3, and 2 to 3. In Hunan Province, 
the highest relative transmissibility was observed in age 
group 4 to 3, followed by group 3 to 4, 2 to 2, and 3 to 1. 
In Jilin Province, it was observed from age group 4 to 4, 
followed by group 3 to 4, 2 to 2, and 2 to 4.

Effectiveness of vaccination against transmission
China should vaccinate at least 85% of the total popula-
tion to interrupt transmission, with a VE of more than 
70% (Figs. 14 and 15). The vaccine effects increased with 
an increase in vaccination rate (Fig.  16). However, it 
reached a threshold (Fig. 17) when δi = 0.1, regardless of 
scenario I (TN = 4 722, TAR  = 0.04%, DO = 177, PT = 76, 
NP = 68) or scenario II (TN = 4  548  464, TAR  = 41.05%, 
DO = 997, PT = 162, NP = 56 613).
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Fig. 8 Curve fitting of the age‑specific SEIAR model to the reported data in Wuhan City. A ≤ 14 years. B 15‒44 years. C 45‒64 years; D ≥ 65 years. E 
Fitting results in four stages of four age groups
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In scene XI of scenario I (Fig.  14), the epidemic was 
controlled when vaccinating 87.93% of the whole popula-
tion (δi = 0.05, NT = 4 028 228, TAR  = 36.35%, DO = 574, 
PT = 236, NP = 39 648). The optimal strategy was first 
to vaccinate 88.96% (Additional file 4: Table S3) of indi-
viduals 15–44  years old (δ2 = 0.05, NT = 4  780  964, 
TAR  = 43.15%, DO = 351, PT = 114, NP = 99  288) and 
then to vaccinate 90.28% of individuals 45–64  years old 
(δ3 = 0.1, NT = 6 329  126, TAR  = 57.12%, DO = 211, 
PT = 92, NP = 274  421). In scene XIX of scenario II 
(Fig. 15), the epidemic was controlled when vaccinating 
96.53% of the whole population (δi = 0.1, NT = 4 548 464, 
TAR  = 41.05%, DO = 997, PT = 162, NP = 56  613). The 

optimal vaccination strategy was first to vaccinate 90.18% 
of individuals 15–44 years old (δ2 = 0.1, NT = 5 189 445, 
TAR  = 46.83%, DO = 188, PT = 98, NP = 121  696) 
and secondly to vaccinate 88.21% of individuals aged 
45–64 years old (δ3 = 0.1, NT = 4 717 545, TAR  = 42.57%, 
DO = 217, PT = 114, NP = 82 318). Our findings suggest 
that the vaccination priority for controlling the transmis-
sion may be vaccinating approximately 90% of individuals 
aged between 15 and 44 years old.

All the values of scenario I (scenes II to IX) are shown in 
Additional file 5: Tables S4 to S7. In scenario I of no inter-
vention, the simulation of value was in the total popula-
tion (TN = 6 776 654, TAR  = 61.16%, DO = 205, PT = 84, 

Fig. 9 The interaction of transmissibility between different age groups in four stages of Wuhan City. A Stage 1: December 2, 2019, to January 23, 
2020. B Stage 2: January 24 to February 2, 2020. C Stage 3: February 3 to February 18, 2020. D Stage 4: February 19, 2020, to March 16, 2020
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NP = 311 342), in age group 1 (TN = 23 595, TAR  = 1.88%, 
DO = 172, PT = 94, NP = 792), group 2 (TN = 3 136 946, 
TAR  = 60.20%, DO = 205, PT = 87, NP = 135 616), group 
3 (TN = 2  823  084, TAR  = 83.66%, DO = 108, PT = 84, 
NP = 148 321) and group 4 (TN = 793 029, TAR  = 64.00%, 
DO = 138, PT = 80, NP = 43 328). The simulation effects 
of vaccination in each age group were reduced with the 
increasing vaccination rate (δ), and the effects of scene 
II (measles vaccine) were higher than those of scenes 
III and IV (influenza vaccine). The best effect (Fig.  18), 
in which the total population was vaccinated (δI = 0.1), 
was scene II (TN = 4  722, TAR  = 0.04%, DO = 177, 
PT = 76, NP = 68), followed by scene III (TN = 4 026 365, 
TAR  = 36.34%, DO = 601, PT = 278, NP = 39  534) and 

then scene IV (TN = 6 127 075, TAR  = 55.29%, DO = 232, 
PT = 101, NP = 214 987).

Scenes V, VI, VII, and VIII of scenario I are shown 
in Fig.  19, when the vaccination was simulated in 
each age group. The optimal strategy was to vaccinate 
age group 2 in the total population, especially when 
δ2 = 0.1 (TN = 4  802  585, TAR  = 43.34%, DO = 357, 
PT = 119, NP = 97 964). After vaccination in age groups 
1, 3, and 4, it was less affected than the other three 
groups. With vaccination in age group 1, the great-
est effect (δ1 = 0.1) was only for itself (TN = 6  942, 
TAR  = 0.55%, DO = 161, PT = 97, NP = 229). With vac-
cination in age group 2, the greatest effect (δ2 = 0.1) 
was only for itself (TN = 2  310  030, TAR  = 44.33%, 
DO = 357, PT = 131, NP = 42  553). With vaccination 
in age group 3, the greatest effect (δ3 = 0.1) was only 
for itself (TN = 2  419  225, TAR  = 71.69%, DO = 113, 
PT = 91, NP = 120  356). With vaccination in age 
group 4, the greatest effect (δ4 = 0.1) was only for itself 
(TN = 778  980, TAR  = 62.86%, DO = 188, PT = 89, 
NP = 34 451).

The simulation of different VE and the relative 
immune rates in the total population is shown in 
Fig. 20. The best simulation effect of VE was λ = 1 and 
λ = 0.9 (TN = 0, TAR  = 0, DO = 0, PT = 0, NP = 0), 
and followed by λ = 0.8 (TN = 531  227, TAR  = 4.79%, 
DO = 3  804, PT = 1  862, NP = 455). The best simu-
lation effect of the relative immune rate was φ = 1 
(TN = 4  026  318, TAR  = 36.34%, DO = 645, PT = 322, 
NP = 39  533) and the worst effect of the relative 

Fig. 10 The infectivity and susceptibility of different age groups in four stages of Wuhan City

Fig. 11 The susceptibility comparison of different age groups in four 
stages of Wuhan City
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immune relative was φ = 0.033 (TN = 4  078  737, 
TAR  = 36.81%, DO = 494, PT = 179, NP = 43 113).

All the values of scenario II (scenes XI to XV) are 
shown in Additional file  6: Tables S8 to S11. Vaccina-
tion of the total population in scenario II (Fig. 21), the 
total number of cases was reduced by the rising vac-
cination rates. The best simulation effect was when 
δi = 0.1 for the number of cases in total population 

(TN = 4  548  464, TAR  = 41.05%, DO = 997, PT = 162, 
NP = 56 613), respectively.

Regarding the vaccination of each age group in sce-
nario II (Fig. 22), the optimal strategy was vaccination 
of age group 2 for the total population, especially when 
δ2 = 0.1 (TN = 5  189 459, TAR  = 46.83%, DO = 190, 
PT = 97, NP = 121  696) and age group 3, especially 
when δ3 = 0.1 for the total population (TN = 4 624 965, 

Fig. 12 The risk of infected probability in different age groups of four stages

Fig. 13 The relative transmissibility of different age groups in four stages of Wuhan City, Hunan Province, and Jilin Province. A Normalized Reff 
of Wuhan City. B Normalized Reff of Hunan Province. C Normalized Reff of Jilin Province. B, C were a re‑calculated value of Reff from the matrix of 
secondary attack rate of our previous study (https:// doi. org/ 10. 1186/ s40249‑ 020‑ 00735‑x)

https://doi.org/10.1186/s40249-020-00735-x
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TAR  = 41.74%, DO = 219, PT = 97, NP = 378 275). 
Less effects were found with vaccinated age group 1 
(TN = 6  429  821, TAR  = 58.03%, DO = 1  254, PT = 62, 
NP = 400  251) and 4 (TN = 6  499  928, TAR  = 58.66%, 
DO = 1 258, PT = 64, NP = 403 077).

Effectiveness of vaccination on the disease severity
The simulated total number of deaths decreased 
with increasing age and vaccination rate (Fig.  23). 
The simulated total number of deaths was 209 984 in 
the total population, and it was 19  918  300, 73  800 
and 117  686 in age groups 1, 2, 3, and 4, respectively. 
The best simulation for the total population was 
obtained with the vaccination of age group 4 (δ = 0.1, 
ND = 133  230), followed by vaccinating age group 3 
(δ = 0.1, ND = 161 586). Moreover, the best simulation 
for decreasing the death rate of age group 1 was vacci-
nation of group 1 (δ = 0.03, ND = 0), when the members 
of age group 2 were vaccinated (δ = 0.1, ND = 4  151), 
when the members of age group 3 were vaccinated 
(δ = 0.1, ND = 25  385), and when the members of age 
group 4 were vaccinated (δ = 0.1, ND = 40  933). Our 

findings suggest that vaccination protocols should pri-
oritize older populations.

Discussion
When modeling the transmissibility, although the trans-
mission pattern varied from one area to another, the 
highest transmissibility was found in individuals aged 
15–44  years, while the highest risk of infection was 
among the elderly population. Therefore, the optimal 
vaccination strategy for controlling the transmission 
of COVID-19 should be to first vaccinate about 90% of 
15–44  years old, while for reducing the disease sever-
ity, the vaccination priority should be on the older 
population.

Similar to our previous study, the age-specific SEIAR 
model fits the data well [11, 12]. There is no doubt that 
it has a great impact on controlling the epidemics in 
Wuhan City [2], while accounting for key intervention 
measures such as travel ban, case isolation, and increas-
ing social distancing, among others.

Before the travel ban of Wuhan City, the highest 
transmissibility was found within the most socially 

Fig. 14 The influence of different vaccination coverages from each age group to total population in scene XI of scenario I. A Number of cases in 
total population when vaccinated the total population. B The number of cases in total population when vaccinated ≤ 14 years old. C The number of 
cases in total population when vaccinated 15‒44 years old. D The number of cases in total population when vaccinated 45‒64 years old. E Number 
of cases in total population when vaccinated ≥ 65 years old
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active age group, those aged 15–44 years old. The high-
est contact frequency in this group was directly linked 
to its high level of contact with other age groups [51]. 
January 25, 2020, corresponding to the Spring Festival 
(Chinese Lunar New Year celebration), an event where 
there would be a large number of travelers, such as 
workers and students returning home, present within 
the first 15  days of the festival [56, 57]. In China, the 
secondary cases were mostly caused by travelers, espe-
cially middle-aged and elderly people [31, 58]. Mean-
while, our study indicated that the susceptibility of 
those 15–65 years of age was higher than those in other 
age groups. If we set the period before the travel ban 
in Wuhan City as a baseline, the highest level of inter-
action was among those 15–65 years of age. Following 
the implementation of control measures during the 
travel ban period, transmissibility decreased in Wuhan 
City. The RS value for the population below 14 years of 
age was 0.0255, and it gradually increased in stages 2 
(RS = 0.0386) and 3 (RS = 0.0641). This finding suggests 
that the risk of transmission would be amplified after 
intervention for those below 14 years of age, especially 
during the travel ban and home quarantine. A previous 
study indicated that children and adults face a similar 

risk of infection [58]. Meanwhile, some surveys also 
reported that the transmission of SARS-CoV-2 largely 
occurred within the family [60, 61]. Therefore, it is 
important to prevent transmission within families after 
home isolation.

Although the contact frequency among ≥ 65  years old 
is very low (α = 1.91), this age class displayed the high-
est probability of infection upon single contact, that is, 
it is the most susceptible age class, (q = 15.144%) before 
the travel ban. In China, there are many cluster activities 
among the elderly, such as square dancing, dinner par-
ties, and card games. These cluster activities have pro-
moted long-term and effective exposure between people, 
thereby increasing the risk of infection [61]. Meanwhile, 
in the other three stages, the elderly are also at a very 
high risk of being infected by other age groups. This sug-
gests that social distancing should be increased and clus-
ter activities should be decreased to control COVID-19, 
especially in the elderly.

However, because of the varied results with influenza 
incidence in various age groups [62, 63], the transmis-
sion interaction in the age group was not a constant 
pattern. There is a major difference in age-specific trans-
mission between Wuhan City, Hunan Province, and Jilin 

Fig. 15 The influence of different vaccination coverages from each age group to total population in scene XIX of scenario II. A The number of 
cases in total population when vaccinated the total population. B The number of cases in total population when vaccinated ≤ 14 years old. C The 
number of cases in total population when vaccinated 15‒44 years old. D The number of cases in total population when vaccinated 45‒64 years old. 
E Number of cases in total population when vaccinated ≥ 65 years old
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Fig. 16 Simulated the effects of different vaccination rates in scene I of scenario I and scene XI scenario II. A Different vaccination rates of scenarios 
I. B Different vaccination rates of scenarios II

Fig. 17 Simulated the different vaccination rates in each age group. A Vaccinated individuals ≤ 14 years old. B Vaccinated individuals 15‒44 years 
old. C Vaccinated individuals 45‒64 years old. D Vaccinated individuals ≥ 65 years old. E Vaccinated total population
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Province. This difference might be related to differing 
societal factors such as economy, culture, and demog-
raphy. The population density and economic status of 
Wuhan City was higher than those of Hunan Province 
and Jilin Province. Some studies have indicated that there 
are differences in COVID-19 outbreaks in every prov-
ince of China [58]. In addition, the epidemics of Hunan 
Province and Jilin Province were local infections mostly 
caused by imported cases. Therefore, age-specific trans-
mission patterns need to be further explored and com-
pared between different areas.

Currently, the mRNA vaccine of BioNTech and Mod-
erna reported great effect (VE > 90%) for controlling the 
ancestral virus [5–7]. However, the effectiveness of the 
vaccine has been gradually decreasing with the mutation 
of the virus, exemplified by just 75% (95% CI: 68%–79%) 
of ChAdOx1 nCoV-19 for the Delta variant [8]. In this 
study, we considered VE-like vaccine efficacy of mea-
sles (VE = 90%), influenza B (VE = 70%) and influenza A 
(VE = 30%). We obtained similar age-optimized vaccina-
tion results for the above three conditions. Our findings 
suggest that the optimal vaccination proposal is consist-
ent across age groups regardless of vaccine efficacy. VE 
is at least 70% and 90%, respectively, which is consistent 
with the actual vaccine effects. Therefore, the evaluation 
of COVID-19 vaccines could be referred to as the vaccine 

against influenza and measles. This study explored two 
scenarios including 19 scenes to explore the unknown 
future vaccine efficacy and behavior and the optimal 
strategy to control COVID-19. The simple model in 
the scenario I aim to cover a wide range of VE, and the 
more complex model in scenario II aims to explore the 
decreasing relative infectivity and susceptibility. Indeed, 
the vaccine for measles has a good efficacy [44], but this 
might not be the case for COVID-19 vaccines. There-
fore, when simulating the efficacy of COVID-19 as that 
of the seasonal influenza vaccine, the vaccination cover-
age should be at least 87.93% of the total population in 
scene XI of scenario I and 96.53% of the total population 
in scene XIX of scenario II. Conversely, a specific study 
indicated that a vaccine with an efficacy ≥ 50% would be 
enough to mitigate the pandemic and the vaccine should 
be allocated for use in the elderly first [13, 64].

To increase the accuracy of the simulation, we further 
added asymptomatic infection as a factor and simulated 
the vaccination outcomes after estimation of transmis-
sibility in different age groups according to the real-life 
situation.

Considering that it is difficult to vaccinate nearly 
90% of the total population, we simulated the vaccina-
tion rate in each age group. Although several studies, 
including ours, indicated a high risk of infection in the 

Fig. 18 Simulated the vaccine effects same as measles and influenza vaccine in scene II, III, and IV of scenario I. A Measles vaccine vaccinated 
total population (VE = 90%). B High VE of influenza vaccine vaccinated total population (VE = 70%). C Low VE of influenza vaccine vaccinated total 
population (VE = 30%)
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Fig. 19 Simulated the effects vaccinated each age group in scene V, VI, VII, and VIII of scenario I. A‒D Vaccinated individuals ≤ 14 years old. E‒H 
Vaccinated individuals 15‒44 years old. I‒L Vaccinated individuals 45‒64 years old. M‒P Vaccinated individuals ≥ 65 years old

Fig. 20 Simulated the different VE and immune relative rates in scenes IX and X of scenario I. A‒D Different VE vaccinated total population. E‒H 
With immunity after different periods vaccinated total population
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Fig. 21 Simulated the different vaccination rates when vaccinated total population in scene XII of scenario II. A‒D Vaccination rate was 0.0001, 
0.001, 0.01 and 0.1, respectively. The number of cases in the no‑vaccinated group when vaccinated total population. E‒H Vaccination rate from 0.01 
to 0.1

Fig. 22 Simulated the different vaccination rates in each age group in scenes XI, XII, XIII, and XIV of scenario II. A‒D Vaccinated 
individuals ≤ 14 years old. E‒H Vaccinated individuals 15‒44 years old. I‒L Vaccinated individuals 45‒64 years old. M‒P Vaccinated 
individuals ≥ 65 years old
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elderly [12, 52], our results of vaccination modeling in 
each age group showed that the optimal strategy was to 
first vaccinate individuals aged 15–44  years. Whether 
this simulation corresponds to scenario I or scenario 
II, it can significantly reduce the number of cases in the 
overall population. The main reason is the very high 
transmissibility (including susceptibility and infectivity) 
of SARS-CoV-2 in individuals of the 15–44 age group. 
Furthermore, the age class with the highest contact fre-
quency were those 15–44 years old [52]. The higher-risk 
occupations included car, taxi, and van drivers, shop sales 
associates, domestic housekeepers, religious profession-
als, etc. [65], who belonged mainly in the 15–44-year-old 
group. Therefore, a very positive outcome in terms of 
transmission can be expected when vaccinating first this 
age group, especially high-risk workers such as health-
care workers, drivers, transport workers, and services 
and sales workers. If the objective is to reduce mortal-
ity, the strategy should be to first target the age group 
above 65 [13, 29, 66]. In contrast, our results showed 
that we should not limit the vaccination to a given 
class but instead, to optimize the efficacy, vaccinate in 

a specific order: first those ≥ 65  years old, followed by 
those 45–64  years old, then those 15–44  years old, and 
finally those ≤ 14 years old.

However, transmission patterns differ from one area to 
another [67, 68]. We highlight this heterogeneity in trans-
mission, especially in terms of age interaction, because 
these results may be optimal for Wuhan City but perhaps 
less suitable for other regions. Therefore, we should esti-
mate a strategy of vaccination optimization after having 
sufficiently clarified age-specific transmission interac-
tions in different areas. In particular, we should estimate 
the transmissibility and simulate vaccination outcomes in 
different age groups in different regions. We limited the 
real-time vaccinating process simulated in our model, 
δ = 0.1 means nearly 10% of the total population is vac-
cinated per day. It is necessary to simulate an initial pro-
portion of the immune population. A study reported the 
impact of policy interventions (like home quarantine) 
and meteorological factors (such as air index, tempera-
ture, precipitation, and relative humidity) on vaccina-
tion effectiveness [69]. Although an immune barrier has 
been established in a proportion of people, we need to 

Fig. 23 The influence from vaccination to severity in scene XIV to XVII of scenario II. A The number of deaths in each age group when vaccinated 
the total population. B The number of deaths in each age group, when vaccinated, ≤ 14 years old. C The number of deaths in each age group when 
vaccinated 15‒44 years old. D The number of deaths in each age group when vaccinated 45‒64 years old. E Number of deaths in each age group 
when vaccinated ≥ 65 years old
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consider the impact of meteorological factors on trans-
mission and vaccination and simulate the combined 
effect between vaccination and non-pharmacological 
interventions in future work.

Limitations
In the study, we should collect most COVID-19 data to 
compare the different age-specific transmission in vari-
ous areas. Furthermore, we are limited to not analyzing 
the impact of meteorological factors on transmission and 
vaccination. At last, we should re-evaluate the optimiza-
tion strategy based on the current immune barrier.

Conclusions
The highest transmissibility was observed in those aged 
15–44  years and the risk of infection probability was 
highest in the elderly. In China, approximately 85% of 
the total population should be vaccinated to effectively 
build an immune barrier and take reopening under con-
sideration. The optimized strategy to control transmis-
sion was to first vaccinate about 90% of individuals aged 
15–44  years, but for reducing the disease severity, the 
elderly should be vaccinated first.
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