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Abstract 

Background:  Aedes borne viral diseases, notably dengue, are increasingly reported in Cameroon with Aedes aegypti 
being a major vector. Data on insecticide resistance of this vector and underlying mechanisms needed for outbreak 
preparedness remain scarce in Cameroon. Here, we present the nationwide distribution of insecticide resistance in Ae. 
aegypti and investigate the potential resistance mechanisms involved.

Methods:  Immature stages of Ae. aegypti were collected between March and July 2017 in 13 locations across Cam‑
eroon and reared until G1/G2/G3 generation. Larval, adult bioassays, and piperonyl butoxide (PBO) synergist assays 
were carried out according to World Health Organization guidelines. F1534C mutation was genotyped using allele 
specific polymerase chain reaction in field collected adults (Go) and the polymorphism of the sodium channel gene 
was assessed. The χ2 test was used to compare the mortality rate between bioassays with insecticides only and bioas‑
says after preexposure to PBO synergist.

Results:  Larval bioassay revealed that all the three populations tested with temephos were susceptible. Adult bioas‑
says showed a good level of susceptibility toward both pyrethroids tested, 0.25% permethrin and 0.05% deltamethrin, 
with six out of 10 populations susceptible. However, two populations (Douala and Edéa) were resistant (deltamethrin 
[73.2–92.5% mortality], permethrin [2.6–76.3% mortality]). The resistance to 4% dichlorodiphenyltrichloroethane was 
observed in four out of 10 populations tested (16.8–87.1% mortality). Resistance was also reported to carbamates 
including 0.1% propoxur (60.8–87.1% mortality) and to 0.1% bendiocarb (82.9% mortality). All populations tested 
were fully susceptible to 1% fenitrothion. A partial recovery of susceptibility was observed in the pyrethroid resist‑
ant population of Douala after pre-exposed to PBO suggesting the implication of cytochrome P450 monoxygenases 
permethrin resistance. Genotyping and sequencing detected the F1534C kdr mutation in the two pyrethroid resistant 
locations of Edéa and Douala, with allelic frequency of 3.3% and 33.3% respectively. However, the high genetic diver‑
sity of the sodium channel gene supports the recent introduction of this mutation in Cameroon.

Conclusions:  This study revealed the contrasting resistance profiles to insecticides of Ae. aegypti populations in Cam‑
eroon suggesting that, instead of a unique nationwide control approach, a regionally adapted strategy will be needed 
to control this vector. The localised distribution of the F1534C kdr mutation supports this region-specific control 
strategy.
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Background
The mosquito Aedes aegypti Linneaus, 1762 (Dip-
tera: Culicidae) is the main vector of several arboviral 
related diseases such as dengue, Zika, chikungunya, 
and yellow fever in subtropical and tropical world. This 
domestic mosquito usually bites during daylight, feed-
ing mainly on humans, mating and resting indoor/
outdoor, and breeding in man-made containers in and 
around human habitations [1].

In Cameroon, where several cases of arboviral related 
diseases such as dengue [2–5], chikungunya [6, 7], yel-
low fever [8] and Zika [9] are increasingly reported, it 
was demonstrated that Ae. aegypti is present across the 
country and found as dominant Aedes species in some 
locations notably in the northern part [10]. It was also 
demonstrated that local Ae. aegypti populations are 
able to transmit dengue [11], Zika [12] and yellow fever 
[13] viruses in different urban settings in Cameroon. 
Prevention of large outbreaks caused by these virus 
relies on control of Aedes vectors based on destruction 
of breeding sites and insecticide-based interventions 
such as treatment of breeding sites with larvicides, 
insecticide-treated nets [14] and space spraying of adul-
ticides in emergency situations [15, 16]. However, at the 
operational level, many vector control programmes are 
facing the challenge of the development of insecticide 
resistance in Ae. aegypti. Indeed, Ae. aegypti has been 
found to be resistant to several classes of insecticides 
in different regions across the world with significant 
variation according to the population’s origin and the 
insecticide classes [17–24].

The insecticide resistance in mosquitoes is primar-
ily associated to two main mechanisms: insensitivity 
of target sites (target-site resistance) due to mutations 
that reduce the binding affinity between the insecticide 
and the target site, and metabolic resistance resulting 
in an overproduction of enzymes that will facilitate the 
detoxification of insecticides [25, 26]. The metabolic 
resistance through overexpression of detoxification 
genes is a common resistance mechanism in Ae. aegypti 
as well as in Ae. albopictus. The three main enzyme 
families responsible for insecticide resistance in mos-
quitoes are the monooxygenases (cytochrome P450s), 
glutathione S-transferases (GSTs), and carboxylester-
ases (COEs) [26, 27].

Target site resistance is caused by mutations in tar-
get genes such as the acetylcholinesterase (Ace-1), the 
GABA receptor and the voltage-gated sodium channel 
(VGSC) causing knockdown resistance (kdr). One of 

the most important target site resistance for mosqui-
toes is kdr as it confers resistance to both pyrethroids 
and dichlorodiphenyltrichloroethane (DDT). Eleven 
kdr mutations in VGSC domain I-IV have been identi-
fied in Ae. aegypti around the world and the association 
between F1534C, V1016G, I1011M, and V410L muta-
tions and pyrethroid resistance has been established 
[22, 28, 29]. In Africa 1534 and 1016 mutations have 
been previously reported in Ae. aegypti in Burkina-Faso 
and Ghana [21], and 410 mutation in Angola [30]. In 
Cameroon, data on insecticide resistance in Ae. aegypti 
and resistance mechanisms involved are very limited 
apart from the preliminary studies highlighting the 
resistance of this species to DDT, deltamethrin, and 
bendiocarb in some locations and suggesting the impli-
cation of cytochrome P450 enzymes in pyrethroids 
and DDT resistance [19, 20]. Thereby, we present here 
the nationwide distribution of insecticide resistance to 
Ae. aegypti and investigate the potential implication of 
1534 kdr mutation in the pyrethroid resistance. This 
was done by assessing the presence and distribution 
of the 1534C resistant allele and analysing the genetic 
diversity of the related portion of the sodium channel 
gene country-wide.

Methods
Collection of mosquitoes
Immature stages of Aedes were collected between 
March and July 2017 in 13 locations across Cameroon 
(Fig. 1): Maroua (10° 35′ N; 14° 18′ E), Benoué national 
park (08° 20′ N; 13° 50′ E), Garoua (09° 18′ N; 13° 24′ 
E), Mbé (07° 51′ N; 13° 35′ E), Banyo (06° 45′ N; 11° 
49′ E), Tibati (06°28′N; 12°38′E), Meiganga (06°31′N; 
14°18′E), Ngaoundéré (07° 19′ N; 13° 35′ E), Edéa (03° 
48′ N; 10° 08′ E), Limbé (04° 00′ N; 09° 13′ E), Douala 
(04° 03′ N; 09° 42′ E), Melong (05° 07′ N; 09° 57′ E), and 
Yaoundé (03° 52′ N; 11° 31′ E). Detailed characteristics 
of each collection site are presented in previous stud-
ies [10]. In each location, mosquitoes were collected in 
peri-urban and downtown at a minimum of 20 posi-
tive larval breeding places per site. Larvae/pupae of 
Aedes mosquitoes were transported to an insectary and 
pooled together according to the city and maintained 
until they emerged as adults before morphological 
identification using a suitable taxonomic key [31, 32]. 
Adult mosquitoes were maintained at insectary and 
reared in the controlled conditions (27  °C ± 2  °C; rela-
tive humidity 80% ± 10%). Mosquitoes identified as Ae. 
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aegypti were reared until generation until G1/G2/G3. 
Ae. aegypti New Orleans (NO) strain was used as refer-
ence susceptible strain.

Insecticides susceptibility tests
Larval bioassays
Larval tests were conducted following World Health 
Organization (WHO) protocol [33]. The late third- and 
early fourth instar larvae were used for each mosquito 
population. Four replicates were tested with 20–25 larvae 
per replicate and per concentration. The susceptibility 
of larvae was evaluated against technical-grade teme-
phos (97.3%; Sigma Aldrich-Pestanal, Seelze, Germany). 
First, stock solutions and serial dilution were prepared 
in 95% ethanol for temephos and stored at 4  °C. Seven 
concentrations ranging from 0.0005 and 0.006  mg/L 

have been used to test both field strain and suscepti-
ble lab strain (New Orleans). Larvae were not fed dur-
ing the experiment and the conditions of the room were 
27 ± 2 °C (temperature) and 70 ± 10% (relative humidity). 
Larval mortality was recorded after 24 h of exposure to 
larvicide.

All the results were analyzed with win DL software (v. 
2.0, CIRAD-CD, Montpellier, France) to determine the 
lethal concentration for 50% (LC50) and 95% (LC95) of the 
populations. Resistance ratios (RR50 and RR95) were cal-
culated using LC50 and LC95 rates from Ae. aegypti field 
populations compared with the LC50 and LC95 rates of 
the reference strain. The resistance levels were ranked 
into three categories: low resistance (RR50 < 5), medium 
or moderate resistance (5 ≤ RR50 ≤ 10), and high resist-
ance (RR50 > 10) [33].

Fig. 1  Map of Cameroon showing the sampling sites
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Insecticides susceptibility bioassays
Adult bioassays were carried out according to WHO 
guidelines [33]. Six insecticides were tested: 0.25% per-
methrin (Type I pyrethroid), 0.05% deltamethrin (Type 
II pyrethroid), 4% DDT (organochlorine), 0.1% pro-
poxur (carbamate), 0.1% bendiocarb (Carbamate), and 
1% fenitrothion (organophosphate). Four replicates of 
20–25 unfed two to five days old female Ae. aegypti were 
exposed to insecticide-impregnated papers for 1 h under 
the insectary conditions described above, and then trans-
ferred to holding tubes with access to 10% sugar solu-
tion. The mortality rate was recorded 24  h later. The 
dead mosquitoes were stored in silica gel desiccant and 
the survivor in RNA later at -80  °C freezer. The resist-
ance status was defined as follows: susceptible (mortality 
rate between 98 and 100%), probable resistance (mortal-
ity rate between 90 and 98%) and resistant (mortality rate 
inferior to 90%) [33].

Synergist assays
In order to investigate the potential role of oxidases in 
the metabolic resistance mechanism, synergist assay 
was performed in Douala population using 4% piperonyl 
butoxide (PBO). 2–5-day-old adults were pre-exposed for 
one hour to PBO-impregnated papers and immediately 
exposed to permethrin. Mortality was scored 24  h later 
and compared to the results obtained with permethrin 
without synergist according to the WHO standard [34]

F1534C kdr genotyping using allele specific polymerase 
chain reaction (PCR)
As previous study in Central Africa [18] had not reported 
any mutation associated to pyrethroid resistance, we 
decided to focus our analysis in F1534C mutation which 
is mostly found worldwide including in West Africa 
[21, 35]. For this purpose, genomic DNA of 30 indi-
vidual mosquitoes per populations was extracted using 
Livak protocol [36]. That DNA was used to genotype the 
F1534C mutation which has been described to be asso-
ciated to pyrethroids and DDT resistance. Allele specific 
PCR assays were performed following using Harris et al. 
protocol [37]. Each PCR reaction was performed in a 
15 μl volume containing: 1 μl of DNA sample, 0.4 units of 
Kapa Taq DNA polymerase, 0.12 μl of 25 mmol/L dNTPs 
(0.2 mmol/L), 0.75 μl of 25 mmol/L MgCl2 (1.5 mmol/L), 
1.5  μl of 10 × PCR buffer (1 ×), 0.51  μl of each primers 
(0.34 mmol/L). The amplification consisted of 95 °C for a 
5 min heat activation step, followed by 35 cycles of 94 °C 
for 30 s, 55 °C for 30 s and 72 °C for 45 s with a 10 min 
final extension step at 72 °C. The PCR products were sep-
arated on agarose gel 3% stained with Midori green.

Polymorphism of the voltage‑gated sodium channel 
(VGSC) gene
To assess the polymorphism of the VGSC gene and 
detect possible signatures of selection, a fragment of this 
gene spanning the F1534C mutation (a part of segment 
6 of Domain III) was amplified and sequenced in 130 G0 
field collected mosquitoes from 13 locations across Cam-
eroon. PCR reactions were carried out using 10 pmol of 
each primer [aegSCF7 (GAG​AAC​TCG​CCG​ATG​AAC​
TT) and aegSCR7 (GAC​GAC​GAA​ATC​GAA​CAG​GT)] 
and 20  ng of genomic DNA as template in 15  μl reac-
tions containing 1 × Kapa Taq buffer, 0.2 mmol/L dNTPs, 
1.5 mmol/L MgCl2, 1U Kapa Taq (Kapa biosystems) [38]. 
The cycle conditions were 94  °C for 3  min, 35 cycles of 
94 °C for 15 s, 55 °C for 30 s, and 72 °C for 30 s, followed 
by a final elongation step at 72 °C for 10 min. Amplicons 
from the PCR were analysed by agarose gel electropho-
resis stained with Midori green and visualized under 
UV light. The amplified fragments of the expected size 
were purified using ExoSAP following manufacturer 
recommendations and directly sent for sequencing. 
The sequences were corrected with BioEdit software 
(v  7.1.8, London information retrieval ltd, London, UK) 
and aligned with Clustal W [39]. DNAsp (v 6.10.01, Uni-
versitat de Barcelona, Barcelona, Spain) [40] was used 
to define the haplotype phase and compute the genetic 
parameters including the number of haplotypes (h), the 
number of polymorphism sites (S), haplotype diversity 
(Hd), and nucleotide diversity (π). The statistical tests of 
Tajima [41] and Fu Fs [42] were estimated with DnaSP in 
order to establish non-neutral evolution and deviation 
from mutation-drift equilibrium. Different haplotypes 
obtained and reference sequences were used to construct 
the maximum likelihood phylogenetic tree using Mega 
6.0 [43]. A haplotype network was built using TCS [44] 
and TcsBu [45] programs to further assess the genealogi-
cal relationship between haplotypes.

Results
Larval bioassays
Larval assays were tested with temephos for three pop-
ulations due to the limited number of larvae (Table  1). 
Analysis revealed that the resistance ratio for all popula-
tions tested was less than 2 suggesting the susceptibility 
of these populations to temephos.

Insecticide resistance profile in adults
Bioassays were performed in 10 Ae. aegypti popula-
tions collected across Cameroon (Figs. 2 and 3). Analysis 
revealed that four populations out of 10 were resistant to 
DDT with mortality rate ranging from 16.8% in Douala to 
77.3% in Ngaoundéré populations. Six other populations 
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were either probable resistant or susceptible with per-
centage of mortality varying from 92.32% in Tibati 
to 100% in Maroua. A good susceptibility level was 
observed against both pyrethroids tested, type I pyre-
throid permethrin and type II pyrethroid deltamethrin, 
with six susceptible populations, two probable resistant 
and two resistant populations with lowest mortality rate 
(2.56%) in Douala population for permethrin (Fig. 2). A 
moderate level of resistance was reported against car-
bamates notably to propoxur for which mortality rates 
between of 60.82% and 87.71% in Edéa and in Meiganga 
populations, respectively. Nevertheless, probable resist-
ance was detected in four populations with mortality 
rate ranging from 95.65% in Tibati to 97.33% in Melong. 
Only one population (Douala) was fully susceptible to 
propoxur. The unique population from Limbé tested to 
bendiocarb was resistant with mortality rate of 82.95%. 
All populations tested across Cameroon exhibited a full 
susceptibility toward the organophosphate fenitrothion 

which is in line with temephos susceptibility observed in 
larvae (Fig. 3).

Synergist assay with PBO
The synergist assay analysis revealed a partial recovery 
of susceptibility to permethrin after PBO pre-exposure 
(Fig. 2) to Douala population (2.56 ± 1.48% without PBO 
vs 14.28 ± 5.8% with PBO, P < 0.005) suggesting that the 
cytochrome P450 monooxygenases are also playing a role 
in pyrethroids resistance in this populaton.

F1534C kdr genotyping using allele specific PCR
A total of 331 specimens of Ae. aegypti from 13 locations 
across Cameroon was successfully amplified (Table  2). 
Among them, 320 (96.68%) were susceptible (1534 F/F), 
8 (2.41%) were heterozygote resistant (1534 F/C), and 3 
(0.91%) were homozygote resistant (1534 C/C). Overall, 
allelic frequency of susceptible was 0.98 while for resist-
ant was 0.02. The F1534C mutation was found in only 

Table 1  Larval bioassays with temephos against Aedes aegypti larvae

n number of larvae tested; LC95 and LC50 95 and 50% lethal concentrations; CI Confidence interval; RR resistance ratio; NO New Orleans

Strain and Site n LC95 (mg/L) (95% CI) RR95 LC50 (mg/L) (95% CI) RR50

NO lab strain 531 0.0046
(0.0042–0.0051)

– 0.0026
(0.0025–0.0028)

–

Edéa 531 0.0046
(0.0036–0.0094)

1.00 0.0021
(0.0007–0.0028)

0.80

Douala 483 0.0078
(0.0069–0.0092)

1.68 0.0039
(0.0037–0. 0042)

1.47

Yaoundé 537 0.0034
(0.00258–0.0069)

0.74 0.0015
(0.0009–0.0020)

0.59

Fig. 2  Mortality rates of adult Aedes aegypti from 10 locations in Cameroon 24 h after exposure to insecticides alone or with 1 h pre-exposure to 
synergist. Error bars represent standard error of the mean. DDT Dichlorodiphenyltrichloroethane, PBO Piperonyl butoxide. a, Douala; b, Limbe; c, 
Edéa; d, Parc Benoué; e, Ngaoundéré; f, Maroua; g, Banyo; h, Tibati; i, Meiganga; j, Melong
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Fig. 3  Map showing the insecticide resistance status of Aedes aegypti in Cameroon. DDT: Dichlorodiphenyltrichloroethane
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two populations: Edéa and Douala with allelic frequen-
cies of 3.33% and 33.33% respectively (Table 2).

Genetic diversity of VGSC in Ae. aegypti
One hundred and twenty-two field collected Ae. aegypti 
from 13 locations were successfully sequenced for a 
201 bp fragment of the VGSC gene spanning the codon 
1534. Analysis confirmed the presence of mutation 
1534C in Douala and Edéa samples (Fig.  4). Overall, 
25 polymorphic sites, 38 haplotypes (46 haplotypes, 
when taking into account insertions or deletions) with 
a high haplotype diversity (0.879) and low nucleotide 
diversity (0.010) (Table  3). Among these haplotypes, 

H1 (15.98%), H10 (13.93%), H2 (9.83%) and H3 (9.42%) 
were the most represented (Fig. 5a). The resistant hap-
lotype H36 was detected in Douala (80%) and Edéa 
(20%) populations (Fig.  5a, b). A maximum likeli-
hood (ML) tree of the sequences analysed confirms a 
high diversity with the probable four clusters (Fig. 5c). 
Globally, all the statistics estimated were negatives 
(D = − 1.479, Fu’s Fs = − 33.498) with Fu’s Fs statisti-
cally significant (Table  3). Negative values for these 
indexes indicate an excess of rare polymorphisms in a 
population and suggest a recent expansion of the gene 
studied across the populations or background selection.

Table 2  F1534C genotype numbers and the allelic frequency of the C mutation of Aedes aegypti 

F: phenylalanine; C: cysteine; F/F: absence of the F1534C mutation; F/C: presence of the F1534C mutation with 2 alleles: one resistant, allele C and another susceptible 
F allele; C/C: presence of the F1534C mutation with the 2 resistant alleles

Location F1534 genotypes FF + FC + CC Allelic frequencies

FF FC CC % F % C

Benoué national park 24 0 0 24 100 0

Maroua 27 0 0 27 100 0

Garoua 30 0 0 30 100 0

Mbé 17 0 0 17 100 0

Ngaoundéré 25 0 0 25 100 0

Banyo 29 0 0 29 100 0

Tibati 26 0 0 26 100 0

Meiganga 24 0 0 24 100 0

Edéa 29 0 1 30 96.67 3.33

Limbé 27 0 0 27 100 0

Douala 8 8 2 18 66.67 33.33

Melong 24 0 0 24 100 0

Yaoundé 30 0 0 30 100 0

Total 320 8 3 331 97.89 2.11

Fig. 4  3: Sequencing of the portion of the voltage gated sodium channel gene spanning the F1534C mutation. a Sequence alignment of the 
voltage gated sodium channel gene at the F1534C point mutation in field collected adult mosquitoes (F0), b Chromatogram traces showing the 
three genotypes at the 1534 coding position
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Table 3  Genetic diversity parameters of F1534C mutation among Cameroonian Aedes aegypti populations

2N, number of sequences; S, number of polymorphic sites; h, number of haplotypes; Hd, haplotype diversity; π, nucleotide diversity; Syn and Nsyn, synonymous and 
non-synonymous mutation; D and Fs, Tajima’s D and Fu Fs statistics, *degree of significance

Populations 2N S Syn Nsyn π H Hd D Fu Fs

Benoué national park 20 5 4 1 0.006 6 0.726 − 0.591 − 1.874

Maroua 18 5 4 1 0.006 5 0.745 − 0.703 − 0.945

Garoua 20 9 7 2 0.011 9 0.863 − 0.592 − 3.113*

Mbe 18 9 8 1 0.014 9 0.922 0.023 − 2.581*

Ngaoundéré 20 6 6 0 0.007 6 0.763 − 0.479 − 1.195

Banyo 16 7 5 2 0.012 9 0.908 0.318 − 3.584*

Tibati 20 5 4 1 0.008 8 0.868 0.379 − 3.062*

Meiganga 20 12 11 1 0.013 9 0.847 − 1.020 − 2.544*

Douala 20 6 4 2 0.008 7 0.784 − 0.122 − 1.850

Limbé 20 5 4 1 0.009 8 0.853 0.836 − 2.590*

Melong 14 7 7 0 0.011 6 0.813 − 0.097 − 0.787

Yaoundé 20 5 4 1 0.006 7 0.800 − 0.283 − 2.653*

Edéa 18 8 6 2 0.009 9 0.895 − 0.740 − 4.088*

Total 244 25 18 8 0.010 38 0.879 − 1.479 33.498***

Fig. 5  Pattern of genetic variability and polymorphism of the voltage-gated sodium channel in Aedes aegypti. a Haplotype network for the VGSC 
sequence taking into account different populations; b Haplotype network for the VGSC sequences taking into account the resistance status; c) 
Phylogenetic tree of VGSC DNA sequences (fragment) by maximum-likelihood with Kimura model
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Discussion
This study investigated the nationwide insecticide profile 
of Ae. aegypti in Cameroon and assessed the contribution 
of F1534C kdr mutation in insecticide resistance. Larval 
bioassays analysis revealed that all Ae. aegypti popula-
tions tested were susceptible to the organophosphate 
temephos. This observation is similar to those made by 
previous studies from several countries in Central Africa 
such as in Cameroon [19], Central African Republic 
[18], and Republic of the Congo [24]. Nonetheless, the 
resistance of Ae. aegypti to this compound was reported 
in several countries such as in Laos [23], Brazil [46], 
Thailand [47], Malaysia [48], and Cape Verde [49]. This 
organophosphate is the larvicide mainly used to control 
Aedes larvae by treating water storage containers [46, 
50, 51]. However, selection of the resistance results from 
extensive and long-term use of the product incriminated, 
whereas in our knowledge, temephos had never been 
used in vector control programs in Cameroon. This prob-
ably explains the full susceptibility reported in Ae. aegypti 
as suggested previously [19].

Adult bioassays analysis revealed that four Ae. aegypti 
samples were found resistant to DDT and the remain-
ing were either susceptible or probably resistant. A 
decreasing susceptibility of the Ae. aegypti population 
from Yaoundé and Brazzaville towards DDT was already 
mentioned in 1970s [52], suggesting that this resistance 
may have resulted from a continuing selection pres-
sure on Aedes populations as suggested previously [18, 
19]. Indeed, recent study in Central Africa reported the 
resistance of Ae. aegypti to DDT [18, 20, 24]. The full 
susceptibility reported in some populations such as in 
Maroua and Meiganga shows that the DDT resistance is 
not nationwide in Cameroon and suggests that this com-
pound can still be effective to control Ae. aegypti.

Aedes aegypti populations showed a good level of sus-
ceptibility toward type I pyrethroid permethrin with only 
three resistant populations out of 10 tested. The loss of 
susceptibility to this pyrethroid was previously reported 
in Cameroon [20] and outside Africa [23, 48]. Similarly, 
a good level susceptibility was reported against type II 
pyrethroid deltamethrin. These results suggest that the 
resistance to deltamethrin and permethrin has not yet 
spread country-wide and these insecticides are still effec-
tive to control Aedes in some locations of Cameroon. 
A loss of sensitivity was observed to carbamates nota-
bly propoxur with moderate level of resistance in some 
locations such as: Limbé, Edéa, and Tibati. This result is 
comparable to previous reports in the Republic of the 
Congo [24] and in Burkina Faso [29] in Africa and in 
several countries outside Africa such as Malaysia [48], 
Pakistan [53], and Saudi Arabia [54]. The source of selec-
tion driving the observed resistance to DDT, permethrin, 

deltamethrin, propoxur and bendiocarb in some Ae. 
aegypti populations remains unclear notably as the use of 
insecticides against Aedes is limited in the region [19, 20]. 
As suggested previously [18, 20], domestic used of insec-
ticides through the indoor spraying and impregnating 
bed nets, and agriculture use could be the main source 
of resistance selection in Aedes vectors in Central Africa. 
Indeed, the use of pesticides in agriculture for the protec-
tion of market gardening could also promoted the emer-
gence of resistance in mosquitoes by contamination of 
breeding sites and resting places of mosquitoes [55].

A partial recovery of susceptibility to permethrin was 
reported in Douala population after pre-exposure to PBO 
synergist. This result indicates that the cytochrome P450 
monooxygenases are playing a role in the observed resist-
ance perhaps in association with other enzyme families 
or/and other resistance mechanisms as the recovery 
was only modest. The implication of cytochrome P450 
monooxygenases in Ae. aegypti resistance has been pre-
viously reported in several regions in the world including 
Central Africa the sub-region [18, 20].

The F1534C mutation is common in Ae. aegypti and 
has a worldwide distribution [22] although it was not 
yet detected in Cameroon [20]. Our analysis revealed 
the first evidence of this mutation in Ae. aegypti from 
two locations (Edéa and Douala) of Cameroon. This kdr 
mutation was previously reported in Africa in Ghana 
[21] and Burkina Faso [29, 35]. The allelic frequency of 
this mutation observed in Cameroon (3.3–33.3%) is low 
compared to those found in Ghana for example (33.3–
68.42%) [21]. In fact, the result of neutrality test suggests 
a recent selection of this mutation in Cameroon with a 
potential origin from Douala. The presence of a unique 
resistant haplotype H36 support a unique origin of the 
1534C allele in Cameroon probably in Douala with a 
gradual spread in the country. As Douala is the main port 
of Cameroon, it is not excluded that the 1534C may have 
been imported recently instead of a de novo local selec-
tion. Indeed, our sequences clustered with the reference 
sequences downloaded in GenBank (accession numbers: 
MF794989.1, MF794985.1 and MF794990.1) coming 
from Thailand [56].

The absence of a reduced diversity at the VGSC in 
Douala and Edéa as shown from ML tree and TCS hap-
lotype network is due to recent selection of this resistant 
allele in these locations which is further supported by the 
low frequency of homozygote CC. However, these popu-
lations will need to be monitored as increasing pressure 
may lead to the further selection associated with reduced 
diversity as seen in other locations such as in Malaysia 
[48] for Ae. aegypti. Such increasing selection pressure 
on mosquitoes populations have also been observed for 
metabolic resistance genes such as GSTe2 for the L119F 
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in Benin [57] or cytochrome P450 (CYP6P9a/b) [58–60] 
leading to drastic reduced diversity.

In addition, it will be interesting to genotype other 
mutations such as 1016 and 410 which have been found 
implicated in kdr resistance in Ae. aegypti [22, 28–30] 
and investigate the genes involved in metabolic resistance 
such as CYP9 overexpressed in several regions worldwide 
including in Africa [35].

Conclusions
Our result revealed a variable level of susceptibility 
among populations towards insecticides tested across 
the country. The full susceptibility to organophosphates 
at both larval (temephos) and adult stages (fenitrothion) 
makes this insecticide class very suitable for control Ae. 
aegypti in Cameroon. Furthermore, this study revealed 
for the first time the presence of target site mutation 
F1534C in Cameroon. Data generated in this study could 
serve as baseline to implement further investigations and 
planning efficient insecticide-based interventions against 
Ae. aegypti in Cameroon.
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