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Abstract

Background: Anaemia and malaria are common and life-threatening diseases among preschool-aged children in
many tropical and subtropical areas, and Malawi is no exception. Accordingly, this study aimed to examine the
association of referral clinical malaria with anemia (hemoglobin [Hb] < 110 g/L) in preschool-aged children in Malawi.

Methods: Using cross-sectional data obtained from the 2015–2016 Malawi Micronutrient Survey (MNS), multivariate
logistic regression models were constructed using surveylogistic to account for the complex survey design. Blood
samples of 1051 children aged 6–59months were evaluated for malaria (using rapid diagnostic test [RDT] – SD BIOLINE
Malaria Ag P.f/Pan test histidine-rich protein (HRP-II)™), Hb (using HemoCue 301), α-1-acid glycoprotein (AGP), and
serum ferritin biomarkers (using simple sandwich enzyme-linked immunosorbent assay technique, ELISA) and inherited
blood disorders from dry blood samples (DBS) using polymerize chain reaction (PCR). Diagnosis of clinical malaria was
made on the basis of fever and a positive rapid diagnostic test (RDT).

Results: Of the 1051 PSC analysed, 29% had anaemia while 24.4% had a referral to the hospital due to malaria. After
adjustments for known confounders, PSC with a history of referral clinical malaria had increased odds of being anaemic
(adjusted odds ratio [aOR] = 4.63, 95% confidence interval [CI]: 2.90–7.40), P < 0.0001.

Conclusions: This study found that clinical malaria increased the risk of anaemia in PSC. Thus, elimination of malaria-
causing parasites from the PSC’s blood should be rapid and complete in order to prevent the progression of
uncomplicated malaria to a chronic infection that can lead to the development of malaria-related anaemia.
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Background
According to the World Health Organization (WHO),
anaemia is a condition characterized by the reduced
number of red blood cells (RBCs) and consequently their

oxygen-carrying capacity is insufficient to meet the
body’s physiologic needs [1]. Globally, anaemia is a pub-
lic health problem with major consequences for human
health as well as social and economic development [2].
Anaemia occurs at all stages of the life cycle but it is
more pervasive in pregnant women and young children
[3]. The global prevalence of anaemia is estimated at
24.8%, while the prevalence of anaemia in preschool-
aged children is estimated at 47.4% [4]. In Malawi, ac-
cording the 2015–2016 Malawi Demographic and Health
Survey (MDHS), 63% of children suffers from some de-
gree of anaemia [5]. Globally, approximately 50% of the
cases of anaemia are due to iron deficiency (ID),
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although other conditions, such as folate, vitamin B12
and vitamin A deficiencies, chronic inflammation, para-
sitic infections such as malaria, and inherited disorders
can all cause anaemia [6].
Malaria is also a major cause of morbidity and mortality

among preschool-aged children in sub-Saharan Africa [7].
It is reported that 219 million new cases of malaria are re-
ported annually, of which a big proportion is children
under five years of age [8]. As of 2018, the WHO reported
that 435 000 deaths owing to malaria had occurred world-
wide, of which 403 000 deaths (approximately 93%) were
recorded in the sub-Saharan Africa [9, 10]. Malaria is
caused by Plasmodium parasites which are transmitted to
people through the bites of infected female Anopheles mos-
quitoes [11]. In Malawi, through the Ministry of Health’s
(MoH) National Malaria Control Program, the government
has been scaling up the distribution of artemisinin-based
combination therapies (ACTs), intermittent preventive
treatment for pregnant women (IPTp) using sulfadoxine-
pyrimethamine (SP), and insecticide-treated nets (ITNs)
[12]. This development has led to a decline in under-five
mortality from 234 deaths per 1000 live births in the 1990s
to 63 deaths per 1000 live births in 2015 [5]. Unfortunately,
despite this progress, malaria continues to be the leading
cause of death among preschool-aged children in Malawi,
accounting for 22% of all deaths of the under-five children.
Furthermore, more than 50% of all admissions in Malawian
hospitals among preschool-aged children are due to malaria
[12]. Generally, malaria interventions are reported to re-
duce the risk of anaemia by 60% when using a diagnostic
cut-off of 80 g/L [13].
Malaria parasites constitute one of the most compli-

cated and multifactorial life cycle [14]. The Plasmodium
falciparum involves an increased removal of parasitized
and unparasitized RBCs through cytokine-mediated dyser-
ythropoiesis and bone marrow suppression to iron
delocalization [15]. Precisely, the malaria parasites invade
the blood after an infective bite from female Anopheles
mosquitoes and end up infecting the RBCs. At the end of
that infection cycle, RBCs ruptures and releases more par-
asites into the bloodstream [16]. As such, this process re-
duces the number of RBCs resulting in moderate to severe
anaemia. A great deal of intervention regarding malaria
and anaemia in Malawi have been implemented [17–20]
however little has been done to understand why the preva-
lence anaemia in preschool-aged children remains un-
acceptably high. Thus, the current study aimed to
examine the likelihood of clinical malaria and the develop-
ment of childhood anaemia in Malawi.

Methods
Study area
This study was conducted in Malawi, a sub-Saharan Afri-
can country located south of the equator. Malawi is

bordered by the United Republic of Tanzania, the People’s
Republic of Mozambique, and the Republic of Zambia.
Malawi has a tropical continental climate with maritime
influences. Rainfall and temperature vary depending on
altitude and proximity to the lake [21]. Malaria transmis-
sion is perennial in most areas and peaks during the rainy
season from November to April. However, higher malaria
transmission occurs along Lake Malawi and the lowland
areas of the lower Shire Valley [12].

Data source, and sampling method
The current study utilized data taken from the 2015–
2016 Malawi Micronutrient Survey (2015–16 MNS)
[22]. The MNS was conducted jointly with the 2015–
2016 MDHS between December 2015 and February
2016. The comprehensive methods used in this study
can be obtained from the 2015–2016 MNS report. In
brief, the 2015–2016 MDHS employed a two-stage sam-
pling designed to produce a nationally representative
sample. The first stage selected 850 clusters proportional
to population. The second stage selected 27 516 house-
holds from the clusters with an equal probability system-
atic selection. The 2015–2016 MNS was selected as a
subsample of the MDHS to produce estimates of the key
indicators for the country as a whole and stratified by re-
gion and residence. A subsample of 105 clusters (35
clusters in each of the three regions) was randomly se-
lected from the 850 MDHS clusters. Figure 1 shows the
allocation of selected clusters and households with re-
spect to residence and region.

Data collection and study sample
Data were collected from women aged 15–49 with chil-
dren younger than five years of age prior to the survey
using standard questionnaires. In the DHS data, of the
25 146 eligible households, 24 562 were successfully
interviewed representing a 98% response rate. Informa-
tion on sociodemographic, household and economic fac-
tors were collected through face-to-face interviews. As
per WHO recommendations, analysis of the current
study was restricted to all PSC aged 6–59months [1].

Field and laboratory procedures
An axillary temperature of every child was documented
where by fever was defined as an axillary temperature of
equal to or greater than 37.5 °C. Regarding to laboratory,
approximately 7 ml of blood samples were collected
from PSC for biochemical and haematological tests.
About 5ml of the blood sample was transferred into
trace free elements (Royal Blue Top) test tube and 2ml
into Purple Top – Ethylenediaminetetraacetic acid
(EDTA) test tube [22]. About 10 μl of whole the blood
sample from EDTA vacutainer was used to tested an-
aemia (Hb concentration) using HemoCue® 301 system
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(Ängelholm, Sweden) and another 10 μl for malaria
using a rapid diagnostic test (RDT) kit the Standard
Diagnostic (SD) BIOLINE Malaria Ag P.f/Pan histamine-
rich protein (HRP-II)™ RDT) – Standard Diagnostics
Inc., Suwon City, South Korea [23, 24]. The remaining
blood from EDTA vacutainer was used to test for RBC
folate in women of reproductive age and inherited blood
disorders (alpha thalassemia, G6PD, and sickle cell using
PCR) in PSC. The plasma from EDTA vacutainer was
store at − 20 °C as back in CHSU laboratory. On the
other hand, 100 μL of serum from Royal Blue Top was
transferred into polymerize chain reaction (PCR) vials
and were ship to German for the biochemical examin-
ation of Ferritin and Alpha-1-Acid Glycoprotein (AGP)
along with other parameters such as Soluble Transferrin
Receptor (sTfR), C-reactive protein (CRP), and Retinol
Binding Protein (RBP) [22]. A combined measurement
of the biochemical tests for ferritin and AGP and other
biochemical micronutrient parameters were performed
using an inexpensive, sensitive, and simple sandwich
enzyme-linked immunosorbent assay (ELISA) technique
in the VitMin laboratories in German [25]. To identify
the glucose-6-phosphate dehydrogenase (G6PD) defi-
ciency, the widely known G6PD A — variant was investi-
gated using three commercially available TaqMan probe
sets (Applied Biosystems Foster City, CA, USA); A376G
(rs1050829) distinguished A and B isoforms, G202A

(rs1050828) identified the A — variant, and sex was
scored using SRY_VIC and ABCD1_CCHS0H-FAM for
Y and X chromosomes, respectively. Each assay included
positive and negative controls, with random sample du-
plicates [6]. To detect alpha-thalassemia trait, the 3.7-kb
α-globin gene deletion (−α3.7) was rated using a copy-
number variant TaqMan assay with custom TaqMan
probes, as described elsewhere [26]. The procedure for
the identification of sickle status has been described be-
fore [6]. In brief, amplification of the β-globin gene was
performed using forward (5′-TGC TTA CCA AGC
TGT GAT TCC-3′) and reverse (5′-CTT CCT ATG
ACA TGA ACT TAA CCA-3′) primers. Haemoglobin S
(HbS) mutation (Glu6Val) was evaluated by a custom
TaqMan probe (RT-PCR) designed for the HbS (sickle,
rs334) polymorphism.

Measures
Dependent variable
Childhood anaemia was the dependent variable of this
study. Using the WHO recommendations, anaemia in
PSC was characterized as children with Hb concentra-
tion < 110 g/L after adjusting for altitude [1]. Altitude-
adjusted Hb concentration less than 40 g/L or greater
than 180 g/L were considered extreme and excluded
from the analysis [27].

Fig. 1 Allocation of the selected clusters and households with respect to region and residence

Ntenda et al. Infectious Diseases of Poverty            (2019) 8:95 Page 3 of 11



Main independent variable
Clinical malaria was the main independent variable
assessed in this study. Clinical malaria was defined as
any PSC with malaria-related symptoms such as fever –
an axillary temperature ≥ 37.5 °C, chills, severe malaise,
headache or vomiting at the time of examination or 48 h
prior to the examination in the presence of a Plasmo-
dium falciparum positive blood smear [28]. However, in
this study, a positive Plasmodium falciparum result was
confirmed using the RDT [22].

Covariates
The covariates included in this study were; age of the
child in months, sex of the child, and fever in last two
weeks, malaria test result, α-1-acid glycoprotein (AGP),
serum ferritin, α-thalassemia, household hunger scale,
type of place of residence, and region of residence were
used as covariates. The sex was grouped as (male/fe-
male), the age of the children was categorized as 6–11,
12–23, 24–35, 36–47, and 48–59 months. As regards
fever in the last two weeks, the respondents were asked
if the child had a fever (yes/no) in the last two weeks,
while malaria test result was categorized as positive or
negative. AGP and serum ferritin were grouped as nor-
mal or abnormal. Abnormal value for AGP was AGP
levels of greater than 1 g/L and abnormal levels for
serum ferritin were less than 12 μg/L. Serum ferritin ad-
justed for inflammation using internal regression ap-
proach [29]. The household hunger scale was
categorized as little to no hunger and moderate to severe
hunger using the recommendations from the Food and
Nutrition Technical Assistance III Project (FANTA)
[30]. The type of place of residence (rural and urban),
and region of residence (northern, central, and southern)
were used to assessed area of residence and region
respectively.

Statistical analysis
All statistical analyses were conducted using SAS soft-
ware version 9.4 (SAS Institute, Cary, NC, USA). To ac-
count for the complex survey design, the survey-specific
SAS procedures for weighting, clustering, and stratifica-
tion in the survey design (SurveyFreq) was used to re-
port the basic statistics. Baseline characteristics were
reported as weighted frequency and percentages. The P-
values from the bivariate analyses were reported using
Rao-Scott Chi-Square to test the differences between
groups anaemic (yes/no). All factors that showed signifi-
cance at P ≤ 0.25 in the bivariable analyses were fitted
into the final models of the regression analyses in order
to have the best fit statistical model. The multivariate re-
gression analyses were performed using Surveylogistic
where anaemia was the dependent variable and charac-
teristics such as sociodemographic, clinical, biochemical,

and inherited blood disorders were the independent var-
iables. Adjusted odds ratio (aOR) with their p-values and
95% confidence interval (CI) were reported.

Ethical statement
Protocols for the MNS 2016 were approved by the Na-
tional Health Sciences Research Committee (NHSRC)
and the Institutional Review Board (IRB) of ICF Macro
(https://dhsprogram.com/What-We-Do/Protecting-the-
Privacy-of-DHS-Survey-Respondents.cfm). The survey
was implemented by the National Statistics Office
(NSO) and the Community Health Sciences Unit
(CHSU). At the beginning of each interview and prior to
blood collection, informed consent from MNS eligible
households and the survey participants were sought.
Furthermore, community leaders provided the consent
of survey activities. ICF Macro IRB ensures that the sur-
vey is in line with the U.S. Department of Health and
Human Services regulations for the protection of human
subjects (45 CFR 46), while the NHSRC ensures that the
survey was conducted with laws and norms of the
Malawi.

Results
Baseline characteristics of the study participants
Of the 1051 PSC, 29.0% had anaemia (Hb < 110 g/L). The
prevalence of clinical malaria was 27.4%. Similarly, the
prevalence of Plasmodium falciparum positive RDT was
27.6%. The prevalence of fever in the last two weeks was
43.3%. Table 1 reports the baseline characteristics of the
study sample. Approximately, 51% of the children were
male and a majority of children (56%) had abnormal levels
of α-1-acid glycoprotein while about 22% had abnormal
levels of serum ferritin. Furthermore, a majority of chil-
dren did not have G6PD (72%) nor α-thalassemia (60%).
A majority of children (60%) were residing in household
with moderate to severe hunger and more than three-
quarter (89%) of the children were rural dwellers.

Results of the bivariate analysis
Table 2 presents the prevalence of anaemia by clinical
and demographic characteristics of study sample. The
prevalence of anaemia was significantly high in PSC of
age group 6–11months (P < 0.0001) – Fig. 2 presents
the prevalence of anaemia by age of the child. The
prevalence of anaemia was also high in children with a
history of fever in the last two weeks (P < 0.0001), in
PSC with a positive RDT (P < 0.0001), in PSC with re-
ferral clinical malaria (P < 0.0001). Furthermore, the
prevalence of anaemia was high in PSC with abnormal
levels of AGP (P < 0.0001) and serum ferritin
(P < 0.0001).
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Multivariable results of clinical malaria and anaemia
Table 3 shows unadjusted and adjusted odds ratio of
clinical malaria on anemia. PSC who had a history of
referral clinical malaria, were over four times (aOR =
4.63; 95 CI: 2.90–7.40); P < 0.0001, compared to
those PSC without a history of clinical malaria even
after adjusting for known factors associated with an-
aemia. Additionally, the odds of anaemia were high in
PSC of the age group 6–11 months (aOR = 4.40; 95%
CI: 1.82–10.61); P = 0.0003, in PSC with a history of
fever in the last two weeks (aOR = 1.58; 95% CI: 1.04–
2.39); P = 0.0324, in children with high levels of AGP
(aOR = 2.13; 95% CI: 1.36–3.34); P = 0.0010, those with
iron deficiency (aOR = 2.37; 95% CI: 1.40–4.02); P =
0.0014, and those with alpha-thalassemia disease
(aOR = 4.08; 95% CI: 1.74–9.59); P = 0.0004.

Discussion
The aim of this study was to examine the likelihood of
clinical malaria and the development of childhood an-
aemia in Malawi. This is the first study to report the as-
sociation of clinical malaria and the likelihood of
anaemia in PSC using a nationally representative sample
in Malawi. Accordingly, this study revealed that children
who had clinical malaria were more likely to develop
anaemia.
Anaemia occurs when RBCs are destroyed at an

increased rate than the rate at which are supposed
to be replaced or when RBC production falls below
the rate at which the body requires to maintain a
steady state [31]. The pathogenesis of malarial-
anaemia is said to be multifactorial but the exact
mechanisms behind several haematology changes in
the course of malaria is poorly understood [32].
However, this process involves a great deal of
phenomenon including immune and non-immune
mediated destruction of the parasitized and non-
parasitized RBCs (pRBC’s and npRBC’s), bone

Table 1 Sociodemographic, comorbidities and biochemical
characteristics of the study sample

Variable Frequency
n = 1051

Percent
(%)

Sex

Female 539 49.18

Male 512 50.82

Age (months)

6–11 97 9.43

12–23 221 21.77

24–35 257 25.29

36–47 264 24.00

48–59 212 19.52

Fever in last 2 weeks

Yes 505 43.25

No 546 56.75

Malaria test result†

Positive 278 27.63

Negative 773 72.37

Clinical malariaa

Yes 271 27.37

No 780 72.63

Alpha1-Acid Glycoprotein

Normal 443 44.33

Abnormal 608 55.67

Serum ferritinb

Normal 835 78.29

Abnormal 216 21.71

G6PD (n = 1004)

Unaffected 723 72.08

Affected 118 11.76

Carrier 162 16.15

Alpha-thalassemia (n = 999)

Unaffected 609 60.96

Affected 80 8.01

Carrier 310 31.03

Household hunger scale

Little to none 485 39.98

Moderate to severe 566 60.02

Type of place of residence

Urban 117 10.03

Rural 934 89.97

Region of residence

North 372 13.82

Central 383 44.34

Southern 296 41.84

Outcome variable

Table 1 Sociodemographic, comorbidities and biochemical
characteristics of the study sample (Continued)

Variable Frequency
n = 1051

Percent
(%)

Any anemia

< 110 g/L 742 70.96

≥ 110 g/L 309 29.04

G6PD Glucose-6-phosphate dehydrogenase
aDefined as an individual with malaria-related symptoms (fever [axillary
temperature ≥ 37.5 °C], chills, severe malaise, headache or vomiting) at the
time of examination or 1–2 days prior to the examination in the presence of a
Plasmodium falciparum positive blood smear; bSerum ferritin adjusted for
inflammation using internal regression approach, †malaria test using a rapid
diagnostic test (RDT) kit the Standard Diagnostic (SD) BIOLINE Malaria Ag P.f/
Pan histamine-rich protein (HRP-II)™ RDT)
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marrow impairment, altered cytokine balance, nutri-
tional deficiency, and interactions with common he-
moglobinopathies and erythrocyte defects and
thalassemia which compromises rapid recovery from
anaemia – Fig. 3 presence the pathogenesis of mal-
aria infection and anemia [33, 34].
Malarial infection begins when sporozoites are in-

oculated together with anti-coagulant saliva in the
course of a blood meal of an infected Anopheles
mosquito [16, 35, 36]. Following inoculation of the
sporozoites, the parasites travel to the liver in search
of a conducive environment in the hepatocyte and
successfully replicate in the liver, after which newly
formed merozoites are released back in the blood-
stream [16, 37]. During the blood stage of the asex-
ual developmental cycle, malaria parasites replicate
inside RBCs. As this process continues more RBCs
get destroyed and merozoites induce changes in
RBC membranes and increase splenic activities
hence increase destruction and clearance of parasit-
ized RBCs [38].
Infection with Plasmodium species induce homeo-

static imbalance and lower Hb concentration thus
resulting in anemia [34]. It has been reported that
imbalance of cytokines such as tumor necrosis fac-
tor alpha (TNF-α), interleukin-6 (IL-6), IL-10 and
interferon gamma (IFN-γ) resulting from malaria
related-inflammation can induce changes in iron ab-
sorption and distribution (iron delocalization) [39].
Iron delocalization end up in decreasing the release
of iron from the reticuloendothelial system as well
as increasing uptake of iron from the reticuloendo-
thelial system thus resulting in iron accumulation in
tissues/secretions and iron deficiency in blood [39,
40]. Generally, hepcidin, an iron regulatory hormone
is a crucial determinant in the relationship between
inflammation and anaemia. It is known that
pro-inflammatory cytokines secretion is up-regulated
by hepcidin from macrophages and hepatocytes
which in turn inhibits iron absorption and its re-
lease from macrophages by down-regulating the
concentration of ferroportin thereby contributing to
iron deficiency anaemia through the reduction of
RBCs production [41].
Another pathway by which an altered cytokines

balance and inflammation can induce anemia is
through bone marrow depression (dyserythropoiesis)
and erythrophagocytosis following low IL-10 and IL-
12 or excess of T helper cell type 1 (th1), cytokines
follicular helper T cells (TFH), TNF- α and nitric
acid (NO) [42]. Often times, dyserythropoiesis in-
duces the morphological abnormalities of the eryth-
roid series which include multinuclearity of the
normoblasts, intracytoplasmic bridging, karyorrhexis,

Table 2 Sociodemographic, comorbidities and biochemical
characteristics by anemiaa

Variable Non-anemic
n (%)

Anemica

n (%)
P value

Sex 0.5618

Female 374 (69.39) 165 (30.61)

Male 368 (71.88) 144 (28.13)

Age (months) < 0.0001

6–11 45 (46.39) 52 (53.61)

12–23 136 (61.54) 85 (38.46)

24–35 185 (71.98) 72 (28.02)

36–47 202 (76.52) 62 (23.48)

48–59 174 (82.08) 38 (17.92)

Fever in last 2 weeks < 0.0001

Yes 320 (63.37) 185 (36.63)

No 422 (77.29) 124 (22.71)

Malaria test result† < 0.0001

Positive 127 (45.68) 151 (54.32)

Negative 615 (79.56) 158 (20.44)

Clinical malariab < 0.0001

Yes 123 (45.39) 148 (54.61)

No 619 (79.36) 161 (20.64)

Alpha1-Acid Glycoprotein < 0.0001

Normal 366 (82.62) 77 (17.38)

Abnormal 376 (61.84) 232 (38.16)

Serum ferritinc < 0.0001

Normal 613 (73.41) 222 (26.59)

Abnormal 129 (59.72) 87 (40.28)

G6PD 3.0684

Unaffected 514 (71.09) 209 (28.91)

Affected 82 (68.91) 37 (31.09)

Carrier 116 (71.60) 46 (28.40)

Alpha-thalassemia < 0.0001

Unaffected 445 (73.07) 164 (26.93)

Affected 39 (48.75) 41 (51.25)

Carrier 223 (71.94) 87 (28.06)

Household hunger scale 0.3706

Little to none 349 (71.96) 136 (28.04)

Moderate to severe 393 (69.43) 173 (30.57)

Type of place of residence 0.1684

Urban 89 (76.07) 28 (23.93)

Rural 653 (69.91) 281 (30.09)

Region of residence 0.6143

North 257 (69.09) 115 (30.91)

Central 277 (72.32) 106 (27.68)

Southern 208 (70.27) 88 (29.73)

G6PD Glucose-6-phosphate dehydrogenase
aHb < 110 g/L; bdefined as an individual with malaria-related symptoms (fever
[axillary temperature ≥ 37.5 °C], chills, severe malaise, headache or vomiting) at
the time of examination or 1–2 days prior to the examination in the presence of
a Plasmodium falciparum positive blood smear; cSerum ferritin adjusted for
inflammation using internal regression approach, †malaria test using a rapid
diagnostic test (RDT) kit the Standard Diagnostic (SD) BIOLINE Malaria Ag P.f/
Pan histamine-rich protein (HRP-II)™ RDT)
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incomplete and unequal mitotic nuclear divisions in
RBCs of the individuals infected with malaria [43–
45], hence induces erythrophagocytosis of the para-
sitized and unparasitized RBCs activities. Addition-
ally, the mechanism that leads to reduced
production of RBCs may be due to erythroid hypo-
plasia induced by inflammation [46]. The normal re-
sponse to erythropoietin is suppressed due to an
autologous serum factor. This may further suppress
the growth of early precursors of RBCs including
the burst forming unit- erythroid (BFU-E) and col-
ony forming-unit erythroid (CFU-E) [47, 48]. Fur-
thermore, another pathway by which malarial
infection increases erythrophagocytosis of the para-
sitized and unparasitized RBCs is through activation
of complement and deposition of immune com-
plexes on RBCs by cytotoxic natural killer and nat-
ural killer cells [49–51]. It has been reported that
complement plays a role in the occurrence of
anemia in the course of malaria infection by
opsonization of unparasitized RBCs with C3 frag-
ments which in turn can lead to phagocytosis of
RBCs [52, 53].
In addition to clinical malaria, the other charac-

teristics such as the age of the child, a history of
fever in the last two weeks, AGP, serum ferritin,
and alpha thalassemia were significantly associated
with anaemia in PSC. The results of age are in line
with the past research where it was reported that
anaemia is frequent among children around the time
of the growth spurt, especially between the ages of

6 and 24 months [54, 55]. During the infant growth
spurt (6–12 months), the physical development is
rapid, and the blood volume is largely expanded,
whereas the iron storage from the maternal source
has usually been depleted. Therefore, an inadequate
intake of exogenous iron during this period could
lead to anaemia [56]. Fever is a common response
that occurs as the result of infection and inflamma-
tory diseases and it goes beyond the site of infection
[57]. It is known that some pathogens can end up
in the production of pyrogens, chemicals that effi-
ciently modify the thermostat status of the hypo-
thalamus to raise body temperature and cause fever
[58]. Generally, pyrogens may induce the leukocytes
to release endogenous pyrogens such as interleukin-
1 (IL-1), IL-6, interferon-γ (IFN-γ), and tumour ne-
crosis factor (TNF) [58, 59]. In turn, these mole-
cules can then trigger the release of prostaglandin
E2 (PGE2) from other cells, resetting the hypothal-
amus to initiate fever [58, 59]. We also found that
children with alpha-thalassemia had increased odds
of being anaemic. Alpha-thalassemia is inherited as
an autosomal recessive disorder which is character-
ized by a microcytic hypochromic mild anaemia and
a clinical phenotype varying from almost asymptom-
atic to lethal haemolytic anaemia [60]. Furthermore,
children with abnormal levels of serum ferritin and
AGP levels were significantly more likely to be an-
aemic. AGP is a measure of chronical inflammation
while serum ferritin is a measure of iron deficiency.
The mechanisms through which both of these

Fig. 2 Prevalence of anaemia by the age of the child
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parameters result in anaemia have been explained
earlier in this paper and elsewhere [61].

Strengths and limitations
The findings can be generalized in the Malawian context
due to the use of the nationally representative sample.
The use of malaria RDTs was helpful since they can as-
sist in making a rapid, accurate diagnosis in circum-
stances where the microscopy-based diagnosis may be
unreliable or available. The use of serum ferritin and
alpha-thalassemia makes our results on clinical malaria
to be robust and valid. However, the use of cross-
sectional study design cannot provide a causal relation-
ship between the explanatory variable and anaemia. The
HemoCue system was used for assessment of Hb levels.
Additional studies may need the use of other Hb indices
to define anaemia. The RDT may not be able to detect

some infections with lower numbers of malaria parasites
circulating in the patient’s bloodstream. In addition, all
positive RDTs should be followed by microscopy.

Conclusion
In this study we aimed to examine the likelihood of
clinical malaria and the development of anaemia among
PSC in Malawi. Indeed, the results of this study have
demonstrated that clinical malaria is a potential risk
factor for anaemia in PSC. Thus, clearance of the Plas-
modium parasite from the PSC’s blood should be rapid
and complete in order to prevent progression of un-
complicated malaria to a chronic infection that leads to
malaria-related anaemia. The results of this study have
some policy implications, i.e. programmes that aim at
combating anaemia in infants and young children

Table 3 Association of clinical malaria and anemiaa in preschool-aged children

Variable crOR (CI) P value aOR (CI) P value

Clinical malariab

Yes 3.78 (2.55–5.59) < 0.0001 4.63 (2.90–7.40) < 0.0001

No 1.00 1.00

Age (months)

6–11 4.87 (2.39–9.93) < 0.0001 4.40 (1.82–10.61) 0.0003

12–23 2.66 (1.46–4.86) 0.0399 2.18 (1.05–4.56) 0.1179

24–35 1.29 (0.73–2.30) 0.0450 0.90 (0.44–1.88) 0.0071

36–47 1.20 (0.67–2.16) 0.0186 1.11 (0.56–2.21) 0.0733

48–59 1.00 1.00

Fever in last 2 weeks

Yes 1.75 (1.21–2.53) 0.0029 1.58 (1.04–2.39) 0.0324

No 1.00 1.00

Alpha1-Acid Glycoprotein

Abnormal 2.50 (1.64–3.81) < 0.0001 2.13 (1.36–3.34) 0.0010

Normal 1.00 1.00

Serum ferritinc

Abnormal 1.97 (1.26–3.09) 0.0031 2.37 (1.40–4.02) 0.0014

Normal 1.00 1.00

Alpha-thalassemia

Unaffected 1.01 (0.66–1.53) 0.0030 0.90 (0.57–1.42) 0.0018

Affected 3.62 (1.84–7.10) < 0.0001 4.08 (1.74–9.59) 0.0004

Carrier 1.00 1.00

Type of place of residence

Urban 1.27 (0.53–3.01) 0.5981 2.17 (0.97–4.89) 0.0601

Rural 1.00 1.00

crOR: Crude odds ratio; aOR: Adjusted odds ratio; CI: Confidential interval
aAnemia defined as Hb < 110 g/L; bdefined as an individual with malaria-related symptoms (fever [axillary temperature ≥ 37.5 °C], chills, severe malaise, headache
or vomiting) at the time of examination or 1–2 days prior to the examination in the presence of a Plasmodium falciparum positive blood smear; cSerum ferritin
adjusted for inflammation using internal regression approach
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should not focus on iron supplementation, deworming
treatment, and complementary feeding practices as
strategies to manage anemia, diagnosis and case man-
agement of malaria should also be considered promptly
as it has been proved by this study that clinical malaria
is associated with anaemia in PSC thus, posing threats
to the strategies that were out in place to tackle an-
aemia in Malawi.
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