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Abstract

Background: The climate variables that directly influence vector-borne diseases’ ecosystems are mainly temperature
and rainfall. This is not only because the vectors bionomics are strongly dependent upon these variables, but also
because most of the elements of the systems are impacted, such as the host behavior and development and the
pathogen amplification. The impact of the climate changes on the transmission patterns of these diseases is not easily
understood, since many confounding factors are acting together. Consequently, knowledge of these impacts is often
based on hypothesis derived from mathematical models. Nevertheless, some direct evidences can be found for several
vector-borne diseases.

Main body: Evidences of the impact of climate change are available for malaria, arbovirus diseases such as dengue,
and many other parasitic and viral diseases such as Rift Valley Fever, Japanese encephalitis, human African
trypanosomiasis and leishmaniasis. The effect of temperature and rainfall change as well as extreme events, were found
to be the main cause for outbreaks and are alarming the global community. Among the main driving factors, climate
strongly influences the geographical distribution of insect vectors, which is rapidly changing due to climate change.
Further, in both models and direct evidences, climate change is seen to be affecting vector-borne diseases more
strikingly in fringe of different climatic areas often in the border of transmission zones, which were once free of these
diseases with human populations less immune and more receptive. The impact of climate change is also more
devastating because of the unpreparedness of Public Health systems to provide adequate response to the events, even
when climatic warning is available. Although evidences are strong at the regional and local levels, the studies on
impact of climate change on vector-borne diseases and health are producing contradictory results at the global level.

Conclusions: In this paper we discuss the current state of the results and draw on evidences from malaria, dengue
and other vector-borne diseases to illustrate the state of current thinking and outline the need for further research to
inform our predictions and response.
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Background
“Climate is traditionally defined as the description in
terms of the mean and variability of relevant atmos-
pheric variables such as temperature, precipitation and
wind. Climate can thus be viewed as a synthesis or
aggregate of weather.” according to Goosse et al. [1].
These atmospheric parameters are of primary import-
ance for the development and natural life of all ecosys-
tems on our planet, but their influence separately or in
combination is highly complex and variable. For this rea-
son, in most situations, we can only approach this un-
derstanding through modeling [2]. Correlative models
can add an understanding of which parameters are the
most important ones in some special regions to explain
the climate suitability for a vector or a host. Further,
mechanistic models to describe the biological/ecological
processes of the transmission are needed and are
depending on detailed experimental work to study these
processes, and parameters [3]. The climate of the differ-
ent regions of the world is represented by averages over
many years and has been classified into several groups
with strong characteristics. Changes in the natural
climate can occur at different time-scale, from tens to
thousands of years. However, since we can report the cli-
matic variables such as temperatures and precipitations
more precisely in a time-based way (daily, weekly,
monthly etc.) data show changes including the increase
of temperatures, increase and decrease of precipitation
and abnormal occurrence of extreme events [4]. How
these changes will affect human health and the transmis-
sion of vector-borne diseases (VBDs) specifically is a
question of great concern [5]. VBDs can be considered
as whole ecosystems that include the vectors-pathogens-
hosts relationship, linked to specific environmental con-
ditions [6]. The changes in temperature and precipita-
tion, either in intensity, mean, minimum and maximum
values, as well as the duration and the variability of the
changes, will affect the environment in which the VBDs
are transmitted. These environments may become more
or less favorable to the vectors and/or the animal reser-
voirs, as well as disease transmission. The changes will
also affect the human host by displacing populations due
to drought or flooding, or by affecting agricultural prac-
tices and housing systems. The changes will also affect the
bionomics of the vectors, in particular the insect vectors.
Over the past 50 years, the earth’s climate has been

affected by global warming, with an increase of surface,
air and ocean temperature, resulting in the melting of
glaciers and the rise of sea levels [5, 7]. The increasing

occurrence of extreme events hits most dramatically the
poorest countries, already facing the worst infectious
diseases situations [8]. The consequences of the climatic
changes on public health are not fully understood. How-
ever, the risk of emergence of new transmission zones,
including in developed countries, is great and empha-
sizes the need to build our preparations to face such
events [9]. Although the causes and consequences of
climate changes remains the subject of important discus-
sions [10–12], there is a consensus on the necessity to
develop and use new tools for more accurate prediction
of the impact of the climatic variables on the different
aspects of VBDs transmission [13]. In this paper,
evidence will be provided on the impact of climate
changes on vectors and VBDs transmission in different
types of systems. However, some basic information on
how the vectors are responding to temperature change
is essential to a better understanding of the impact of
the changes.
The insect vectors that transmit pathogens become

infectious mainly after the ingestion of the pathogen
through a blood meal on an infected host, followed by
the pathogens amplification/circulation in the insect’s
body, before the vector become infectious [14]. In the
case of mosquitoes and arboviruses transmission, the
duration of this amplification is called the Extrinsic
Incubation Period (EIP) and is strongly dependent upon
temperature [15, 16]. Consequently, the climatic condi-
tions and fluctuations have a direct impact on the transmis-
sion of arboviruses. The vector competence is a key-factor
that may allow or not the transmission and is genetically
determined and climatically modulated [17]. Furthermore,
insects are cold-blooded or poikilothermic organisms and
cannot regulate their own temperature. Since specific body
temperatures need to be reached to achieve essential bio-
chemical reactions, the development and physiological
functions of the insect is dependent upon the ambient
temperature and requires a certain amount of heat to be
completed [18]. The amplification of viruses into the
mosquito body includes several physiological processes, un-
known for many of them [19], but also related to
temperature and heat accumulation [20]. The physiological
processes in virus amplification start above a threshold
temperature and are completed when the thermal constant
is reached [21]. The measure of accumulated heat or
thermal constant is well described by the physiological
time concept and can be expressed through the
degree-days method [22–24]. The numerous studies
on the Extrinsic Incubation Period (EIP) examining
constant and variable temperatures have shown that
EIP decreases when temperature increases from a
threshold until a maximum, above which the EIP in-
creases again [25, 26]. The impact of temperature
changes on VBDs transmission can further have
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indirect effects such as the biting behavior, fecundity
and survival of the vectors [27] and insecticide resist-
ance [28].
Other climatic variables that strongly influence VBDs

transmission are water-related, such as rainfall period,
duration and abundance, and the humidity of the envir-
onment [29]. Although our knowledge of the physio-
logical responses of the insect vectors to the climatic
data is increasing, the evidence for changes in transmis-
sion are not easily found, both because they require
inter-disciplinary studies in regions lacking the necessary
expertise, and also because of a lack of adequate data on
relationships between climatic variables and transmis-
sion parameters such as vectors bionomics including the
biting behavior, the resting time for eggs maturation and
many other life traits. Nevertheless, the studies presented
below clearly show how climate change had an impact or
is influencing VBDs transmission for some important dis-
eases, such as malaria, dengue and other diseases in differ-
ent geographical areas. The objective of this manuscript is
clearly to provide available evidences on facts, conse-
quently potential changes based on modelling from future
scenarios are not included and discussed.

Main text: a look at the evidence
Impact of climatic variables on VBDs transmitted by
mosquitoes
To better understand which climatic variables are affect-
ing the VBDs ecosystem and how, the literature was
searched firstly on PubMed with the words “climate”
and “mosquitoes” and “diseases”, than the word “dis-
eases” was replaced by the name of specific diseases such
as “malaria”, “dengue” and other diseases names. From
all publications available, only those presenting direct
evidences which were facts and situations with proof of
relationships between vectors/diseases outcomes and
climate changes, were selected to be included in the dis-
cussion. From the selected literature, further publica-
tions were sometimes referenced. The objective of this
review was not to be exhaustive in referring to all exist-
ing direct evidences, but more to show which mecha-
nisms were at work and how the changes/trends of the
climatic variables are currently influencing the different
vector-borne diseases systems. As an example, the cycle
of a mosquito-transmitted pathogen is divided into two
parts, one part is in the vector and the other part is in
the host(s). In the host, the pathogen will find stable and
suitable temperature conditions, since the host is regu-
lating its own temperature. On the other hand, in the
vector, the pathogen will find the suitable temperature
conditions only if the mosquito vector is exposed to a
favorable environment. As an example, the Aedes aegypti
mosquitoes will amplify and transmit dengue viruses

only if exposed to temperatures within the range of 20
to 35 °C [30]. These suitable temperature conditions are
one of the factors that may explain why the presence of
a competent species for transmitting a pathogen is not
sufficient for disease transmission, even if the pathogen
is introduced in a new region. To better illustrate this,
the numerous imported cases of dengue, chikungunya
and Zika viruses in European countries from travelers
do not result in frequent local transmission, even when
the competent vector Ae. albopictus is present and active
[31]. Further, the vector competence which is the intrin-
sic ability of a species to amplify and transmit the patho-
gen is mostly genetically determined and results from
long co-evolution between the vector and the pathogen
[32]. This competence is often confused with the vector-
ial capacity, which is the force of infection of a VBD in a
host population [33]. Vector competence can be studied
in the laboratory under forced climatic conditions and
provides the basic understanding of the potential risks of
transmission. On the other hand, the vectorial capacity
can be estimated only from field conditions with specific
parameters and provides an estimation of the real risks
of transmission.
When environmental conditions are changing because

of climate change, the genetically determined vector
competence will not be affected, but the vectorial
capacity may dramatically change and provide condi-
tions that are more favorable to outbreak transmission.
The vectorial capacity is a function of vector density,
which is strongly related to rainfall patterns in the case
of mosquitoes [34], of vector survival related to
temperature and humidity [35], of the EIP also related to
temperature, and of the biting behavior which was found
to be both genetically determined and temperature-
dependent [36]. None of these parameters fluctuate in
the same way, making predictions very unreliable with-
out a complete understanding of the relationships
between each parameter and climatic data. However, in
some situations, a trend dominates and the impact of
climate on a VBD transmission can be determined.
Further, since the insects cannot regulate their own body
temperature, they are known to look for favorable
micro-climatic conditions [37], which mean that the
easily available outdoors meteorological data do not
represent the true conditions to which the vectors are
exposed. As an example, when female mosquitoes are
resting in cool and humid places, they are not exposed
to high temperatures and dry environments [38]. Conse-
quently, the true understanding of how climatic changes
are affecting VBDs is not easily achieved and subject to
controversial hypothesis. Nevertheless, the evidence of
impact on malaria, dengue and other VBDs presented in
this paper should raise awareness and support the need
of action to mitigate these effects.
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Evidence of the impact of climate change on malaria
vectors and malaria transmission
One of the first pieces of evidence relating climatic
warming to an increase in malaria incidence was re-
ported from Rwanda in 1994, showing that an increase
in the mean minimum temperature explained 80% of the
variance in the monthly malaria estimates in high
altitude areas [39]. This finding is consistent with the
threshold effect of lower daily temperatures on the
extrinsic amplification period. In the following years,
malaria transmission was widely used as a model to
study the potential effect of different climate scenarios
on distribution and patterns of this disease [40–42]. In
most of the models, an increase of malaria transmission
was predicted under the current rate of global warming,
but some models showed a decrease in malaria trans-
mission, due to reduced overall vectorial capacity [43].
Nevertheless, the number of studies reporting the true
impact of climate change on malaria is rapidly increas-
ing. Warmer temperatures were found to affect malaria
trends in highland regions of East Africa [44], with real
changes larger than the predicted ones, probably due to
concomitant effects of unknown factors. This evidence
shows how difficult it is to assess the real impact of tem-
peratures changes. Warmer temperatures are particularly
affecting the Anopheles vectors distribution, such as the
distribution of Anopheles arabiensis in the slope of
Mount Kilimanjaro, resulting in a subsequent change in
malaria distribution [45]. The same effect on vector
distribution was also found for seven Anopheles species
in Iran [46] and for An. gambiae in Madagascar [47]. To
confirm these findings, an increase of malaria incidence
at higher altitudes was reported in other countries such
as Colombia and Ethiopia [48]. Variations in malaria
incidence were also reported during the colder phases of
the climatic phenomenon of la Niña in Venezuela [49].
In temperate regions moderately affected by malaria
transmission, the effect of changing temperature is more
complex. For example, in China malaria transmission is
more sensitive to minimum temperatures under cooler
climates and to maximum temperatures under warmer
climates, with a longer lag effect in cool climate [50].
Consequently, an increase of minimum temperatures will
increase malaria incidence in the northern parts, and
concomitantly an increase in maximum temperatures will
decrease malaria incidence in the southern parts.
Rainfalls and extreme flooding have also been found to

have an impact on malaria transmission such as in
Uganda, where an extreme flooding event resulted in an
increase of malaria risk of 30% [51]. In Zambia, an in-
crease of malaria incidence was correlated to unusual
rainfalls between 2008 and 2010 [52] and in Papua New
Guinea, the seasonality of malaria was related to the
rainfall in two different patterns according to the region.

A decrease of rain was associated with a decrease in
malaria incidence in the southern coastal region, and at
the opposite associated with an increase of malaria inci-
dence in higher altitude [53]. Further, malaria trends in
Papua New Guinea were associated to climatic factors at
a very local scale with a great variability between loca-
tions [54]. Some concomitant effects of temperatures
and rainfall were reported from Baringo county in
Kenya, where an increase of rainfall was associated with
an increase of malaria with a 2-month time lag, and an
increase of maximum temperatures was also associated
with an increase of malaria with a one-month (or less)
time-lag [55].
The moving distribution of malaria vectors, as well as

the fluctuations in malaria incidence are challenging vec-
tor control activities and impacting upon the malaria
elimination targets in some countries. The evidence of
changing patterns in malaria affected areas are not easily
correlated to climate changes alone, since they take
place in an overall changing situation, with modifications
of land-use, water-management and human activities
exposing different populations to different transmission
patterns [56]. Further the potential impact of climate
change on current vector control tools has not been
properly studied and observations of changes in sleeping
behavior when temperatures are rising at night time
could have more impact on transmission patterns than
the vector-related parameters. However, the evidence
reported here clearly shows that climate change is affect-
ing malaria transmission in different ways, challenging
already fragile Public Health Systems and putting the
human population at greater risks of outbreaks.

Evidence of impact of climate change on dengue trends
The monitoring of how climate changes are affecting
some vector-borne diseases has not been performed
systematically over long periods of time [57]. This is
particularly true for dengue. However, some evidence
has been collected in recent years, showing relation-
ships between temperatures and rainfall changes and
dengue transmission patterns. Dengue disease is mostly
urban and transmitted mainly by the mosquito species
Ae. aegypti. Urban temperatures are changing in a dras-
tic way due to the warming climate and consequently
they are enhancing, among other factors, dengue trans-
mission and outbreaks, due to higher diurnal
temperature range [58]. The combination of urban dy-
namics and climate change has been well studied in
Singapore, where it was estimated that the increase of
dengue incidence over the past 40 years, from less than
1000 cases in the 1980s to more than 14 000 cases in
2005, was due to population growth for 86% of the
model and to an increase on temperatures for the
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remaining 14% of the model [59]. This result clearly
shows that even without population growth, an increase
of temperature may result in an increase in dengue in-
cidence. As previously seen for malaria transmission,
the increase of the lower mean temperatures can be
linked to an expansion of dengue transmission at
higher altitudes and dengue incidence has recently in-
creased in the mountainous country of Nepal [60] The
first dengue cases were reported in 2006, followed by
an outbreak in 2010, and the last epidemic was re-
ported in late 2017, still ongoing in early 2018. The
main city of Kathmandu which is above 1300 m is now
affected by dengue outbreaks. In another region, further
evidence was collected in Puerto Rico on the impact of
increasing temperature on dengue incidence. An in-
crease of 1 °C of the Sea Surface Temperatures (SST)
was correlated to an increase of dengue transmission by
a factor of 3.4 for the period 1992–2011 [61], and since
warming for SST and air surface temperatures (AST)
are now evident, a further increase in dengue incidence
is expected.
In Vietnam a similar study looking at the impact of

rainfall and increased humidity on dengue in the north-
ern coastal city of Haiphong showed that dengue out-
breaks are correlated to an increase of both climatic
parameters. For each 50mm rainfall increase and 1% hu-
midity increase, the risk of dengue outbreak increases of
1% [62]. These results are raising great concerns about
the current changing patterns of climate in Vietnam, in
particular in urban settings [63]. Interestingly, a strong
decrease in rainfall followed by drought in Australia is
also related to an increase in densities of Ae. aegypti
mosquitoes, because of increased water storage [64].
This is a secondary effect of climate change linked to
human behaviors. In Manila, that has a more tropical
environment, dengue was correlated again to rainfall
patterns only, with no impact of temperature variations
[65]. Other climatic events were also found to be related
to dengue cases, with mixed impact of increased temper-
atures and rainfall, due for example to the El Nino
phases in Colombia enhancing dengue transmission
[66]. Extreme events such as a tropical cyclone was asso-
ciated with an increase of dengue incidence in four prov-
inces of China [67]. The impact of climate change on
dengue transmission can be more striking on the
fringe of different climatic zones, as already men-
tioned for malaria. The increase of dengue incidence
and expansion in Brazil was associated among other
factors to climate changes in border areas between
endemic and less affected areas [68]. The changes in
climate patterns are making these areas more unstable
for dengue transmission, with strong impact on Public
Health Systems that have to regularly update the
dengue transmission maps.

Evidence of impact of climate change on other vector-
borne diseases
Other VBDs diseases are affected by climate change and
the example of the human African trypanosomyiasis
(HAT) or African sleeping sickness is very informative.
This disease is linked to the presence of the tsetse flies
vectors, which are very reactive to temperatures and
rainfall patterns. The decrease in rainfall in the sahelian
border of Western Africa since the 1950s has led to the
displacement of the tsetse flies to the southern parts
within the 1200 mm rainfall limit per year. Consequently
the HAT has also moved from north to south and most
of the remaining foci of HAT in the 2000s were found in
the southern countries such as Ivory Coast, Ghana and
Liberia [69]. Further, in a single country such as Burkina
Faso, this shift from north to south could be measured
and was estimated to be between 25 and 150 km, with
an estimated reduction of the tsetse belt of about 70 000
km2 [70]. This strong decrease of the favorable environ-
ment for tsetse flies and HAT was attributed to both cli-
mate change, with severe droughts impacting not only
the vectors but also the human distribution, and a
strong human population growth modifying the tsetse
habitats. A secondary and interesting effect of the cli-
mate change on the tsetse flies vectors is the fragmenta-
tion of the tsetse habitat which has an impact on flies
dynamics and further reduce their densities [71]. More
recently in another part of Africa, the increase of
temperature was associated to the drastic decline in the
tsetse flies densities in the Zambezi Valley [72], with a
displacement of the vector populations to higher altitude
areas (such as already seen in anopheles vectors and
malaria) that are thus becoming more favorable to dis-
ease transmission. For another parasitic disease, the
Leishmaniasis, transmitted by the sand flies, a shift in
vectors distribution has been reported from south to
north in Europe which is attributed to changes in the
climatic conditions as modeled through an ecological
niche approach [73]. Again, sand flies species competent
for transmitting Leishmania parasites were recently
found for the first time in Belgium and Germany,
creating new risks of transmission in countries that are
currently free of disease transmission. The same dis-
placement of competent sand flies was also reported in
the southern hemisphere, from north to south Argentina
due to an increase of temperatures in more temperate
regions of this country. This displacement was associ-
ated with new local cases of cutaneous leishmaniasis
cases in the outskirts of the very populated city of
Cordoba [74]. Consequently, the risk of extending the
current transmission area of this disease in Argentina is
very serious, and can be link to the climate change. In
the case of leishmaniasis, the change in sand flies
distribution due to climate change can also have
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consequences on the elimination program such as in
Nepal for elimination of visceral leishmaniasis (VL).
Between 1999 and 2009, 11 additional districts situated
in mountains areas are reporting VL cases [60], and the
country has now the obligation to extend the elimination
program to newly affected areas, with all the costs and
logistics issues for a low income country. The impact on
climate change on VBDs transmission can be seen not
only on the vectors, but also on the host such as in the
Plague ecosystems, as demonstrated in the Daurian
ground squirrel and Mongolian gerbil [75]. The first host
densities are positively associated to vegetation, link to
high temperatures and rainfalls. In the contrary the
second host densities are negatively associated with
vegetation. As a consequence, in the current climate
change situation, the surveillance of plague foci in their
natural environment is driven by the host behavior,
which is very different for the 2 hosts, and a proper
monitoring of the plague circulation with associated
risks of emergence as human disease will now take into
account the host densities link to vegetation link to
climate change. Extreme events which are one the most
important outcomes of the climate change trends have
consequences on VBDs transmission other than malaria
and dengue, such as in the case of Rift Valley Fever
Virus (RVFV). The impact of the droughts and El-Nino/
Southern Oscillation (ENSO) events on the RVFV trans-
mission has been well described, with rainfalls anomalies
leading to the emergence of huge densities of vectors
and outbreaks in the livestock and extension of the
disease to humans, resulting in a double impact on very
vulnerable human populations that are losing their live-
stock and facing the disease [76]. The improved current
knowledge on the dynamics of this RVFV transmission
patterns associated to climate events as well as commu-
nity behavior is now allowing the prevention and mitiga-
tion measures [77].

Conclusions
Although it is not fully understood how climatic vari-
ables, changes in trends, extreme events and climate
variability are directly affecting the transmission of
vector-borne diseases, much evidence can be found to
confirm that increasing temperatures due to global
warming have an impact on these diseases. This evi-
dence includes contrasting effects with increasing
disease incidence in some situations and decreasing dis-
ease incidence in other situations. The same effects are
also reported for livestock diseases, which have been
studied more intensively because of their economic out-
comes. For example, the increase in temperature is re-
lated to the expansion of some vectors and consequently
of the diseases they transmit such as Culicoides imicola,
transmitting the bluetongue virus, and on the contrary

are also related to low survival of tsetse flies and a sub-
sequent decrease of animal trypanosomiasis [76]. The
consequences of rise of temperatures are thus not a one
direction impact, and the VBDs ecosystems are respond-
ing in different and sometimes opposite ways. These
findings reinforce the necessity to look at these changes
with local and disease specific approaches.
One of the most common effect of climate change on

VBDs is the change in vector and disease distribution
found not only for malaria and dengue, but also for
other diseases such as HAT, Leishmaniasis and the
Japanese Encephalitis, now emerging as a human and
livestock disease on the slopes of the Himalayan high-
lands [78]. Even in temperate regions, the displacement
of VBDs has been reported and in Canada heatwaves
were found to be related to the northern displacement
of Lyme disease [79]. For Lyme disease, global warming
has resulted in the tick vectors finding suitable condi-
tions in northern areas, and also on the animal reservoir
of Borrelia burgdorferi which are migrating northward
and creating favorable conditions for Lyme disease
transmission to extend to northern locations [80]. These
changes in geographical distribution and expansion of
the diseases will result in strong effects on the human
and/or animal populations that are naïve to the disease.
The impact of climate changes on VBDs is complex

and the occurrence of opposite effects makes general
predictions almost impossible. In order to provide rec-
ommendations, based on evidences that can be trans-
formed into policies the impact of climate change has to
be investigated at the very specific and local scale.
Further integrated approaches are needed because of
several confounding factors, which include the host
behavior and human population dynamics (growth,
mobility, …). Nevertheless, the consequences of these
changes already have an impact on Public Health, and
the health systems need to be prepared to face epidemics
and to mitigate these threats. Preparedness should be
based on multi-sectorial concepts and framework, include
a deeper understanding of the biological phenomenon as
well as a plan for strengthening health systems to respond
to different levels of emergency. The development of miti-
gation measures is needed at all levels, from the global to
the local and should co-ordinate and take advantage of
push to achieve the Sustainable Development Goals [81].
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