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Abstract

Malaria is a global public health problem, with about 3.2 billion people at risk of infection. The populations at risk
mainly reside in Africa, Asia and America, with African populations accounting for the largest burden of the disease.
In 2013, close to 198 million malaria cases were reported, leading to 584,000 deaths. Much (90 %) of the mortality
rates were recorded from the World Health Organization (WHO) database in the African region and 78 % of these
occurred in children under the age of five. In Zimbabwe, approximately half of the population is at risk of infection
with malaria.
Insecticide residual spraying (IRS) has been documented as an effective way to control malaria and has been
adopted globally by the WHO and national governments. However, both insecticide resistance and climate
change threaten to reverse the progress made by IRS in malaria control. Resistance has been reported in all
four classes of insecticides approved by the WHO for vector control intervention. Variability of environmental
temperature is suspected to complicate the situation through alteration in the genetic structure, and enzyme
and protein profiles of mosquitoes. In Zimbabwe, little research has been done on the interaction between
climate change, temperature variability and insecticide resistance in malarial mosquitoes over time. Such
information is important for informing policies on insecticide selection for IRS.
We reviewed literature on insecticide sensitivity among malarial mosquitoes in Zimbabwe from 1972 to 2014.
International peer-reviewed articles on insecticide sensitivity in Zimbabwe, published in English in this time
period, were searched using MEDLINE® (PubMed), Google Scholar, Google and grey literature. Eight publications
were eligible for the present study, with one of the articles being a review paper. Six articles covered insecticide
resistance, while the other two articles, published in 2000, were about the absence of resistance. Contradicting
resistance results were reported in 2014.
The insecticide sensitivity status and distribution of insecticide resistance in mosquitoes are still under debate in
Zimbabwe, as studies report differing results. The resistance trend in Zimbabwe is characterised by fluctuations in
the status of the sensitivity of existing insecticides. Inconsistencies in data collection methods may be responsible
for the inconsistencies in the results. None of the studies have determined a link between climate/temperature
variability and insecticide resistance as yet. The current insecticide sensitivity status of mosquitoes still needs to
be verified.
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Introduction
Malaria is a vector-borne disease endemic in tropical
and subtropical areas [1]. Close to 3.2 billion people are
at risk of infection [2]. In 2013, an estimated 584,000
deaths from malaria were reported worldwide, with most
(90 %) of the deaths occurring in the African region (as
recorded in the World Health Organization [WHO]
database). Seventy-eight per cent (78 %) of these deaths
occurred in children under five years of age [2].
Zimbabwe has a population of about 13 million [3],

with half of that population living in malaria-endemic
areas [4, 5]. Anopheles gambiae complex, Anopheles ara-
biensis Patton and Anopheles gambiae sensu stricto Giles
mosquitoes are responsible for the transmission of
malaria in the country [6, 7], with An. arabiensis mos-
quitoes responsible for the majority of the transmis-
sion [7, 8]. The advent of climate change, especially
increases in temperature, threatens to complicate the
situation by extending the geographical distribution of
malaria globally [9], in parts of Europe [10], Asia [11]
and Africa [12–14].
Insecticide residual spraying (IRS) and long-lasting in-

secticide treated nets (LLINs) are the major intervention
strategies aimed at interrupting malaria transmission
[15]. In Zimbabwe, malaria case management, vector
control using IRS and LLINs, and health education form
the vanguard of the malaria control programme [4].
However, the WHO [16] has noted that insecticide re-
sistance could derail disease control, with Krostad [17]
expressing the same sentiment, saying that insecticide
resistance was threatening to reverse the progress made
by IRS in malaria control thus far.
Insecticide resistance involves changes in one or more

genes, leading to the reduction in insecticide sensitivity
of an insect population. This is manifested in an insecti-
cide’s repeated failure to achieve the projected level of
control when used following the recommendations for
that species [18]. The changes leading to resistance may
not only be genetic, but also enzymatic; at times genetic-
ally related and at times not [19–21]. Wood et al. [22]
indicated that insecticide resistance could happen due to
selection pressure and increasing mutation rates.
Insect resistance to dichlorodiphenyltrichloroethane

(DDT) emerged in the 1940s, with the first conclusive
study being conducted on the Culex molestus mosqui-
toes in 1947 in Italy. Insecticide resistance was also re-
ported among Anopheles sacharovi mosquitoes in
Greece in 1951 [23]. In 1955, it was reported in the An.
gambiae species in Nigeria [24]. Thereafter, resistance
has been reported in more than 500 insects, 50 of which
transmit malaria parasites in humans [21, 25].
Insecticide resistance in malaria vector populations is

widespread and covers all classes of insecticides recom-
mended for public health use [26–30]. Pyrethroid

resistance was first reported in Ivory Coast in 1993 [31].
Knockdown resistance (kdr) is currently the most com-
mon form of insecticide resistance. Outside Africa, kdr
has been found in several malarial mosquito species, in-
cluding Anopheles stephensi and Anopheles culicifacies
[32, 33]. In Africa, kdr has been reported in a number of
countries: in West Africa (Ivory Coast, Burkina Faso,
Benin) [31, 34], Central Africa (Cameroon) [28], East
Africa (Kenya) [35] and Southern Africa (South Africa
and Zimbabwe) [36, 37].
Although insecticides have played a pivotal role in

both agricultural and public health sectors, their wide-
spread use has been linked to the development of in-
secticide resistance [38, 39]. The high frequency of kdr
mutations in malaria vectors has been attributed to an
extensive use of DDT to control agricultural pests in
Africa [38] and Central America [40, 41]. Use of insecti-
cides in IRS, and on bed nets and curtains has been as-
sociated with insecticide resistance in East Africa [35],
Malaysia [42] and Sri Lanka [40].
Currently, there is insufficient information on the status

of insecticide resistance in Zimbabwe. The available infor-
mation may be underestimating the situation; the level of in-
secticide resistance may have in fact increased. Furthermore
climate change, particularly the effects of temperature, may
have influenced resistance [43, 44], but there is no concrete
evidence of this as yet. We reviewed insecticide resistance
data collected in the past 42 years in Zimbabwe and
assessed the changes that have taken place. We then made
recommendations for sustaining the progress made in
malaria control through the use of insecticides.

Review
Materials and methods
We reviewed international peer-reviewed articles, pub-
lished in English between 1972 and 2014, which assess
the insecticide sensitivity status of mosquitoes in
Zimbabwe. Selection for eligible studies was done
through a literature search on MEDLINE® (PubMed),
Google Scholar, Google and grey literature. The search
terms were ‘insecticide resistance’, ‘sensitivity’,
‘temperature’, ‘vector mosquitoes’ and ‘Zimbabwe’. More
literature was found using snowball sampling: that is
identifying other papers listed from reference lists of ini-
tially identified articles. The abstracts of articles were
read first, with the full articles read only if applicable.
Papers were deemed eligible if they were about the in-
secticide sensitivity status of An. gambiae s.l. complex
and Anopheles funestus mosquitoes in Zimbabwe.

Results
History of insecticide use in malaria control in Zimbabwe
Although DDT was the first insecticide to be used in
IRS in Greece in 1947, by 1951 the insecticide had been
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effectively used in 22 countries [45]. In Zimbabwe, IRS
began in 1949, using benzene hexachloride (BHC) [46].
However, some studies suggest that IRS was actually in-
troduced in 1945, but launched in 1949 [47] (see Table 1).
Published and grey sources state that between 1945 and
2003, BHC, DDT and pyrethroids were all used in IRS
[48, 49; unpublished sources]. Following the discovery of
BHC resistance in An. arabiensis mosquitoes in the
Chiredzi district, BHC was replaced with DDT [48]. It
should also be noted that although DDT was introduced
in Zimbabwe in 1960, it was not extensively used until
1974, when resistance to BHC was reported [49]. Be-
tween 1976 and 1980, the control programme was dis-
turbed by political unrest but soon after independence
in 1980, IRS was resumed, using DDT.
From 1987 to 1991, DDT and deltamethrin were used

alternately on malarial mosquitoes and tsetse flies. Other

sources indicate that DDT was used between 1988 and
2000 [47]. However, DDT use was short-lived as envi-
ronmentalists successfully lobbied for its ban in order to
manage bed bug resistance. The insecticide’s lipophilic
nature, which resulted in its accumulation in human adi-
pose tissue, meat-eating birds and the environment at
large, was another reason for its ban [51]. However,
DDT was readopted in 2004 [50] to complement pyre-
throids [37].

Geographical distribution, causes and mechanisms of
insecticide-resistant distribution over time
An online literature search to review the resistance sta-
tus of mosquitoes in the Afrotropical region, focusing on
the period from 2001 to 2012, reaffirmed that malaria
vectors were resistant to all insecticides recommended
by the WHO for vector control in Africa. The same
study reports resistance of An. gambiae s.l and An.
funestus mosquitoes to organochlorines, carbamates and
pyrethroids in Zimbabwe (see Fig. 1) [52].

Case studies on insecticide resistance in Zimbabwe
In Zimbabwe, eight papers investigating insecticide re-
sistance (1972–2014) have been published (see Table 2).
These papers indicate that insecticide resistance levels
have been changing over time. The first case of insecti-
cide resistance (to BHC) was reported in Chiredzi in the
early 1970s [48]. However, because Green’s original text
(1972), which described this, could not be accessed, suc-
cessive articles citing Green’s work, such as ones by
Masendu et al. [54] and Munhenga et al. [37], were ex-
trapolated on. In 1980, Crees reported on the suscepti-
bility of mosquitoes in the areas of Chiredzi, Mtoko and
Manjolo (unpublished data and not shown on Table 1).
A study by Manokore et al. [49] documented that in the
Gokwe region of Zimbabwe, there is an absence of in-
secticide resistance in mosquitoes to deltamethrin,
alpha-cypermethrin, lambda-cyhalothrin and DDT. But
after this study was conducted, insecticide resistance in
An. arabiensis mosquitoes has been slowly spreading
and increasing in intensity [54]. Munhenga et al. [37]
further confirmed the presence of insecticide resistance
to permethrin and DDT in An. arabiensis mosquitoes in
Gokwe. Three papers reported insecticide resistance in
An. funestus mosquitoes against organophosphates,
pyrethroids and carbamates [5, 52, 55]. The two recent
nationwide surveys contradict each other: The one con-
ducted by the President’s Malaria Initiative (PMI) [5] re-
ports insecticide resistance in An. funestus mosquitoes,
while the other one by Lukwa et al. [56] disputes this as
well as previous findings.
The focus of research on insecticide sensitivity of mos-

quitoes has been Gokwe, where four studies have been
conducted [37, 49, 54, 56]. This study site was chosen

Table 1 Summary of malaria control programmes using IRS in
Zimbabwe between 1945 and 2004

Author Year Milestones in insecticide
use in Zimbabwe

Mabaso et al., [47] 1945 IRS introduced

1949 Programme launched

1957–62 DDT and BHC used

1972–73 BHC (equally effective as
DDT but cheaper)

1974–87 DDT (due to resistance
to BHC)

1988–2000 Deltamethrin and lambda-
cyhalothrin (policy change)

UNEP, [50] 2004 DDT was reintroduced to
complement pyrethroids

Unpublished
sources/reports

1949–1960 BHC used for the countrywide
malaria control programme,
while dieldrin was used in
sugar estates

1960 DDT was used to complement
BHC on a small scale

1974–1976 DDT became a principal
insecticide for malaria control

1976–80 No insecticide used as spraying
activities were disrupted by
war of liberation

1980–1987 Extensive use of DDT resumed

1987–1991 DDT used, interchangeable
with deltamethrin

1991 DDT abandoned (decision to
abandon was motivated by
need to protect tobacco export)

1991–2003 Only pyrethroids (deltamethrin,
lambda-cyhalothrin and alpha-
cypermethrin) were used

UNEP, [50] 2004 DDT was reintroduced to
complement pyrethroids
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Fig. 1 Distribution of insecticide resistance in An. gambiae s.l. mosquitoes between 2001 and 2012 [53]
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Table 2 Summary of studies that assessed insecticide resistance in malarial mosquitoes between 1972 and 2014 in Zimbabwe

Author [reference] Objectives Mosquito species
studied

Study area Method Outcome

Knox et al. [52] To introduce and demonstrate the
usefulness of the online mapping
tool IR Mapper

An. gambiae African region (results presented
are for Zimbabwe)

Systematic search of published
peer-reviewed literature

An. gambiae and An. funestus were
resistant to organophosphates and
pyrethroids.An. funestus

Lukwa et al. [56] To conduct a nation-wide assessment
of insecticide susceptibility in wild
populations of An. gambiae s.l.

An. gambiae s.l Thirteen (13) sentinel sites covering
all malaria-endemic regions in
Zimbabwe

All sites were sampled for
resistance in malarial
mosquitoes between 2011 and
2012.

No evidence of phenotypic resistance
to any of the four insecticide classes
in An. gambiae s.l. collected across
different eco-epidemiology areas in
Zimbabwe.

PMI Africa IRS. [5] To determine insecticide susceptibility
for malarial mosquito species from
sentinel sites throughout Zimbabwe

An. gambiae s.l Nine (9) sentinel sites in various
provinces in Zimbabwe

WHO susceptibility tests were
done using impregnated
papers and test kits on wild
caught An. gambiae s.l. and An.
funestus mosquitoes.

An. funestus mosquitoes were
resistant to pyrethroids (lambda-
cyhalothrin and etofenprox).An. funestus

Choi et al. [55] To investigate the biological attributes
of insecticide resistance and parasite
infection rates that both impact on
malaria vector control activities

An. funestus Honde Valley WHO susceptibility tests were
done using impregnated
papers and test kits on
mosquitoes were collected
between February and March
2014.

An. funestus populations were
resistant to pyrethroids and
carbamates.

Munhenga et al. [37] To determine insecticide susceptibility
of An. arabiensis using the WHO
insecticide susceptibility method.

An. arabiensis Gokwe WHO susceptibility tests were
done using impregnated
papers and test kits on wild
caught An. arabiensis and F1
progeny of the same
mosquitoes.

Study confirmed the presence of
permethrin and DDT resistance in An.
gambiae mosquitoes in the Gwave
area of Gokwe.

Masendu et al. [54] To determine the distribution of malaria
vectors in Zimbabwe together with the
extent of insecticide resistance in
different assemblages

An. gambiae Giles s.s,
An. arabiensis Patton,
An. merus Dönitz and
An. quadrinnulatus
Theobald (species A).

Zimbabwe National anopheline mosquito
survey conducted between
1992 and 2002 at sites broadly
categorised based on land use,
patterns and location.

DDT resistance was detected in An.
arabiensis collected from market
gardens in Gokwe.

Manokore et al. [49] To determine insecticide susceptibility
of field caught An. arabiensis and F1
progeny reared from these field-caught
females An. arabiensis Patton mosquitoes
to WHO recommended insecticides

An. arabiensis Patton Gokwe district in the Midlands
province

Wild caught An. arabiensis
mosquitoes were tested for
insecticide sensitivity using the
WHO susceptibility test method.

F1 progeny of field-caught females
that were identified as An. arabiensis
Patton were completely susceptible
to deltamethrin, alpha-cypermethrin,
lambda-cyhalothrin and DDT.

Green, [48] Unknown Unknown Chiredzi district Unknown mosquitoes were
tested against BHC

Insecticide resistance to BHC reported
in Chiredzi
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because of the presence of a National Institute of Health
Research satellite station established to monitor malaria
entomology in the area. Coetzee et al. [57] reiterated
that early insecticide resistance distribution maps were
limited, as they tended to reflect the distribution of ento-
mologists rather than mosquito species. Perhaps this ex-
plains why this area has been so over researched.
Some of the sites that have been sampled by Masendu

et al. [54] and Lukwa et al. [56] are shown in Figs. 2 and
3. Contrary to the two recent studies [5, 56], previous
studies observed insecticide resistance in mosquitoes in
the Gwave area of Gokwe in 2008, and the first case of
resistance in Hippo Valley in 1972 [37, 48, 54].

Causes of insecticide resistance
Agricultural and public health practices
In Zimbabwe, agricultural practices have influenced the oc-
currence of resistance in malarial mosquitoes. Zimbabwe
started using DDT as a pesticide in the agro-industry and
for vector control programmes in 1969 [58]. The use of
this pesticide resulted in a remarkable increase in agricul-
tural production and improvements in human health as a
result of controlling agricultural pests and arthropods that

transmit animal and human diseases. However in 1972,
DDT use was banned in the agro-industry because of
public health concerns. Its use was eventually restricted
to vector control programmes only [51]. A number of
studies carried out after DDT was banned in Zimbabwe
showed that the areas where DDT had been used
(Esigodini, Nyanga, Kwekwe, Kadoma, Bulawayo,
Harare and Kariba) were indeed polluted with organo-
chlorine compounds [59, 60]. These insecticide pollut-
ants might have exposed mosquitos to high or sublethal
doses of the insecticides, which could have led to the
development of insecticide resistance strains in malarial
mosquitoes in some parts of the country.

Climate change
As early as in the 1930s, Leeson [61] observed that mos-
quitoes were migrating from low to high altitude areas
along river valleys in Zimbabwe. Ebi et al. [62] predicted
that Zimbabwean highlands will be climatologically hab-
itable to malarial mosquitoes by 2015 [13]. Similarly,
Komen et al. [63] asserted that temperature was a crit-
ical factor in the transmission of malaria in the Limpopo
province of South Africa [63], which shares a border

Fig. 2 Map of Zimbabwe indicating the geographic location of the 12 insecticide-resistant monitoring sites (the black triangles represent villages
where Lukwa et al. performed susceptibility tests) [56]
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with Zimbabwe. Mabaso et al. [64] also acknowledged
that year-to-year variations in malaria incidences were
mainly driven by climatic covariate, although this was
not the only factor. In this context, it is imperative that
we acquire more knowledge on mosquitoes’ responses
and behaviours in the anticipated warmer climatic
conditions.

Main mechanism of resistance
Of the six studies that reported resistance [5, 37, 48, 52,
54, 55], only two determined the mechanism of resist-
ance. Monooxygenase was responsible for resistance in
An. funestus mosquitoes in Honde Valley [55]. Both East
and West African kdr were identified as being respon-
sible for resistance in An. arabiensis mosquitoes in
Gokwe [37].

Implications of malaria control
In Zimbabwe, the effect of resistance on vector control
remains unknown. Although there is no scientific evi-
dence to support the link, the Gokwe region, where re-
sistance was reported on two occasions, has become one
of the hubs of malaria transmission. There have also

been sporadic outbreaks of malaria infection in the
Honde Valley and Burma Valley. There have been no
studies in Zimbabwe investigating the effect of resistance
on malaria control, however, Corbel and N’Guessan [21]
and Ranson et al. [19] have indicated that insecticide re-
sistance is disruptive to malaria control programmes.
The brief studies done in South Africa [36], Malawi [65],
Burundi [66] and on the coast of Bioko Island, West
Africa [67], all support the hypothesis that resistance is
able to disrupt malaria control programmes. On the
other hand, a study done in Zambia reports that insecti-
cide resistance doesn’t interrupt malaria control [68].

Discussion
This is the first paper to attempt to synthesise 42 years of
data on insecticide resistance (from 1972 to 2014) in
Zimbabwe. The increase in research work on the subject
is evident by the higher number of papers being published
on this topic; four papers in 2014 alone [5, 52, 55, 56]. A
similar observation was made by Knox et al. [52], who
noted an increase in the number of publications examin-
ing insecticide susceptibility and resistance in Anopheles
mosquitoes in Africa. This could be due to researchers

Fig. 3 Sites where Anopheles gambiae s.l. mosquitoes were collected for susceptibility tests, showing Gwave (in Gokwe); sites where DDT
resistance was detected in 2002; and Hippo Valley, where dieldrin resistance was detected in 1972 [54]
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becoming increasingly concerned about the impact of in-
secticide resistance on malaria control programmes, in
conjunction with their involvement in the NMCPs. Corbel
and N’Guessan [21] and Ranson et al. [19] have indicated
that insecticide resistance is disruptive to malaria control
programmes in Africa.
The papers reviewed in this study describe fluctuations

in the prevalence of resistance, with a non-uniform pat-
tern, across Zimbabwe. In 2000, Manokore et al. [49] did
not detect insecticide resistance in Gokwe. However, five
and eight years later, two studies reported the presence
of insecticides resistance among malarial mosquitoes in
the same area [37, 54]. A nationwide survey conducted
between 2011 and 2012 by Lukwa et al. [56] did not de-
tect any insecticide resistance in malarial mosquitoes.
However, Choi et al. [55] and PMI [5] reported resistance
in samples collected between February and April 2014 in
Honde Valley and Burma Valley, respectively, in An. funes-
tus mosquitoes. Differences in the results of the three
studies could be due to the differences in the sites sam-
pled. Brogdon et al. [69] noted that the sites, which are
only a few kilometres apart, were different not only be-
cause of the presence or absence of resistance, but also be-
cause of the varying levels of resistance and the dominant
mechanisms responsible for resistance [70]. This indicates
the importance of regularly sampling sentinel sites.
Despite strict rules governing insecticide use in the

health and agro-industry sectors, the distribution of in-
secticide resistance in Zimbabwean mosquitoes seems to
have been influenced by agricultural practices. The first
case of insecticide resistance to BHC was reported in
Chiredzi in 1972 [48]. In 2002, insecticide resistance to
DDT in An. gambiae sensu lato mosquitoes was detected
in Gokwe [54]. In 2008, resistance to pyrethroid (per-
methrin) and DDT was confirmed in Gwave, Gokwe
[37]. Recently, resistance to carbamates and organo-
chlorine was reported in An. funestus mosquitoes in
Honde Valley [55] and to pyrethroids in Burma Valley
[5]. Hippo Valley and the Triangle Estates are located in
Chiredzi and are the sole sugar cane growers in the
country. The estates have extensively used chemicals for
pest control. The resistance of An. gambiae mosquitoes
to DDT in Gokwe has also been attributed to the high
usage of organochlorines by villagers, as well as a long his-
tory of DDT usage in this area for agricultural (especially
cotton farming) and public health purposes, mainly tsetse
and mosquito control [37, 54, 71]. Gipps [72] noted that
Dicofol®, a chlorinated hydrocarbon which is used to con-
trol spider mite in cotton, cucurbits and tomatoes, con-
tains 20 % DDT [72]. It is also believed that the water in
Gokwe becomes contaminated when the pumps in the
water pools are being cleaned [54]. Honde Valley and
Burma Valley are also known for tea and banana farming
by subsistence and commercial farmers [73].

Elsewhere in Africa, studies have attributed the high
frequency of kdr mutations in malarial mosquitoes to
extensive past use of DDT to control agricultural pests
[38]. Persistent environmental contamination with or-
ganophosphate has also been a problem in Zimbabwe
[58, 60, 74]. This stresses the importance of reviewing
the regulations that govern the use of agricultural insec-
ticides in Zimbabwe in order to curtail the spread of in-
secticide resistance.
The country’s malaria control programme needs to re-

main vigilant. A number of studies predicted that in-
creased temperatures in conjunction with adequate
rainfall would likely cause certain mosquito-borne infec-
tions to move to higher altitudes and latitudes [75], mak-
ing some areas in Zimbabwe climatologically suitable for
malaria transmission [62, 64]. None of the reviewed
studies attempted to sample mosquitoes in middle veld
areas. Temperature can influence the development of
malaria parasites in the mosquito vectors, as well as in
the development of the mosquito vectors themselves
[76–78]. It can also influence the survival rate of the
mosquito species; their survival rate at higher latitudes
and altitudes; the alteration of their vectorial susceptibil-
ity to some pathogens; the rate of the vector population
growth, host contact and feeding rate; as well as the sea-
sonality of mosquito populations [79].
Moreover, temperature can alter the genetic structure,

and enzyme and protein profiles of mosquitoes and
other insects [80, 81]. For this reason, the insecticide
sensitivity status of mosquitoes is inconclusive. Some
studies suggest that high temperatures induce insecticide
resistance in mosquitoes [43, 44]. In contrast, other
studies note that high temperatures cause mosquitoes to
become susceptible to insecticides [82]. In North-eastern
United States, the Wyeomyia smithii mosquito species
underwent genetic mutation in response to increased
average land surface temperatures and spring coming
earlier for two decades [83]. Although the W. smithii
mosquito species is not a vector of human disease, it has
similar physiological characteristics as the arbovirus spe-
cies. This genetic alteration of W. smithii possibly points
to similar changes occurring in malarial mosquitoes and
hence underlines the need to investigate potential
changes in malarial mosquitoes in Zimbabwe.
Ensuing field studies have indicated that insecticide re-

sistance levels are dynamic and fluctuate throughout the
malaria transmission season [84]. This observation may
suggest that temperature might influence the develop-
ment and levels of insecticide resistance, as each season
has a unique average temperature.
The weakness of these studies is that they were based

on different models, hypothesis and scenarios, and only
a few mosquito species were investigated. Therefore,
there is a need to conduct more studies in order to
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establish the effect of climate change, particularly
temperature, on the development and distribution of in-
secticide resistance.
The current resistance situation in Zimbabwe is of

public health concern as it confirms the notion that re-
sistance in malarial mosquitoes now covers all classes of
all chemicals approved for public health use [26–30].
Our review reports resistance to pyrethroids [5, 37, 55],
organochlorines [54] and carbamates [55], but not or-
ganophosphates. Hence, periodic sampling of low velds
and middle velds for malarial mosquitoes and testing for
resistance may help in the early detection and monitor-
ing of insecticide resistance.
Concerned with the current insecticide resistance situ-

ation, the Zimbabwe NMCP indicated, in the submission
to The Global Fund’s new funding model for 2015–16,
that organophosphates may be used in IRS. The NMCP’s
plan for 2014 (October to December) was to conduct
IRS using organophosphates in the areas with the high-
est resistance to pyrethroid. On the other hand, areas
showing little or no pyrethroid resistance were to be
sprayed using a mixture of pyrethroids and DDT [85].
Given that temephos (organophosphate) has already
been used for larviciding in other parts of the country, it
is possible that some mosquito species could now be re-
sistant to organophosphates, the only class of insecticide
in which resistance has not been reported in Zimbabwe.
The number of sites and frequency with which resist-

ance monitoring should be conducted [86] has become a
contentious issue. The number of sentinel sites that were
sampled in the reviewed articles was relatively high in the
2005 survey [54] compared to the recent surveys [5, 56] in
which there were lower, most probably due to a lack of re-
sources. Hence, generalisation of these findings to the
Zimbabwe situation needs to be done with care.
Furthermore, some studies did not sample key malaria

areas. For instance, there were no sentinel sites sampled
in the Kariba and Gwanda districts. In other instances,
some provinces were under-represented, such as the
Masvingo province in which only one rural health centre
(Chilonga) was sampled, far too small to represent the
entire province. The Chipinge district, which has been
characterised by sporadic malaria outbreaks in previous
years, was not represented in the survey [85]. This is not
in line with the WHO guidelines, which state that in-
secticide resistance sentinel sites should be located in
malaria-endemic areas with moderate to high malaria
transmission rates. This means that study results not ad-
hering to these guidelines need to be considered with
caution.
It was also difficult to compare the recent countrywide

survey results [5, 56] with the previous study done by
Masendu et al. [54] due to variations in study areas (per-
haps there were no sentinel sites back then). The

minimum number of sampling sites should be deter-
mined considering the insecticide usage [19], location
(rural and urban areas), and land use (where rice, cotton
and vegetables are cultivated). It also needs to be in-
formed by previous studies. In the recent two country-
wide surveys, only one sentinel site in the urban area
was sampled, yet Masendu et al. [54] observed the pres-
ence of An. arabiensis mosquitoes in the urban towns of
Kwekwe, Chirundu, Kariba and Binga. Furthermore, the
WHO criteria for the selection of insecticide resistance
sentinel sites states that the sites should be established
both in urban and rural settings [87].
Periodic seasonal sampling is recommended in order

to detect seasonal resistance level variations; resistance
is dynamic and wide fluctuations in resistance levels
throughout the malaria transmission season have been
reported [84]. This is important as resistance genes must
not be allowed to build up because once they reach very
high levels, strategies to restore susceptibility are un-
likely to be effective [19]. Thus, regular seasonal moni-
toring of sentinel sites for resistance is vital in order to
proactively prevent insecticides from affecting malaria
control programmes.
Although the papers reviewed in this study had limita-

tions, mainly due to a lack of resources, they do provide
useful baseline information that can be used to conduct
further studies on insecticide resistance, and how it
might be influenced by climate change, in Zimbabwe.

Conclusion
We do not conclusively know about the distribution of
resistance in mosquitoes in Zimbabwe, and therefore
more work needs to be done on this topic. Available in-
formation links insecticide resistance to agricultural ac-
tivities, as insecticide resistance has been observed in
areas where insecticides have been extensively deployed
for agricultural and public health purposes. There are no
reports of insecticide resistance in middle velds, as none
of the studies have made attempts to sample these areas
for insecticide resistance in mosquitoes.
The Zimbabwe NMCP needs to remain vigilant. It can

do this by establishing sentinel sites in the middle veld,
and by conducting periodic mosquito and resistance
sampling in both low and middle velds. Areas where in-
secticide resistance has been detected need to be identi-
fied and the type of resistance needs to be elucidated.
Sentinel sites need to be encompassing land used for dif-
ferent purposes, such as agriculture, and include rural
and urban settlements.
Given the current insecticide resistance situation in

the country, with resistance to three of the four classes
of the WHO-recommended IRS insecticides (with the
exception of organophosphates) being reported, rotation
of insecticides to organophosphates remains the only
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option to restore insecticide susceptibility. Furthermore,
usage of LLINs needs to be adapted to the resistance
patterns and, most importantly, the country needs to de-
velop a national resistance management plan.
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