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Abstract 

Background  Super-enhancers (SEs), driving high-level expression of genes with tumor-promoting functions, have 
been investigated recently. However, the roles of super-enhancer-associated lncRNAs (SE-lncRNAs) in tumors remain 
undetermined, especially in gliomas. We here established a SE-lncRNAs expression-based prognostic signature to 
choose the effective treatment of glioma and identify a novel therapeutic target.

Methods  Combined analysis of RNA sequencing (RNA-seq) data and ChIP sequencing (ChIP-seq) data of glioma 
patient-derived glioma stem cells (GSCs) screened SE-lncRNAs. Chinese Glioma Genome Atlas (CGGA) and The Cancer 
Genome Atlas (TCGA) datasets served to construct and validate SE-lncRNA prognostic signature. The immune profiles 
and potential immuno- and chemotherapies response prediction value of the signature were also explored. Moreo-
ver, we verified the epigenetic activation mechanism of LINC00945 via the ChIP assay, and its effect on glioma was 
determined by performing the functional assay and a mouse xenograft model.

Results  6 SE-lncRNAs were obtained and identified three subgroups of glioma patients with different prognostic and 
clinical features. A risk signature was further constructed and demonstrated to be an independent prognostic factor. 
The high-risk group exhibited an immunosuppressive microenvironment and was higher enrichment of M2 mac-
rophage, regulatory T cells (Tregs), and Cancer-associated fibroblasts (CAFs). Patients in the high-risk group were bet-
ter candidates for immunotherapy and chemotherapeutics. The SE of LINC00945 was further verified via ChIP assay. 
Mechanistically, BRD4 may mediate epigenetic activation of LINC00945. Additionally, overexpression of LINC00945 
promoted glioma cell proliferation, EMT, migration, and invasion in vitro and xenograft tumor formation in vivo.

Conclusion  Our study constructed the first prognostic SE-lncRNA signature with the ability to optimize the choice of 
patients receiving immuno- and chemotherapies and provided a potential therapeutic target for glioma.
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Introduction
Gliomas are the most common malignant primary 
brain tumor, accounting for about 44% of central 
nervous system (CNS) tumors [1]. The World Health 
Organization (WHO) classifies gliomas into four cat-
egories, namely grade I, II, III, and IV [2]. Glioblas-
toma (GBM) is the highest glioma grade and the most 
aggressive subtype. The median overall survival (OS) 
of GBM patients is approximately 15  months despite 
the comprehensive treatment with surgery followed by 
radiation and chemotherapy [3]. Emerging bionomics 
studies have improved diagnostic and therapeutic strat-
egies for GBM, but satisfactory results have yet to be 
achieved due to its complex pathogenesis and molecu-
lar heterogeneity. Hence, it is desirable to explore novel 
molecular markers to accurately assess glioma progno-
sis and develop more efficient treatment strategies.

The tumor microenvironment (TME), compris-
ing various immune cells, stromal cells, fibroblasts, 
endothelial cells, blood vessels, and secreted factors, 
profoundly impacts tumor initiation and develop-
ment, leading to poor prognosis [4]. In recent years, 
immunotherapy, characterized by activating tumor-
infiltrating lymphocytes (TILs), killing tumor cells, 
and inhibiting tumor metastasis and recurrence, is the 
most likely treatment option for long-term survival 
and has become a hot topic in the therapy of many can-
cers [5, 6]. Accumulating evidence indicates that the 
degree of response to immunotherapy depends partly 
on the abundance of tumor-infiltrating immune cells 
(TIICs) [7]. Among immunotherapy, immune check-
point blockade (ICB) was the most widely studied [8]. 
Compared with conventional therapies, the application 
of immune checkpoint inhibitors (ICIs) represented 
by anti-PD1, anti-PD-L1, and anti-CTLA4 in several 
cancers has presented better therapeutic effects [9, 
10]. ICB is expected to be a promising immunotherapy 
strategy for glioma.

Abnormal gene expression caused by transcriptome 
reprogramming, acting as the crucial characteristic of 
cancer, contributes to tumor initiation, progression, 
and metastasis [11]. Super-enhancers (SEs), clustered 
or stretched enhancers, harbor high-density transcrip-
tion factors and transcriptional coactivators to provide 
synergistic gene activation [12]. Compared to typi-
cal enhancers, SEs elicit more potent effects. They are 
enriched in crucial genes which define cell identity and 
differentiation and promote the expression of these 
genes [13]. Recent studies have demonstrated that can-
cer cells acquire cancerous phenotype dependent on 
the aberrant transcription of oncogenes driven by SEs 
[14]. Importantly, SEs constantly propelled high-level 
expression of tumor-promoting long non-coding RNAs 

(lncRNAs) [15]. Thus, it is of great interest to charac-
terize SEs that drive oncogenic lncRNA in the patho-
genesis of glioma.

LncRNAs are generally defined as transcripts that 
are more than 200 nucleotides in length and cannot 
encode proteins. According to reports, lncRNA par-
ticipates in extensive vital biological functions, and 
dysregulated expression of lncRNAs leads to disease 
phenotypes, including malignant tumors [16]. Mecha-
nistically, most studies focus on the downstream regu-
latory functions of lncRNAs, including interaction with 
proteins/RNAs, epigenetic regulation, transcriptional 
regulation, and other regulatory processes, whereas 
few investigations are directed toward assessing how 
lncRNAs are regulated [17]. At the transcription level, 
SEs mediate the dysregulation of lncRNAs in several 
types of cancer. Super-enhancer-associated lncRNAs 
(SE-lncRNAs) participate in many cancer-related bio-
logical processes, such as angiogenesis, proliferation, 
invasion, and metastasis. Peng et  al. reported that 
SE-lncRNA HCCL5 activated by ZEB1 promotes the 
malignant progression of hepatocellular carcinoma 
[18]. In colorectal cancer, SE-lncRNA AC005592.2 pro-
motes tumor progression by regulating OLFM4 [19]. 
However, research on SE-lncRNAs and glioma is still 
rare. In recent years, with the progress of bioinformat-
ics and genome sequencing technology, various types 
of lncRNAs-related models have been widely reported 
to evaluate the prognosis of tumors, including m6A-
related lncRNAs, immune-related lncRNAs [20, 21]. 
However, the clinical and biological significance of the 
SE-lncRNA signature has yet to be explored.

In this research, we first identified 6 SE-lncRNAs by 
combining RNA-seq and ChIP-seq data analysis. Accord-
ing to the expression profile of the 6 SE-lncRNAs in the 
Chinese Glioma Genome Atlas (CGGA) and The Can-
cer Genome Atlas (TCGA) datasets, we identified three 
glioma subgroups with disparate clinicopathological and 
prognostic features and developed a risk signature serv-
ing as an independent indicator for prognosis of gliomas. 
Additionally, immunophenoscore (IPS), tumor purity, 
immune cell infiltration, immunotherapy, and chemo-
therapy associated with our signature in glioma were 
entirely investigated. Subsequent experiments revealed 
the epigenetic activation mechanism of SE-LINC00945. 
The overexpression of LINC00945 facilitated glioma cell 
proliferation, epithelial-mesenchymal transition (EMT), 
migration, invasion, and tumor growth in xenograft 
tumor models in nude mice. In general, these findings 
reveal that the SE-lncRNA signature will better evaluate 
the prognosis of glioma and choose effective treatment, 
and LINC00945 may act as a novel target for glioma 
treatment.
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Materials and methods
Tissue specimen
After obtaining the patient’s informed consent, tissue 
samples were collected at the Department of Neurosur-
gery, the Second Affiliated Hospital of Anhui Medical 
University (Hefei, China). Glioma patients undergoing 
surgical resection were further pathologically confirmed. 
A total of 8 normal brain tissues and 12 glioma tissues 
were stored at −80 ℃. Additional file 6: Table S1 lists the 
patient’s clinical information and primary tumor charac-
teristics. The Research Ethics Committee of the Second 
Affiliated Hospital of Anhui Medical University approved 
this study.

Patients and datasets
The RNA-seq data and ChIP-seq data (GSE119776) 
of 43 glioma patient-derived GSCs and 9 neural stem 
cells (NSCs) were retrieved from the Gene Expression 
Omnibus (GEO) database. The RNA-seq data (n = 620) 
and corresponding clinical information (n = 619) in the 
CGGA database were used as the training set. Likewise, 
the validation set derived from the TCGA database, 
including RNA-seq data of 670 glioma patients and clini-
cal data (n = 665), was downloaded.

Consensus clustering analysis
The “ConsensusClusterPlus” R package was utilized to 
perform cluster classification to divide glioma patients 
into different subgroups. The optimum amount of clus-
ters was assessed by implementing the cumulative distri-
bution function (CDF) and consensus matrices [22].

Establishment of prognostic signature
The LASSO Cox regression algorithm [23] was con-
ducted to construct a prediction model. The minimum 
criteria identified 6 SE-lncRNAs and their coefficients, 
selecting the optimal penalty parameter (λ) related to 
the minimum tenfold cross-validation in the training set. 
Then, the corresponding risk score of each patient was 
obtained, and the formula is as follows:
Riskscore =

n

x=1

coef (x)× exp(x). 

In this equation, coef(x) and exp(x) were the regression 
coefficients and expression values of lncRNAs, respec-
tively. Finally, glioma patients were divided into high- and 
low-risk groups based on the median risk score in the 
training or validation sets.

Functional analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were used to perform 
functional enrichment analysis of our risk signature 

utilizing the R package “clusterProfiler”. Gene Set Enrich-
ment Analysis (GSEA) was implemented to reveal the 
functions associated with the 6 SE-lncRNAs via GSEA 
software.

Immune microenvironment characterization
The R package “ESTIMATE” was used to assess tumor 
purity by estimating markers belonging to stromal and 
immune cells [24]. The immunophenoscore (IPS) quan-
tifies four immunophenotypes using abundant immune 
response/toleration markers, including antigen presen-
tation, effector cells, checkpoints, and suppressor cells. 
Moreover, the z-score, the summary of four categories, 
represents the immunogenicity of the corresponding 
sample [25]. At the same time, the CIBERSORT [26], sin-
gle-sample gene set enrichment analysis (ssGSEA) [27], 
QUANTISEQ [28], MCPcounter [29], and EPIC [30] 
algorithms performed to evaluate immune cell infiltra-
tion in two risk groups, were presented with a heatmap.

Prediction for response to immunotherapy 
and chemotherapy
Subclass mapping was employed to assess the clinical 
response to ICI between two risk groups [31]. The gene 
expression matrices of glioma patients in two subgroups 
were compared to the expression profile recording the 
expression data of 47 melanoma patients treated with ICI 
against PD1 or CTLA4. Genomics of Drug Sensitivity in 
Cancer (GDSC) was utilized to predict the chemothera-
peutic response for every patient [32]. The R package 
“pRRophetic” was utilized to assess the samples’ half-
maximal inhibitory concentration (IC50) by ridge regres-
sion. The tenfold cross-validation based on the GDSC 
training set was performed to examine the prediction 
accuracy.

Cell culture and treatment
Normal astrocyte HEB and glioma cell lines LN18, T98G, 
U251, SF126, and SNB19 were purchased from the Chi-
nese Academy of Sciences. PN12 was the patient-derived 
glioblastoma cell obtained from surgical specimens, 
which has been reported in our previous research [33]. 
Cells were cultured using DMEM (Gibco, USA), includ-
ing 10% FBS (Gibco, USA) in an incubator at 37  °C and 
5% CO2. The culture medium was changed every two 
days, and cell passaging was conducted once the density 
reached 80%. We purchased JQ1 from MedChemExpress 
(Princeton, NJ). For knockdown experiments, human-
specific small interfering RNA (siRNA) against MED1 
and negative control (Genepharma Technology, Shang-
hai, China) were transfected into U251 and T98G glioma 
cells utilizing the transfection reagent jetPRIME (Poly 
plus-transfection®). The siRNA target sequences for 
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MED1 were as follows: si-MED1-1 (5’-GGA​GGA​AAG​
CUG​AAA​CCA​UTT-3’, 5’-AUG​GUU​UCA​GCU​UUC​
CUC​CTT-3’), and si-MED1-2 (5’-GCU​CAU​GAA​CCU​
UCU​UAA​ATT-3’, 5’-UUU​AAG​AAG​GUU​CAU​GAG​
CTT-3’). Stable cell lines were established after being 
screened with puromycin.

ChIP‑seq analysis
Aspera was used to download the raw fastq file from the 
GEO database (GSE119776). Reads were mapped to the 
reference utilizing Bowtie2, and samtools were employed 
to sort and index reads. BigWig files were derived from 
bam files of every sample utilizing genomeCoverageBed 
and bedGraphToBigWig. In addition, peak calling was 
performed utilizing macs14. The Rank Ordering of 
Super-Enhancers (ROSE) algorithm was applied to iden-
tify SEs (Stitching distance: 12.5  kb). DeepTools were 
implemented for downstream analysis, and IGV genome 
browser was used to perform visual inspection.

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed utilizing SimpleChIP Plus 
Sonication Chromatin IP Kit (Cell Signaling Technology) 
following the operation instruction of the manufacturer. 
In brief, the chromatin of glioma cells was incubated with 
2  μg anti-H3K27ac (Abcam, ab4729). Additional file  6: 
Table S2 shows the specific primers used to detect immu-
noprecipitated DNA through RT-qPCR.

RNA extraction and real‑time quantitative PCR
Total RNA of tissues and cells was obtained with TRIzol 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.), and 
the concentration, as well as the quality of RNA, were 
detected by the nanodrop spectrophotometer (IMPLEN 
GmbH) in 260/280 nm absorbance. Then, RT-qPCR was 
conducted utilizing SYBR Green mix (TaKaRa Biotech-
nology, China) with primers in the ABI 7500 Real-Time 
PCR System (Applied Biosystems) after reverse tran-
scription of RNA to cDNA. Finally, the 2-DeltaDeltaCt 
method was used to calculate relative quantification, 
and GAPDH served as the reference. Additional file  6: 
Table S2 presents the primers used in the study.

Western blotting
The total protein of treated glioma cells was obtained 
using RIPA lysis buffer (Beyotime, China) and then sep-
arated by SDS-PAGE. The protein was transferred onto 
the PVDF membrane (MilliporeCorp, USA) and incu-
bated with primary antibodies overnight after blocking 
for 3 h in the blocking solution (5% skim milk in TBST). 
Subsequently, TBST was used to wash membranes three 
times, adding the secondary antibody at the dilution of 
1: 10,000 in TBST to incubate for 1  h. Finally, the ECL 

chemiluminescence kit (Thermo Scientific) was uti-
lized to visualize proteins after washing three times. 
The antibodies used are as follows: anti-β-actin (Abcam, 
ab8226), anti-N-cadherin (CST, #13,116), anti-ZEB1 
(CST, #3396), and anti-ZEB2 (BOSTER, BA2872-2), anti-
BRD4 (Abcam, ab128874), and anti-MED1 (BETHYL, 
A300-793A-T).

Cell counting kit (CCK)‑8 assay
After treatment, LN18 and PN12 cells were inoculated 
into 96-well plates in quantities of 1000 cells per well 
for 0 h, 24 h, 48 h, and 72 h. Subsequently, 10 μl working 
solution (Dojindo, Japan) was added to the correspond-
ing well. We conducted five repeats in different wells. 
After incubating for 2  h, the optical density (OD) value 
was read utilizing the microplate reader at 450 nm.

Colony forming assay
The transfected LN18 and PN12 cells were seeded in 
6-well plates with 600 cells per well, and single-cell colo-
nies were formed after two weeks in an incubator. Then, 
cells were fixed with 4% paraformaldehyde for half an 
hour and 0.5% crystal violet stained colonies for another 
30 min. More than 50 cells make up a clone. Finally, we 
counted the number of colonies utilizing the microscope 
(Olympus, Japan) and photographed them via a camera.

Cell migration and invasion assays
2 × 104 cells, suspended in serum-free medium, were 
counted and added into a Transwell chamber which was 
placed in a 24-well plate with 600ul DMEM containing 
30% FBS and then cultured for 24 h for migration experi-
ment. In the invasion experiment, we added 8 × 104 cells 
to the chambers coated with matrix (Corning, 356234) 
and cultured them under the same conditions for 48  h. 
When the time was up, cells were treated with 4% para-
formaldehyde for 30  min and then stained with 0.5% 
crystal violet for 15 min. Finally, after washing with water 
and wiping off the cells on the upper surface of the cham-
bers, the cells were photographed with a microscope 
(Olympus, Japan).

Tumor xenograft formation assay in vivo
We purchased 4-week-old BALB/c-nude mice from 
Jiangsu Jicukang Biotechnology Co., Ltd. (China), and a 
total of 14 mice were randomly divided into two groups 
(n = 7 per group). Experiments were performed strictly 
based on a protocol approved by the Animal Research 
Committee of Anhui Medical University. Mice were kept 
and handled following guidelines and recommendations. 
We suspended glioma cells in PBS/Matrigel at a density 
of 5 × 106 cells/ml, and 100  μl cell suspension was sub-
cutaneously injected into the flanks of nude mice. Tumor 
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volumes were measured every 7  days and determined 
using the formula: V = 0.5 × L × W2 (L: length; W: width). 
28  days after inoculation, tumor tissues were harvested 
and weighed for further study.

Statistical analyses
All experiments were repeated at least three times, and 
the experimental data were expressed as the mean ± SD. 
Unpaired t-test or one‐way ANOVA was performed to 
compare continuous variables between groups. We con-
ducted the Kaplan–Meier method to investigate the OS 
of each group and the chi-square test to analyze differ-
ences in clinicopathological characteristics. Pearson 
correlation coefficients were utilized to evaluate the rela-
tionship between variables, and we performed statistical 
analyses using GraphPad Prism or R software. *p < 0.05 
indicates statistical significance.

Results
Identification of SE‑LncRNAs
As shown in the volcano plot, we first identified 2441 
genes that were differentially expressed in GSCs and 
NSCs using |log2 FC|> 1 and P < 0.05 as cut-offs via 

RNA-seq data (Fig. 1A), and 1688 genes highly expressed 
in GSCs were displayed in a heatmap (Fig.  1B). Then, 
based on the H3K27ac ChIP-seq data of 43 glioma 
patients-derived GSCs, SEs were identified by the ROSE 
algorithm, and genes regulated by SEs were selected; sub-
sequently, we obtained 9606 super-enhancer-associated 
genes (SE-genes) by merging these genes and removing 
duplicates. In the same way, 6054 SE-genes were yielded 
from the ChIP-seq data of NSCs. We analyzed these two 
sets of SE-genes by a Venn diagram, and 4553 SE-genes 
unique to GSCs were selected. The intersection of these 
4553 SE-genes with 1688 genes screened by differential 
analysis yielded 419 SE-genes, and 58 SE-lncRNAs were 
further identified via gene annotation (Fig.  1C). Subse-
quently, we screened for genes based on the frequency 
and rank ordering of SE-genes in the ChIP-seq data of 
GSCs. The frequency condition was that SE-genes were 
present in more than 10% of all 43 glioma patients. We 
integrated SE-genes of GSCs and calculated the fre-
quency of each gene in an EXCEL table. Genes with a 
frequency greater than or equal to 5 were selected, and 
3494 SE-genes were obtained (Fig. 1D). As for rank order, 
we chose the top 100 SE-genes in ChIP-seq data of each 

Fig. 1  Identification of 6 SE-lncRNAs. A A volcano plot of 2441 differentially expressed SE-genes. B The heatmap shows expression levels of 1688 
SE-genes which are highly expressed in GSCs. C Identification of 58 SE-lncRNAs. D The 3494 specific SE-genes were expressed in more than 10% of 
the 43 glioma patients. E Select each patient’s top 100 genes in ChIP-seq, resulting in 1244 SE-genes. F GO and KEGG analyses of the 3494 SE-genes 
screened by frequency. G GO and KEGG analyses of the 1244 SE-genes screened by rank order. H 8 SE-lncRNAs were obtained by the intersection of 
58 SE-lncRNAs with SE-genes obtained by frequency and ranking. I 6 SE-lncRNAs were finally screened by combining the RNA-seq data of TCGA and 
CGGA databases
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patient’s GSCs and got 1244 SE-genes after removing 
duplicate genes (Fig. 1E). We further performed GO and 
KEGG analyses on these two sets of SE-genes. Results 
indicated that both were associated with biological pro-
cesses such as focal adhesion and cell–cell junction 
(Fig.  1F, G). Finally, the intersection of 58 SE-lncRNAs 
and SE-genes obtained by frequency and rank ordering 
obtained 8 SE-lncRNAs, and 6 SE-lncRNAs were eventu-
ally screened by combining with RNA-seq data in CGGA 
and TCGA databases (Fig. 1H, I).

Consensus clustering of 6 selected SE‑LncRNAs identified 3 
clusters of glioma patients
Based on the expression similarity in 6 selected lncR-
NAs, k = 3 was an appropriate choice with clustering 
stability in the CGGA dataset (Fig. 2A–C). Additionally, 
patients in cluster 3 showed the shortest OS among the 
three subgroups (Fig. 2D). Then, we made a comparison 
of the clinicopathological features of 3 subgroups. Results 
revealed that lower grade, younger age, and alive status 
were mainly presented in the cluster 1 and 2 subgroups, 
while the cluster 3 subgroup was prominently related to 
GBM phenotype, older age at diagnosis, and dead sta-
tus (Fig. 2E–H). At the same time, glioma patients of the 
same grade were distributed in different subgroups, indi-
cating the heterogeneity of glioma of the same grade.

Similar results were observed in the TCGA database. 
Additional file  1: Fig. S1A-C suggested that the most 
appropriate choice was to divide the cases into 3 clusters. 
Moreover, the cluster 3 subgroup showed the shortest 
OS (Additional file  1: Fig. S1D). Combined with clini-
cal information, the cluster 1 and 2 subgroups signifi-
cantly correlated to lower grade glioma, alive status, and 
younger age. On the contrary, the cluster 3 subgroup 
consisted mainly of patients with GBM phenotypes, dead 
status, and older age (Additional file 1: Fig. S1E–H).

The clinical information and prognostic impact of the risk 
signature constructed by 6 selected SE‑LncRNAs in glioma
Next, the prognostic effect of 6 selected SE-lncRNAs 
was explored in gliomas. Firstly, LASSO Cox regression 
analysis of these lncRNAs was conducted to develop a 
risk signature in the CGGA training dataset (Fig.  3A). 
Figure  3B showed the corresponding coefficients, and 
then the risk score for each patient was calculated in both 
CGGA and TCGA datasets. With the median risk score 
as the threshold, two datasets classified glioma patients 
into low- and high-risk groups. We then compared 
the survival differences between the two groups, with 
patients in the low-risk group showing longer OS in both 
the training (Fig.  3C) and testing (Additional file  2: Fig. 
S2A) datasets. Furthermore, the AUC of ROC curves was 

Fig. 2  6 SE-lncRNAs classified glioma patients into clusters with discrepant OS and clinical features in the CGGA dataset. A CDF of consensus 
clustering from k = 2–9. B The area under the CDF curve was changed from k = 2 to 9. C The consensus clustering matrix revealed that glioma 
patients in CGGA dataset were divided into 3 clusters. D Survival differences among cluster 1/2/3. E Discrepant clinicopathologic features and 6 
SE-lncRNA expression levels among cluster 1/2/3. F–H The clinicopathological features in 3 subgroups, including grade (F), age (G), and survival 
status (H). **p < 0.01, ***p < 0.001
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76% and 75.3% in training (Fig. 3D) and validation (Addi-
tional file 2: Fig. S2B) sets, respectively, which means that 
our model is accurate. These results manifest that the risk 
signature established by 6 SE-lncRNAs may be used as 
an indicator to evaluate the clinical outcome of glioma 
patients.

Subsequently, the relationship between clinical infor-
mation and our risk signature was investigated. Com-
pared to patients in the low-risk group, the high-risk 
group presented more GBM phenotype, older age, death 
status, and cluster 3 in both CGGA (Fig. 3E) and TCGA 
(Additional file 2: Fig. S2C) datasets. In addition, recur-
rent gliomas were more likely to occur in the high-risk 
group of the training set (Fig. 3E). We further compared 
the differences in patients’ risk scores classified by vari-
ous clinical characteristics. Results revealed that glioma 
patients with GBM phenotype, more than 60  years of 
age, dead status, or in cluster 3 had higher risk scores 
in CGGA (Fig.  3F–I) and TCGA (Additional file  2: Fig. 
S2D–G) datasets. Moreover, high-risk scores were also 
associated with unmethylated MGMT promoter, 1p19q 
non-code, recurrent glioma, and IDH wild-type genotype 
in the training set (Fig. 3J–M). Figure 3N and Additional 

file 2: Fig. S2H further showed the distribution of glioma 
patients in our model in two datasets.

Finally, we performed univariate Cox regression anal-
ysis on four clinical factors: age, gender, grade, and risk 
score. The p-value indicated that age, grade, and risk 
score were all related to the OS of glioma patients in the 
training (Fig.  3O) and validation (Additional file  2: Fig. 
S2I) sets. Further multivariate Cox regression analy-
sis was conducted by integrating these four factors. The 
p-value suggested that the risk score could be an inde-
pendent prognostic factor for glioma patients in both 
CGGA (Fig.  3P) and TCGA (Additional file  2: Fig. S2J) 
databases. In conclusion, we established a 6 SE-lncRNAs 
risk signature that could predict glioma patients’ survival.

Functional analysis
To explore the potentially altered functional character-
istics related to our SE-lncRNA signature, we conducted 
GO and KEGG analyses on the 6 selected SE-lncRNAs to 
study underlying biological processes related to glioma. 
GO analysis exhibited that 6 SE-lncRNAs were primarily 
associated with the cell cycle, including organelle fission, 
nuclear division, and chromosome segregation (Fig. 4A). 

Fig. 3  Construction of a 6 SE-lncRNAs risk model. A Cross-validation for adjusting parameter choice in LASSO regression analysis. B 6 SE-lncRNAs 
and the corresponding coefficients were shown. C Kaplan–Meier survival curves of two risk groups in the CGGA dataset. D The ROC curve indicates 
the sensitivity and specificity of the risk signature to predict prognosis in the training set. E The heatmap displayed the discrepant distribution of 
clinical features and expression of 6 SE-lncRNAs in low- and high-risk glioma patients. F–M The WHO grade (F), cluster 1/2/3 subgroups (G), age 
(H), fustat (I), MGMT promoter methylation status (J), 1p/19q codel status (K), PRS type (L), and IDH status (M) stratify the training set, and the 
distribution of risk scores was shown. N Surveying the risk model in CGGA dataset: distribution and survival status of glioma patients in low- and 
high-risk groups. O, P Univariate (O) and multivariate (P) analyses for the training set consisting of gender, age, grade, and risk score. *p < 0.05, 
**p < 0.01, ***p < 0.001
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KEGG analysis proved that these lncRNAs were prin-
cipally correlated to cell cycle, phosphatidylinositol 
3-kinase (PI3K)-Akt signaling pathway, the extracellu-
lar matrix (ECM)-receptor interaction, proteoglycans in 
cancer, and focal adhesion (Fig. 4B). Additionally, accord-
ing to GSEA results, the high-risk group showed close 
association with EMT, E2F targets, and tumor necrosis 
factor α (TNFα) signaling via nuclear factor-κB (NFκB) 
(Fig. 4C–E). These results reveal the potential biological 
behavior and mechanism of 6 SE-lncRNAs affecting the 
prognosis of glioma.

Immune characterization of two risk groups
The IPS score serves as a general indicator to evaluate 
the activation of the sample’s immune system. In our risk 
signature, the high-risk group presented a higher IPS 
z-score than the low-risk group, which suggested a differ-
ent immune microenvironment modulation between the 
two groups (Fig.  5A). Specifically, the scores of antigen 
presentation and effector cells were higher in the high-
risk group, while the scores for suppressor cells were 
lower (Fig. 5B–D). In addition, there were differences in 
the immune checkpoint category between the two risk 

groups (Fig.  5E). Next, we utilized the “ESTIMATE” R 
package to evaluate each glioma sample’s stromal and 
immune cell infiltration. As we can see, the high-risk 
group presented a higher immune score, which is consist-
ent with IPS results (Fig. 5F). A higher overall abundance 
of stromal cells and ESTIMATE score but lower tumor 
purity was then observed in the high-risk group (Fig. 5G–
I). We further explore this issue in more detail. Figure 5J 
shows the heatmap of immune infiltration according to 
CIBERSORT, ssGSEA, QUANTISEQ, MCPCOUNTER, 
and EPIC algorithms. Consistent results showed that the 
low-risk group presented higher abundances of natural 
killer cells (NK), T follicular helper cells (Tfh), and Th1 
cells, while macrophage, regulatory T cells (Tregs), M2 
macrophage, Cancer-associated fibroblasts (CAFs), neu-
trophils, dendritic cells (DCs), and CD8 + T cells were 
more common in high-risk groups.

Correlation between prognostic signature of 6 SE‑LncRNAs 
and response to immuno‑ and chemotherapies
Given that the prognostic model correlated with tumor 
immunity, we further investigated the relationship 
between our prognostic model and immune checkpoint 

Fig. 4  Functional analysis of the risk signature. A GO analysis of 6 SE-lncRNAs. B KEGG analysis of 6 SE-lncRNAs. C–E GSEA showed that the high-risk 
group enriched EMT, E2F targets, and the inflammatory pathway
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genes. Figure 6A showed the expression differences of 35 
immune checkpoint genes between low- and high-risk 
groups, and there were 28 (e.g., PD-1, PD-L1, PD-L2, and 
CTLA4) of 35 genes observably up-regulated in high-
risk patients (Fig.  6A). Further analysis revealed that 
the risk score was positively correlated with the expres-
sion of common immune checkpoint-related genes 
(Additional file  3: Fig. S3A–F). Besides, glioma patients 
stratified based on risk score and immune checkpoints 
genes expression performed significant survival differ-
ences. Patients in the low-risk group had better progno-
ses regardless of the highly or lowly expressed immune 
checkpoints (PD1, CTLA4, PD-L1, and PD-L2) (Fig. 6B–
E). Recent reports have highlighted the role of the IPS 
based on tumor immunogenicity in predicting the immu-
notherapy response to ICI therapy. A higher IPS score 
indicates a better immunotherapy response [25, 34]. 
We further evaluated the efficacy of immunotherapeu-
tics based on our risk signature. Three subtypes of IPS 
values (IPS-CTLA4 positive, IPS-PD-1/PD-L1/PD-L2 
positive, and IPS-CTLA4/PD-1/PD-L1/PD-L2 positive) 

were served to evaluate responses of glioma patients to 
immunotherapy. Results showed that the high-risk group 
presented higher blocker scores in the above three sub-
types (all p < 0.001; Fig. 6F–I), suggesting that patients in 
the high-risk group are inclined to benefit from immu-
notherapy. Subsequently, we further verified this result 
by performing the SubMap analysis. Results revealed that 
the expression profiles of patients in the high-risk group 
were related to those in the CTLA4 response group 
(p < 0.05), Which indicated that high-risk patients might 
respond better to anti-CTLA4 therapy, and also supports 
the results of IPS (Fig. 6J).

Considering that chemotherapy is a common treat-
ment for glioma, we evaluated the treatment response 
of two risk groups to several common chemotherapeu-
tic drugs, including cisplatin, dasatinib, etoposide, pacli-
taxel, and doxorubicin. The IC50 value of each glioma 
patient was calculated according to a predictive model 
of the corresponding drugs above. We observed a strik-
ing difference in the results of the two risk groups. The 
IC50 value belonging to the high-risk group was all lower, 

Fig. 5  Estimating IPS scores, tumor purity, and TIIC components. A–E Boxplot showing differences of aggregated IPS z-score (A), antigen 
presentation (B), effector cells (C), suppressor cells (D), and checkpoint scores (E) between two risk groups. F–I A significant difference was shown 
in the immune score (F), stromal score (G), ESTIMATE score (H), and tumor purity (I) between the two risk groups. J Heatmap for the immune score, 
stromal score, ESTIMATE score and tumor purity, and immune cell infiltrates based on CIBERSORT, ssGSEA, QUANTISEQ, MCPCOUNTER, and EPIC 
algorithms in two risk groups. ***p < 0.001
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which means that high-risk patients could be more sensi-
tive to commonly used chemotherapy drugs (all p < 0.001) 
(Fig. 6K–O).

BRD4 may regulate the expression of SE‑LINC00945 via MED1
Subsequently, we obtained the expression of 6 SE-lncR-
NAs in multiple tumor types and paired normal tissues 
via the GEPIA2 website (https://​gepia2.​cancer-​pku.​
cn). The results revealed that the high expression of 
LINC00945 was specific in glioma (Additional file  4: 
Fig. S4). To further explore the expression mecha-
nism of LINC00945 in glioma, we selected five glioma 
patient-derived GSCs to profile the landscape of active 
enhancers, based on the fact that the rank ordering of 
SE-LINC00945 in GSCs ChIP-seq data of these five 
patients was in the top 5 of 43 glioma patients (Fig. 7A). 
In addition, H3K27ac ChIP-seq data generated in GSCs 
identified the SE of LINC00945 (Fig.  7B) and SEs of 
LHFPL3-AS1, HOXA-AS2, HOXA-AS3, SLC26A4-AS1, 
and HOTAIRM1 were also shown (Additional file 5: Fig. 
S5A-E). To investigate the role of LINC00945 in glioma, 
we detected LINC00945 expression in human glioma and 

normal brain tissue from our cohort. Figure 7C showed 
that LINC00945 expression was significantly up-regu-
lated in glioma tissues compared to normal brain tis-
sues. In addition, the expression levels of LINC00945 in 
normal human astrocyte (HEB), human glioma cell lines 
(LN18, SF126, SNB19, U251, and T98G), and human 
GBM cell PN12 derived from surgical specimens were 
measured. Compared with HEB, LINC00945 in vari-
ous glioma cells showed highly expressed (Fig.  7D). We 
further verified the SE of LINC00945 by ChIP assay 
(Fig.  7E). Research indicated that the combination of 
ROSE with H3K27ac ChIP-seq can identify SEs. Besides, 
several cofactors (MED1), chromatin regulators (BRD4), 
and signaling factors (CDK7) can also be utilized for SE 
identification [35, 36].

We then analyzed the correlation of LINC00945 
with MED1, BRD4, CDK7, and Histone deacetylases 
(HDACs) in TCGA (Fig.  8A–F) and CGGA (Addi-
tional file  3: Fig. S3G–L) datasets. The results showed 
that MED1 and BRD4 had the highest positive corre-
lation with LINC00945. To explore whether and how 
MED1 and BRD4 affected LINC00945 expression at the 

Fig. 6  Differential expression of immune checkpoints and response to ICIs and chemotherapy between two risk groups. A Box plot presenting 
the expression of 35 immune checkpoints in low- and high-risk groups. B–E Kaplan–Meier OS curves among four patient groups stratified by the 
6 SE-lncRNAs risk signature and PD1 (B), CTLA4 (C), PD-L1 (D), and PD-L2 (E). F–I The relationship between IPS and the 6 SE-lncRNA signature of 
glioma patients. Distribution plot of IPS score (F), IPS-CTLA4 blocker score (G), IPS-PD1/PDL1/PDL2 blocker score (H), and IPS-CTLA4 and PD1/PDL1/
PDL2 blocker score (I) were shown. (J) Submap analysis demonstrated that the high-risk group was more sensitive to anti-CTLA-4 therapy (P < 0.05). 
K–O The SE-lncRNA signature could serve as a potential indicator to evaluate the sensitivity to cisplatin (K), dasatinib (L), etoposide (M), paclitaxel 
(N), and doxorubicin (O). *p < 0.05, **p < 0.01, ***p < 0.001 and ns indicates no significance

https://gepia2.cancer-pku.cn
https://gepia2.cancer-pku.cn
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transcriptional level, T98G and U251 glioma cells were 
treated with JQ1 in indicated concentration for 48 h. JQ1, 
a BRD4 inhibitor, selectively interacts with the BD1 and 
BD2 domains of BRD4 and disrupts the interaction of 
BRD4 protein with acetylated lysine [37]. Results indi-
cated that JQ1 inhibited the expression of LINC00945 
and MED1 in both T98G and U251 cells without affect-
ing the mRNA expression of BRD4 (Fig.  8G, H). How-
ever, when we knocked down MED1 by siRNA, MED1 
and LINC00945 decreased, but the mRNA expression of 
BRD4 had no significant change (Fig.  8I, J). We further 
examined the changes of BRD4 at the protein level, and 
the results also indicated that the expression of BRD4 
was not affected after MED1 knockdown (Fig.  8K, L). 
These suggested that BRD4 may regulate the expression 
of LINC00945 via MED1.

LINC00945 facilitates glioma cell proliferation in vitro and 
tumor growth in vivo
We interfered with endogenous LINC00945 expres-
sion by LINC00945-overexpressing plasmid to eluci-
date the biological role of LINC00945 in glioma cells 
in  vitro. RT-qPCR analysis confirmed the transfection 
efficiency (Fig.  9A). In the CCK-8 assay, overexpression 

of LINC00945 resulted in a marked proliferation increase 
(Fig. 9B, C). The colony-forming assay showed that over-
expression of LINC00945 increased the colony-forming 
ability of both LN18 and PN12 glioma cells (Fig. 9D, E). 
We then evaluate the functional roles of LINC00945 
in  vivo xenograft models. PN12 cells with stable 
LINC00945 overexpression were constructed using len-
tivirus vectors and inoculated into nude mice. As illus-
trated in Fig.  9F and G, the size of tumor xenografts in 
the LINC00945 overexpression group was obviously 
bigger compared to the vector group, and tumor weight 
in the LINC00945 overexpression group is also heavier 
(Fig.  9H). In addition, expression levels of LINC00945 
in nude mice tumor tissues were significantly increased 
in the LINC00945 overexpression group than in the vec-
tor group (Fig.  9I). These data indicated that LINC00945 
promotes tumor proliferation in vivo and in vitro.

LINC00945 promotes glioma cell EMT, migration, 
and invasion potential
Figure 10A and B show that more LN18 and PN12 cells 
exhibited spindle-shaped morphology meaning a more 
mesenchymal cell-like morphology after overexpression 
of LINC00945 and culturing for three weeks. Specifically, 

Fig. 7  Epigenomic enhancer profiling defined LINC00945 as a SE-lncRNA. A Enhancer regions of GSCs. Enhancers were ranked by their H3K27ac 
ChIP-seq signals. Typical enhancers under the curve’s inflection were marked in the blue box, while SEs above the inflection point were indicated 
in the red box. The number of SEs and rank of SE-LINC00945 were presented for each sample. B ChIP-seq profiles of H3K27ac in GSCs and NSCs. C 
Relative LINC00945 expression in glioma and normal brain tissues from our cohort. D Relative expression of LINC00945 in HEB, LN18, PN12, SF126, 
SNB19, U251 and T98G cells. E H3K27ac ChIP followed by RT-qPCR identified the SE of LINC00945. The co-immunoprecipitated DNA was amplified 
by PCR utilizing indicated primer. **p < 0.01, ***p < 0.001. The independent biological experiments were repeated at least three times
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the proportion of cells with spindle-shaped morphology 
in vector groups of LN18 and PN12 cells was about 20% 
and 15%, respectively, compared with approximately 62% 
and 54% in the overexpressed LINC00945 groups. Cor-
relation analyses further showed that the expression of 
LINC00945 was positively correlated with the expres-
sion of N-cadherin, ZEB1, and ZEB2 in both TCGA 
(Fig. 10C–E) and CGGA (Additional file 3: Fig. S3M–O) 
datasets. Consistent with this result, overexpression of 
LINC00945 led to significantly increased protein and 
mRNA expression levels of N-cadherin, ZEB1, and ZEB2 
in LN18 and PN12 glioma cells (Fig. 10F–I). In transwell 
migration and invasion assays, we observed increased 
migratory and invasive glioma cells in the LINC00945 
overexpression group (Fig. 10J, K). These findings suggest 
that LINC00945 contributes to glioma EMT, migration, 
and invasion.

Discussion
Gliomas, the most common invasive primary malignant 
brain tumor of the CNS, exhibit poor prognosis [38]. 
SE-lncRNA is a crucial regulator of glioma. We have 
reported that SE-lncRNA TMEM44-AS1 promoted 

glioma progression by  forming a  positive feedback 
loop with  Myc [33]. Some other SE-lncRNAs, includ-
ing CCAT1, LINC00152, and NEAT1, may also facili-
tate the malignant phenotype of gliomas [39]. Recently, 
researchers have developed some lncRNA signatures that 
have shown predictive effects in the prognosis and treat-
ment of glioma patients, including the pyroptosis-related 
lncRNA signature [40] and immune-related lncRNA sig-
nature [41]. Herein, we explored the predictive value of 
SE-lncRNAs in glioma prognosis and treatment.

In this work, we first identified 6 SE-lncRNAs by con-
ducting a multi-omic analysis of RNA-seq and ChIP-
seq data. Then, two datasets (CGGA and TCGA) were 
utilized to assess the prognostic value of 6 SE-lncRNAs 
in glioma patients. Based on the expression profiles of 
6 SE-lncRNAs, we identified three glioma subgroups 
with different prognoses and clinicopathological char-
acteristics via applying consensus clustering analysis. 
Similarly, Zhou et al. utilized immune-related genes to 
identify three glioma subgroups, which proved to be 
valid prognostic factors [42]. Zheng et al. also identified 
three glioma subgroups based on endoplasmic reticu-
lum stress-associated lncRNAs [43]. Then, a prognostic 

Fig. 8  BRD4 promoted the transcription of LINC00945 via MED1. A–F The correlation of LINC00945 with MED1 (A), BRD4 (B), CDK7 (C), HDAC1 (D), 
HDAC2 (E), and HDAC3 (F) in the TCGA database, respectively. (G, H) The BRD4 inhibitor lessened the expression of LINC00945 and MED1 in both 
T98G (G) and U251 (H) cells. I, J The expression of LINC00945 decreased, while the mRNA expression of BRD4 was not affected after knocking down 
the expression of MED1 by siRNA. K, L The protein expression levels of BRD4 and MED1 were detected by western blot when treated with the siRNA 
of MED1. *p < 0.05, **p < 0.01, ***p < 0.001, and ns indicates no significance. The independent biological experiments were repeated at least three 
times
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risk signature with 6 SE-lncRNAs was established by 
performing the Lasso regression analysis. Patients in 
the high-risk group had a worse prognosis, showing 
more GBM subtypes, advanced age, dead status, and 
recurrent glioma. In addition, our molecular typing 
also correlates with the prognostic model. The clus-
ter 3 subgroup with the worst prognosis was almost 
distributed in the high-risk group, while the cluster 
1 subgroup with a better prognosis was almost in the 
low-risk group. The methylation of MGMT promoter is 
a vital reference factor for the clinical treatment of gli-
oma patients, which indicates that glioma patients have 
a better therapeutic response to the first-line chemo-
therapy drug temozolomide [44]. In addition, 1p19q 
codeletion and IDH mutation have been reported to be 
associated with favorable prognosis in glioma patients 
[45]. In our risk model, glioma patients with MGMT 
promoter methylation, 1p19q codeletion, and IDH 
mutation presented a relatively lower risk score, sug-
gesting a better prognosis. Research shows that a single 
model integrating multiple biomarkers performs better 
predictive effects than a single biomarker [46]. Consist-
ently, univariate and multivariate analyses confirmed 

that our risk score could be a valuable indicator for 
evaluating the prognosis of glioma patients.

In consideration of the vital role of our risk signature in 
assessing glioma prognosis, we further focused on under-
lying mechanisms. GO and KEGG analyses revealed that 
SE-lncRNAs closely correlated with cell cycle, PI3K-Akt 
signaling pathway, ECM-receptor interaction, proteo-
glycans in cancer, and focal adhesion. Dysregulation of 
the cell cycle is a crucial mechanism for the infinite pro-
liferation and metastasis of malignant glioma cells [47]. 
PI3K-AKT signaling pathway is an essential intracellu-
lar signal pathway that is directly involved in regulating 
glioma cell proliferation, EMT, migration, invasion, and 
immune escape [48–51]. As a complex extracellular mac-
romolecular network, ECM controls multiple cellular 
activities, such as adhesion, migration, and proliferation 
[52]. In addition, the intricate immunosuppressive net-
works formed by stromal cells, inflammatory cells, vas-
culature, ECM, and their secreted cytokines in the TME, 
play a pivotal role in tumor immune escape [53]. Proteo-
glycans, key molecular effectors of cell surface and peri-
cellular microenvironments, perform multiple functions 
in cancer, including regulating tumor cell growth, tumor 

Fig. 9  LINC00945 promotes glioma proliferation in vitro and in vivo. A The overexpression efficiency of LINC00945 was detected by qRT-PCR. B, 
C CCK8 experiments suggested that overexpression of LINC00945 promoted the proliferative capacity of LN18 (B) and PN12 cells (C). D, E Colony 
formation assay manifested LINC00945 increased LN18 and PN12 cells tumorigenicity. F–H The mouse xenograft model indicated that LINC00945 
facilitated tumor growth in vivo. Images of tumor (F), volume growth curve (G), and tumor weight (H) were shown. (I) The differential expression 
of LINC00945 in xenograft tumor samples was detected by conducting RT-qPCR. *p < 0.05, **p < 0.01, ***p < 0.001. The independent biological 
experiments in vitro were repeated at least three times
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microenvironment, and metastasis [54]. Focal adhesion 
has been reported to play a vital role in cancer cell migra-
tion and metastasis by linking the actin cytoskeleton to 
the ECM, allowing the cell to generate traction [55, 56]. 
The GSEA suggested that EMT, E2F targets, and inflam-
mation-related pathways were markedly enriched in 
the high-risk group. EMT is thought to be a typical pat-
tern of malignant epithelial tumor progression, induc-
ing locally invasive and metastatic tumor subtypes [57]. 
As vital drivers of tumor growth, E2F transcription fac-
tors participate in various tumor advances, including cell 
cycle, invasion, and DNA damage response [58]. TNF‐α, 
an inflammatory factor, is considered to be remark-
ably related to the malignant progression of gliomas, and 
NFκB sustainedly activated by TNF-α results in inva-
sion and metastasis of tumor cells [59]. Consequently, 
we speculated that 6 SE-lncRNAs might mainly affect the 
biological behaviors of glioma cells, including prolifera-
tion, EMT, migration, and invasion, and participate in the 
regulation of TME.

The formation of a tumor is usually accompanied 
by the formation of a tumor bed, changes in surround-
ing connective tissue and matrix, and, ultimately, a 

microenvironment suitable for the survival of tumor cells 
[60]. A better understanding of the TME will contribute 
to developing new ways to improve the TME, thereby 
enhancing the effect of immunotherapy, which also lays 
a solid foundation for the application of immunotherapy 
combined with other therapy in the future. Abundant 
glioma-related nontumor cells, represented by stromal 
and immune cells in TME, play a crucial role in glioma 
progression [61, 62]. Specifically, glioma-related stro-
mal cells, such as astrocytes, endothelial cells, and mes-
enchymal cells, play an essential role in tumorigenesis, 
angiogenesis, and invasion [63]. TIICs can induce tumor 
immunosuppression and immune evasion, and different 
immune cells play different roles in gliomas [64]. Our 
results presented a higher z-score of IPS in the high-risk 
group, indicating higher immunogenicity [25]. Mean-
while, the ESTIMATE algorithm uncovered that our 
high-risk group had higher stromal and immune scores. 
Tumor purity refers to the percentage of cancer cells in 
a tumor sample, so patients in the high-risk group pre-
sented lower tumor purity. The report indicated that low 
tumor purity is associated with a poor prognosis of gli-
oma [65], and our results support this conclusion.

Fig. 10  LINC00945 promotes EMT, migration, and invasion of glioma cells. A, B Morphological changes were perceived in both LN18 (A) and PN12 
(B) cells after culturing for three weeks following overexpression LINC00945. C–E The expression of LINC00945 was positively correlated with the 
expression of N-cadherin (C), ZEB1 (D), and ZEB2 (E) in the TCGA database. F, G The mRNA expression levels of EMT-related genes (N-cadherin, ZEB1, 
and ZEB2) in LN18 (F) and PN12 (G) glioma cells transfected with LINC00945 and vector plasmids were examined by qRT-PCR. H, I Western blot 
examined the different expression levels of N-cadherin, ZEB1, and ZEB2 proteins in the LINC00945 overexpression and vector groups. J, K Transwell 
experiments revealed that overexpression of LINC00945 promoted LN18 and PN12 glioma cell migration (J) and invasion (K). ***p < 0.001. The 
independent biological experiments were repeated at least three times
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Subsequently, we utilized multiple algorithms to com-
pare differences in the distribution of TIICs between 
the two risk groups. NK cells, Tfh cells, and Th1 cells, 
exhibiting anti-tumoral functions, were more common 
in the low-risk group [66–68], while the high-risk group 
presented higher enrichment of macrophage, Tregs, 
M2 macrophage, CAFs, neutrophils, DCs, and CD8 + T 
cells. Previous studies have shown that tumor-associated 
macrophages (TAMs) occupied 30–40% of the cellular 
component in GBM, identified as the promoter of tumor 
progression due to the immunosuppressive function [69]. 
TAMs of the M2 phenotype are closely associated with 
tumor cell proliferation and unfavorable clinical prog-
nosis in GBM patients [70]. In addition, tumors secrete 
the chemokine CCL28, selectively attracting Tregs and 
increasing their functions, which can inhibit effector T 
cells and DCs from exerting immunosuppressive effects 
[71]. Several studies have indicated that the proportion 
of Tregs infiltration in glioma increased with the malig-
nant degree of tumor [72, 73]. CAFs, the main cellular 
component of cancer stroma, play a key role in induc-
ing EMTs, maintaining tumor stem cell pools, regulating 
tumor immunity, promoting tumor immune escape, and 
resisting immunotherapy [74–76]. The infiltration level of 
neutrophils was positively correlated with glioma grade. 
The immunosuppression and angiogenesis induced by 
neutrophils could promote the progression of glioma [77, 
78]. As professional antigen-presenting cells, DCs stimu-
late the anti-tumor effect of CD8 + T cells by presenting 
tumor antigens; however, M2 macrophage, Tregs, and 
CAFs could form immune barriers against CD8 + T cell-
mediated anti-tumor immune responses [79, 80]. Thus, 
although CD8 + T cells in the high-risk group are more 
abundant, these cells may not perform their function 
well. In a word, the high-risk group tends to exhibit an 
immunosuppressive microenvironment responsible for 
poor prognosis.

In recent years, immunotherapy represented by anti-
PD1 therapy has shown promising therapeutic potential 
in partial preclinical research of glioma [81, 82]; how-
ever, most clinical trials of immunotherapy have failed 
to achieve the expected treatment efficacy [83], and 
the clinical benefit of ICIs therapy to glioma patients is 
highly heterogeneous. Thus, screening suitable patients 
is a critical factor in improving the therapeutic efficacy 
of ICIs. Based on our risk signature, we further explored 
the correlation between the risk score and expression lev-
els of crucial immune checkpoints. The high-risk group 
presented a higher expression of PD1 (PDCD1), CTLA4, 
PD-L1 (CD274), and PD-L2 (PDCD1LG2), and our risk 
signature could also distinguish glioma patients with sim-
ilar expression levels of immune checkpoints. PD-1 was 
reported to play an essential role in inhibiting immune 

responses and promoting self-tolerance through regulat-
ing the activity of T cells and blocking the apoptosis of 
Tregs. Tumor cells usually up-regulate the expression of 
PD-1 ligands (either PD-L1 or PD-L2) to suppress the 
anti-tumor immune response [84, 85]. CTLA4, a surface 
receptor of Tregs, can suppress the activation of effec-
tor T cells [86]. Moreover, it is generally believed that 
patients with high expression of immune checkpoint 
genes, which could theoretically provide therapeutic 
targets, are more likely to benefit from ICIs treatment 
[87–89]. Some immune cells are also associated with 
ICIs treatment. Accumulating evidence indicates that 
DCs improve responsiveness to anti-PD-1 immuno-
therapy, and the efficacy of ICIs is dependent on a high 
density of preexistent CD8 + T cells [90, 91]. Thus, we 
speculated that patients in the high-risk group are more 
likely to benefit from ICIs. Results of IPS, a good predic-
tor of the treatment response to ICIs [25], revealed that 
the high-risk group presented higher immune checkpoint 
blocker scores, which is consistent with our specula-
tion. In addition, the submap analysis also revealed that 
the high-risk group was more suitable for anti-CTLA4 
treatments. These results indicated that our SE-lncRNA 
signature is a potential model that can evaluate glioma 
patients more likely to respond to ICIs. We further stud-
ied the response of our risk signature to several common 
chemotherapy drugs utilizing the GDSC database, and 
results revealed that the high-risk group was overall more 
sensitive to commonly administered chemotherapies. In 
addition, chemotherapy has been widely explored as a 
suitable partner for anti-PD-1/PD-L1 and anti-CTLA-4 
therapy based on the immunomodulatory effects of 
chemotherapy drugs. For example, in the clinical trial 
KEYNOTE-021 (phase 2), carboplatin and pemetrexed 
in combination with pembrolizumab (PD-1 inhibitor) 
significantly improved response rate and progression-
free survival (PFS) in patients with advanced non-squa-
mous non-small cell lung cancer [92]. Thus, Patients in 
the high-risk group may achieve a better therapeutic 
effect from the combination of immunotherapy and 
chemotherapy.

6 SE-lncRNAs are contained in our risk signature. 
Among them, five lncRNAs have been reported to be 
related to the malignant progression of tumors [93–97]. 
However, the role of LINC00945 has not been explored. 
In addition, the high expression of LINC00945 is specific 
in gliomas, and LINC00945 has the highest regression 
coefficient value in our prognostic model, indicating that 
it contributes the most to the model. Thus, we explored 
the potential expression mechanism and function of 
LINC00945 in gliomas. According to the report, the 
combination of the ROSE program with ChIP-seq tar-
geting H3K27ac is widely used to identify SEs [35, 36]. 
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In the present study, we identified the SE of LINC00945 
by analyzing H3K27ac ChIP-seq data, which was further 
verified by performing the ChIP assay. As the second 
SEs marker after H3K27ac in various cell types, BRD4, a 
member of the bromodomain and extra terminal domain 
(BET) protein family, functions as a transcriptional reg-
ulator and epigenetic reader in cells that binds to acety-
lated lysine in histones [98]. Nishida et  al. treated renal 
cancer cells with BET inhibitor JQ1 to reduce DRD4 
binding and CXC chemokine transcription, thereby 
inhibiting renal cancer metastasis and neutrophil infil-
tration [99]. MED1 is a cofactor promoting transcription 
initiation and acts as a bridge between enhancers and 
promoters [100]. In addition, the occupancy of MED1 
serves as concrete evidence for identifying enhancer ele-
ments [101]. A study from Richard Young’s group showed 
that transcriptional coactivators, BRD4 and MED1, form 
phase-separated condensates at SEs, which gathers the 
transcription machinery near the SEs and results in 
robust expression of SE-genes [102]. Herein, we prelimi-
narily revealed that BRD4 might regulate the expression 
of LINC00945 via MED1. However, the exact mechanism 
needs to be further explored. Subsequently, based on the 
results of functional experiments and the mouse xeno-
graft model, we verify that LINC00945 promotes prolif-
eration, EMT, migration and invasion of glioma cells, and 
tumor growth in  vivo, suggesting that LINC00945 may 
serve as a novel underlying therapeutic target for glioma.

Conclusions
In conclusion, we identified three glioma subgroups with 
disparate prognostic and clinical features based on the 
screened 6 SE-lncRNAs and developed a 6 SE-lncRNAs 
expression-based risk signature with an ability to predict 
glioma prognosis and immuno- and chemotherapeutic 
response. Meanwhile, different immune characteristics 
between the two risk groups were presented. Further-
more, we explored the epigenetic activation mechanism 
of LINC00945 and its effect on glioma. In short, the pre-
sent study has guidance value for clinicians to analyze 
prognosis and achieve individualized treatment for gli-
oma patients.
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