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Abstract 

Background  Genome-wide association studies (GWAS) have highlighted over 200 autosomal variants associated 
with multiple sclerosis (MS). However, variants in non-coding regions such as those encoding microRNAs have not 
been explored thoroughly, despite strong evidence of microRNA dysregulation in MS patients and model organisms. 
This study explores the effect of microRNA-associated variants in MS, through the largest publicly available GWAS, 
which involved 47,429 MS cases and 68,374 controls.

Methods  We identified SNPs within the coordinates of microRNAs, ± 5-kb microRNA flanking regions and predicted 
3′UTR target-binding sites using miRBase v22, TargetScan 7.0 RNA22 v2.0 and dbSNP v151. We established the subset 
of microRNA-associated SNPs which were tested in the summary statistics of the largest MS GWAS by intersecting 
these datasets. Next, we prioritised those microRNA-associated SNPs which are among known MS susceptibility SNPs, 
are in strong linkage disequilibrium with the former or meet a microRNA-specific Bonferroni-corrected threshold. 
Finally, we predicted the effects of those prioritised SNPs on their microRNAs and 3′UTR target-binding sites using 
TargetScan v7.0, miRVaS and ADmiRE.

Results  We have identified 30 candidate microRNA-associated variants which meet at least one of our prioritisation 
criteria. Among these, we highlighted one microRNA variant rs1414273 (MIR548AC) and four 3′UTR microRNA-binding 
site variants within SLC2A4RG (rs6742), CD27 (rs1059501), MMEL1 (rs881640) and BCL2L13 (rs2587100). We determined 
changes to the predicted microRNA stability and binding site recognition of these microRNA and target sites.

Conclusions  We have systematically examined the functional, structural and regulatory effects of candidate MS 
variants among microRNAs and 3′UTR targets. This analysis allowed us to identify candidate microRNA-associated MS 
SNPs and highlights the value of prioritising non-coding RNA variation in GWAS. These candidate SNPs could influ-
ence microRNA regulation in MS patients. Our study is the first thorough investigation of both microRNA and 3′UTR 
target-binding site variation in multiple sclerosis using GWAS summary statistics.
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Background
Multiple sclerosis (MS) is a complex chronic neuro-
inflammatory condition that affects the central nervous 
system (CNS). This condition leads to periods of neu-
rological disability in patients and is the cause of most 
non-traumatic neurological injury in young adults [1, 2]. 
MS pathogenicity is linked to environmental and genetic 
factors [3, 4]. Understanding the genetic contributions to 
MS could aid in identifying candidate biomarkers and in 
predicting disease aetiology and progression.

Genetic studies have uncovered part of the complex-
ity of MS. More than 13 GWAS have been carried out 
on MS patients and control populations since 2007 [5]. 
Compared to earlier study designs, GWAS have contrib-
uted the most information about MS heritability, with 
over 200 non-MHC variants associated with the condi-
tion since the most recent GWAS [6]. Altogether, approx-
imately 48% of MS heritability has been accounted for [6]. 
However, there are challenges in interpreting the causal 
variants within risk loci [5, 7]. In particular, non-coding 
variants are not often prioritised in these interpretation 
strategies.

MicroRNAs (miRNAs) are small ~ 22nt non-coding 
RNAs which are well conserved across organisms. They 
play central roles in post-transcriptional modification by 
binding the 3′UTR of their targets [8] (Fig. 1A), although 
other interactions have been reported within the 5′UTR, 
coding sequences and promoter sequences of target 
genes [9]. Interestingly, miRNAs have been shown to be 
dysregulated in immune cell subsets, cerebrospinal fluid 
(CSF) and plasma of MS patients, as well as in the MS 
mouse model, experimental autoimmune encephalomy-
elitis (EAE) [10, 11].

Despite strong evidence of microRNA dysregulation in 
MS patient samples and model organisms, there is lim-
ited literature on the role of microRNA variation in MS 
[12–15]. In contrast, variants in microRNAs and their 
processing machinery have been implicated in com-
plex conditions such as cardio-metabolic conditions, 

colorectal cancer, glaucoma, Alzheimer’s disease and Par-
kinson’s disease [16–22].

We hypothesised that miRNA-associated variants are 
implicated in MS pathology. To explore this, we gener-
ated a bioinformatics pipeline to identify candidate MS 
susceptibility variants in microRNA genes and in the 
3′UTR binding sites of microRNA targets using summary 
statistics from the most recent MS GWAS meta-analy-
sis [6]. We then characterised and evaluated the effects 
of these variants using in silico methods and publically 
available datasets.

Therefore, our main objectives were collation, identifi-
cation and characterisation of novel (a) microRNA gene 
susceptibility SNPs in MS and (b) microRNA 3′UTR 
binding site SNPs in MS.

Results
microRNA susceptibility SNPs
In order to investigate microRNA susceptibility SNPs in 
MS, we developed a prioritisation protocol as highlighted 
in Fig. 1. This protocol integrates common variation from 
dbSNP v151 with microRNA annotations from miRBase 
v22 [23, 24], in order to capture variation within pre-
cursor and mature microRNAs (Fig.  1B). We identified 
60,638 SNPs in precursor/mature miRNA regions. These 
were obtained by intersecting 4573 mature and hairpin 
structures from miRBase with over 500 million SNPs 
from dbSNP v151 (Fig.  1C). This independent collation 
exceeds 56,911 microRNA SNPs (miR-SNPs) obtained 
from two older databases of microRNA variation, miR-
NASNPv3 and PolymiRTS [25, 26], and highlights the 
need to collate microRNA SNPs using more recent data.

Overall, we examined miR-SNPs which (a) are among 
known MS susceptibility SNPs, (b) are in linkage dise-
quilibrium (LD) with known MS susceptibility SNPs, (c) 
meet a microRNA-specific adjusted Bonferroni threshold 
and finally (d) MS susceptibility SNPs which lie within 
microRNA flanking regions (Fig. 1D).

(See figure on next page.)
Fig. 1  A Schematic representation of microRNA transcription and microRNA–mRNA interaction. microRNAs are transcribed from DNA sequences 
and processed by DROSHA from the primary structure to precursor structure and by Dicer into the mature sequence. These processed mature 
microRNA sequences then interact with mRNA targets, leading to mRNA degradation or translational repression. B microRNA precursor secondary 
structure. Altogether, we identified SNPs which are located within precursor, mature and 5-kb microRNA flanking regions. C Flowchart summarising 
our microRNA exploration procedure. We used summary statistics from the largest MS GWAS meta-analysis [6] and two publically available datasets 
to investigate microRNA-associated variation in MS. To capture variation within human microRNAs, we extracted the genomic coordinates of 
human microRNA precursor and mature regions from miRBase v22 and intersected these with all human variants recorded in dbSNP v151. In 
addition, we extended the precursor regions by 5 kb up- and downstream to incorporate SNPs within regulatory features (D). Overall, among the 
SNPs tested in the IMSGC’s meta-analysis, we identified 314 SNPs within microRNA precursor/mature regions and 36,841 SNPs in 5-kb flanking 
regions. D In our prioritisation process, we identified microRNA SNPs (1) among known MS susceptibility SNPs, (2) in strong Linkage Disequilibrium 
(LD) with known MS risk SNPs and (3) which meet the adjusted p value threshold for the 314 microRNA SNPs tested in the IMSGC meta-analysis. A 
and D adapted from “microRNA in Cancer” and “The Principle of a Genome-wide Association Study (GWAS)” in Biorender.com (2022). Retrieved from 
https://​app.​biore​nder.​com/​biore​nder-​templ​ates

https://app.biorender.com/biorender-templates
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Fig. 1  (See legend on previous page.)
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MicroRNA variants among known MS SNPs
Initially, we identified 314 SNPs within precursor/mature 
microRNAs that were tested within the 2019 GWAS 
summary statistics [6] (Additional file 1: Table S1). How-
ever, none of these microRNA variants were among the 
reported MS susceptibility SNPs. To investigate this fur-
ther, we mapped miR-SNPs which were in linkage dis-
equilibrium (LD) with the susceptibility SNPs, in order 
to capture tagging miR-SNPs within the MS susceptibil-
ity loci. 3 of the 314 miR-SNPs (rs1414273, rs7247237 
and rs7247767) were in LD with the susceptibility SNPs 
(see Methods). Among these 3 miR-SNPs, rs1414273 
is in high LD (r2 = 0.97) with known MS susceptibil-
ity SNP rs10801908 (CD58), meets the genome-wide p 
value threshold (p = 8.48 × 10–16) and lies within the 3′ 
end of precursor hsa-mir-548ac (Fig. 2A). Only recently 
has attention been drawn to rs1414273/MIR548AC in 
MS. Hecker et al. [14] found that rs1414273 (MIR548AC) 
decouples transcription of CD58 and MIR548AC. Their 
findings support our independent prioritisation process 
for non-coding candidate variants which are in high LD 
with coding MS susceptibility SNPs.

Next, we examined the effect of rs1414273 on the 
structural conformation of hsa-mir-548ac using miRVaS 
[27]. This SNP significantly impacts the flank and arm of 
the microRNA in both the 5′ and 3′ directions. The fold 
energy changes across the centroid (CEN), minimum fold 
energy (MFE) and maximum estimate accuracy (MEA) 
models are presented in Additional file  1: Table  S2. We 
have represented the MEA, which has a net change 
of − 4.4∆ in Fig. 2B and C.

In Fig.  2C, the risk allele (C) is predicted to create a 
more thermodynamically stable RNA secondary struc-
ture compared to the T allele. This could allow for more 
microRNA regulatory activity. In conclusion, rs1414273 
is potentially associated with MS susceptibility and 
changes to MIR548AC stability.

Genome‑wide microRNA variants
Next, to specifically focus on miRNA-related variants, we 
carried out Bonferroni correction on the p value thresh-
old, adjusting for the 314 miRNA SNPs that were tested 
in the summary statistics. This process yielded 6 can-
didate MS-associated miR-SNPs within the precursor, 

loop and seed regions of 4 microRNAs: MIR548AC, 
MIR1208, MIR3135b and MIR6891 (Table  1). We 
established the functional implication of rs1414273 in 
MIR548AC in the previous step; therefore, we focused 
on the other 5 SNPs here. We examined the genomic 
context of the miR-SNPs and compared our candidates 
to reported GWAS signals.rs2648841 in the 3′ end of 
precursor MIR1208 (Table  1), which represents a signal 
separate from the IMSGC GWAS signals rs735542 (hg37 
chr8:128175696), rs6990534 (PVT) (Fig.  2D), the proxi-
mal peaks rs11989574 and rs759648 (chr8:129158945 in 
another European GWAS) (Fig. 2E). Similar to rs1414273 
(MIR548AC) above, rs2648841 was not among the pri-
oritised effects and therefore was not among suggestive, 
non-replicated or no data effects outlined by the IMSGC. 
However, we dropped this SNP due to its nominal p value 
compared to the lead SNPs and because no structural 
changes were predicted in 2 of 3 thermodynamic models 
(Additional file 2: Fig. S1).

Also among the 6 miR-SNPs (Table  1), 3 are within 
hsa-miR-6891-3p, a product of MIR6891 (rs17881225, 
rs2276448 and rs2854001). This microRNA is encoded 
within intron 4 of HLA-B and is co-transcribed with the 
mRNA, which is itself associated with MS susceptibility. 
Although these 3 candidate SNPs could have effects on 
target regulation, the GWAS signal is likely coming from 
the HLA variants identified by the IMSGC (rs2308655, 
rs3819284, rs1050556, HLA-B*52.01, HLA-B*38:01 
and HLA-B*35:03). Among these 3 MIR6891 SNPs, 
rs2276448 lies within the seed region of the microRNA 
and possibly has the most significant effect on its target 
regulatory function compared to the SNPs in the mature 
and precursor loop regions. We explored the target-bind-
ing consequences of the seed SNP rs2276448 (MIR6891) 
in Additional file text (Additional file 2: Fig. S2).

Finally, rs4285314 lies in the precursor 3′ end of 
MIR3135b, but is within the same susceptibility locus as 
the HLA-B variants, presenting the same challenge as the 
MIR6891 variants.

Overall, having investigated the SNP in MIR548AC, 
we did not further prioritise any of the 5 Bonferroni-
adjusted microRNA SNPs due to a) lack of predicted 
structural changes or b) high linkage disequilibrium in 
the MHC locus.

Fig. 2  A Regional LocusZoom plot [62] showing high Linkage Disequilibrium (r2 > 0.9) between known MS susceptibility SNP rs10801908 (CD58) 
and our candidate SNP rs1414273, which lies in MIR548AC. Next, we highlight the predicted RNA secondary structure of the B reference sequence 
of hsa-mir-548ac compared to the C alternative (risk) allele. This figure shows the MEA prediction which has the greatest net change in free energy 
among the 3 models predicted by miRVaS (Additional file 1: Table S2). The arrow highlights the SNP rs1414273 (in red) located in the 3′ end (arm) 
of precursor sequence. Lower free energy measures indicate greater RNA stability; therefore, microRNA with the alternative risk allele is more 
thermodynamically stable than the reference allele. Candidate SNP rs2648841 is within genomic coordinates of MIR1208. D This variant represents a 
different signal from IMSGC SNPs rs6990534 and rs735542 (chr8:128175696) and E is not in LD with rs11989574, the peak SNP in its genomic region 
or rs1861842 (not shown) and rs759648 (chr8:129158945) which were implicated in African Americans and Europeans, respectively [53]. Although 
this SNP is below genome-wide significance (p = 3.86 × 10–5), its association with MS cannot be ruled out

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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microRNA flanking SNPs among known MS SNPs
Having explored our microRNA variants with regard 
to susceptibility SNPs, LD and adjusted p values, we 
expanded our definition of microRNA variants to 
include those within ± 5-kb flanking regions of the pre-
cursors, in a similar approach to that employed by Fang 
and colleagues [21]. By extending the miRNA precursor 
coordinates by ± 5  kb, we aimed to incorporate micro-
RNA regulatory features that might be influencing their 
expression. We found over 4 million SNPs in ± 5-kb 
precursor flanking regions of miRNAs (Fig.  1C). In 
total, 36,841 of these were tested in the summary sta-
tistics (Fig. 1C). Among these, two variants proximal to 
hsa-mir-10399 and hsa-mir-4492 were among known 
susceptibility SNPs. rs10271373 and rs149114341 
(chr11:118783424 hg37) are downstream of hsa-
mir-10399 and hsa-mir-4492, respectively (Additional 
file 1: Table S5), and were annotated as intergenic SNPs 
in the 2019 GWAS meta-analysis. An enhancer sequence 

is reported around the coordinates of rs149114341. 
However, we were unable to characterise its effects on 
MIR4492 using summary statistics only. rs10271373 
maps downstream of MIR10399 as well as to the 3′UTR 
binding site of ZC3HAV1, a gene that has been impli-
cated in MS [6]. Therefore, this SNP was prioritised in 
our 3′UTR binding site analysis instead.

Altogether, our prioritisation process highlights 
rs1414273 (MIR548AC) as a candidate MS SNP among 
the other candidates (Additional file 1: Table S10).

3′UTR microRNA‑binding site susceptibility SNPs
Variants in the 3′UTRs of mRNAs could disrupt or cre-
ate microRNA-binding sites, contributing to transcrip-
tomic dysregulation. We explored variation in 3′UTR 
microRNA-binding sites that could be relevant to MS, by 
implementing a procedure similar to our microRNA vari-
ant collation (Fig. 3A).

Table 1  Annotation of the 6 miRNA SNPs that passed the Bonferroni-adjusted p value threshold (p < 0.05/314)

ADmiRE [28] was used to identify the locations of these SNPs. In order of consequence, SNPs in the seed region > mature > loop > precursor ends. The association 
with MIR548AC was explored in the previous section. The structural consequence of MIR1208 SNP was explored, while the microRNA-binding ability of MIR6891 was 
examined in the context of the seed SNP. Discovery GWAS p values and ORs of these SNPs are also presented in context

CHR: POS (hg38) RSID A1/A2 EUR_AF Discovery 
GWAS  p 
value

OR miRNA ADmiRE 
annotations

OR 
interpretation

Prioritisation 
results

1:116560027 rs1414273 C/T 0.1402 8.48E−16 1.2333 mir-548ac Precursor_3PrimeEnd risk High LD, structural 
change

8:128150187 rs2648841 G/A,T 0.0179 3.86E−05 1.1322 mir-1208 Precursor_3PrimeEnd risk No structural change

6:31355288 rs17881225 G/C 0.0984 7.72E−05 1.2163 mir-6891 Precursor_Loop risk Signal in high LD 
HLA region

6:31355243 rs2276448 T/C 0.2366 7.73E−12 1.2517 mir-6891 3p_Seed risk Signal in high LD 
HLA region

6:31355235 rs2854001 G/A 0.2117 5.44E−38 1.5888 mir-6891 3p_Mature risk Signal in high LD 
HLA region

6:32749925 rs4285314 G/A 0.5318 7.1E−122 1.5134 mir-3135b Precursor_3PrimeEnd risk Signal in high LD 
HLA region

(See figure on next page.)
Fig. 3  A Flowchart showing our 3′ UTR microRNA-binding site exploration pipeline using 3 publically available datasets and summary statistics 
provided by IMSGC (2019). 3′UTR variant collation was performed separately from microRNA variant collation. We obtained variants from dbSNP 
v151 and integrated these into the 3′UTR binding sites predicted by RNA22 v2.0 and TargetScan v7.0 (see Methods) (B). Schematic showing the 
predicted effects of rs6742 on microRNA-binding ability to 3′UTR in SLC2A4RG. The C allele is expected to bind to 6 microRNAs differently to the 
T allele. Overall, we expect that the C allele is under stronger regulation than the T allele. C Venn Diagram showing the overlap between GWAS 
independent SNPs and our collection of 3′UTR SNPs which are in 3′UTR binding sites. Independent SNPs were identified through FUMA and a list 
of suggestive effects provided by the IMSGC. D Among the 19 independent SNPs from C, we tested the microRNA-binding ability of the 3′UTR 
binding sites containing 8 SNPs. Among these, 6 SNPs were found to cause microRNA-binding site changes in their 3′UTR sites. Here, we show the 
number of microRNAs that bind to the alternative and reference versions of the 3′UTR sequences, as well as the microRNAs that bind differently. 
The source column highlights which GWAS independent list the SNP has been output from. E LocusZoom regional plot showing the 3′UTR SNP 
rs2587100, which is independent, weakly suggestive, causes changes in microRNA-binding ability of BCL2L13 and is an eQTL for BCL2L13 in general 
monocytes and MS patient monocytes. This is our only candidate SNP which has MS patient specific eQTL evidence. No other SNPs in this region 
were prioritised among the genome-wide IMSGC SNPs. The highlighted intronic SNP rs9618043 (CECR2) is among the non-replicated SNPs (NR) 
from the IMSGC’s prioritised effects within this region (IMSGC Additional file 1: Table S6), while rs9618040 is not among the prioritised effects (intron 
CECR2) 
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Fig. 3  (See legend on previous page.)



Page 8 of 16Fashina et al. Human Genomics           (2023) 17:31 

3′UTR microRNA-binding sites were extracted from 
two microRNA–target prediction tools which imple-
ment different algorithms. Predictions from both Tar-
getScan v7.0 and RNA22 v2.0 were used to capture 
microRNA–target interactions within the 3′UTRs [29, 
30]. Among over 14 million RNA22-predicted binding 
sites, 1,223,207 sites were retained as they had the most 
significant p values per miRNA–target pair. In addition, 
over 15 million TargetScan-predicted binding sites were 
identified. Together, we found 1,223,207 RNA22 SNPs 
and 4,116,698 TargetScan SNPs after intersecting dbSNP 
v151 with the genomic coordinates of these 3′UTR bind-
ing sites (Fig. 3A). We collated 126,074 SNPs among the 
predicted 3′UTR binding sites which were also tested in 
the summary statistics.

3′UTR variants among known MS SNPs
Overall, we identified two [2] IMSGC susceptibility 
SNPs among our collated 3′UTR binding site variants. 
rs10271373 (p = 3.11 × 10–9, GWAS joint OR = 0.946) 
and rs6742 (p = 4.11 × 10–14, GWAS joint OR = 1.149) 
lie within the predicted 3′UTR microRNA-binding sites 
of ZC3HAV1 and SLC2A4RG, respectively. We used 
TargetScan v7.0 to analyse miRNA-binding changes 
in reference versus variant 3′UTR sequences for these 
2 candidate mRNAs. Of the 2 susceptibility SNPs, we 
observed changes in miRNA-binding ability for rs6742 
only. In short, rs6742 changes which miRNAs can bind 
to the SLC2A4RG 3′UTR of both alleles (Additional 
file 1: Table S6, Fig. 3B). Overall, the risk allele of rs6742 
appears to be under tighter miRNA regulation than the 
T allele, with a net change of + 3 miRNA interactions 
(Fig. 3B).

3′UTR variants among independent SNPs
We postulated that more candidate 3′UTR binding site 
MS SNPs exist, but were not prioritised as susceptibility 
SNPs in the 2019 meta-analysis. Therefore, to broaden 
our 3′UTR binding site candidates, we first identified 
independent SNPs from the IMSGC’s Additional file [6] 
(Additional file 1: Table S11). In total, we extracted a list 
of 201 independent genome-wide SNPs and 416 inde-
pendent weakly and strongly suggestive (299 WS and 117 
SS) SNPs. For some of these suggestive SNPs, their joint 
p values were greater than their discovery p values; how-
ever, they did not meet genome-wide significance, while 
others replicated significantly in only one dataset [6] 
(Additional file 1: Table S11). We then explored whether 
any of our 126,074 3′UTR SNPs, which were tested in the 
summary statistics were among these independent SNPs 
from IMSGC. On intersecting both datasets, we identi-
fied 13 3′UTR SNPs within the IMSGC’s independent 
SNPs (Additional file 1: Table S7, Fig. 3C).

To expand the methodology used to identify independ-
ent SNPs within the summary statistics, we uploaded the 
IMSGC GWAS summary statistics into FUMA Webt-
ools [31]. While the IMSGC applied stepwise conditional 
regression to their discovery and replication cohorts to 
identify independent effects, FUMA uses PLINK’s [32] 
clumping procedure to rank independent and lead SNPs 
from GWAS summary statistics. We identified 318 inde-
pendent SNPs from the FUMA web tools. Eight of our 
3′UTR SNPs were among the FUMA independent SNPs 
(Additional file 1: Table S7, Fig. 3C). Additionally, two [2] 
3′UTR independent SNPs were shared by both FUMA 
and the IMSGC (Fig.  3C). Altogether, we identified 19 
3′UTR SNPs among the independent SNPs (Additional 
file 1: Table S7).

We set out to investigate these 19 3′UTR SNPs through 
in silico methods and publically available functional evi-
dence (see Methods). Other studies [33–35] have pro-
posed criteria to validate microRNA–target interactions. 
These can be summarised as (1) demonstration of co-
expression, (2) direct interaction between miRNA and 
region on target, (3) gain and loss experiments to show 
target protein interaction and (4) predicted changes have 
biological functions. We incorporated these approaches 
into our prioritisation process (see Methods). In short, 
functionally relevant 3′UTR SNPs are likely to change 
miRNA–target interactions at the 3′UTR binding site, 
act as eQTLs for the targets in MS relevant tissues (e.g. 
PBMCs, lymphocytes) and have the relevant microRNAs 
expressed in the same MS relevant tissues. We investi-
gated these using the FiveX browser for eQTL catalogue, 
an MS eQTL dataset from the IMSGC, RegulomeDB 
v2.07 and FANTOM5 [6, 36–38] (Additional file  1: 
Table  S11). These criteria are highlighted in Additional 
file 2: Fig. S3.

Among our 19 candidates, we excluded 11 for the fol-
lowing reasons. Two had been assessed in the suscepti-
bility SNP process, 7 had been reannotated as intronic 
and the relevant 3′UTR sequences were unavailable for 
2 SNPs. Therefore, we carried out microRNA gain/loss 
on 8 independent SNPs using TargetScan 7.0 (Addi-
tional file 1: Table S7). Among these 8, we found that 6 
SNPs (rs1059501 CD27, rs881640 MMEL1, rs2587100 
BCL2L13, rs11648656 CIITA, rs17763689 ATF7 and 
rs451774 GPX5) change the microRNA-binding ability of 
3′UTRs (Fig. 3D, Additional file 1: Table S8).

The 3′UTR of BCL2L13 has the greatest changes in 
microRNA binding due to rs2587100 (GWAS joint 
OR = 3.43 × 10–05, joint p value = 1.049). The G allele 
(risk allele) binds to miR-4681 while the C allele binds 
to miR-27-3p, miR-513a-5p and miR-6798-5p, sug-
gesting that the 3′UTR sequence which includes the 
risk allele is possibly under less regulation (Fig.  3D). 
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rs2587100 was among the weakly suggestive effects 
(IMSGC), but has strong functional support for its 
potential role. rs2587100 is also the only SNP among 
our 6 candidates which is an eQTL for the target gene 
in non-MS and an MS patient dataset (see Meth-
ods). However, the effect of the eQTL is not consist-
ent across the non-MS and 1 MS dataset. It decreases 
BCL2L13 expression in non-MS PBMCs and mono-
cytes, and increases BCL2L13 expression in MS 
PBMCs and monocytes, and its relevant microRNAs 
are also expressed in monocytes [6, 38–40] (Addi-
tional file  1: Table  S9, Additional file  1: Table  S11). 
We have presented the genomic context of this SNP in 
Fig. 3E. Apart from rs9618043 CECR2, which is among 
the IMSGC’s non-replicated SNPs, no other SNPs in 
this region were among the prioritised genome-wide 
IMSGC SNPs.

Only two [2] other independent 3′UTR SNPs 
(rs1059501 and rs881640) met the functional valida-
tion criteria (Fig.  4A, Additional file  1: Table  S9). The 
significant eQTL activity or microRNA expression 
for rs11648656, rs17763689 and rs451774 appears 
to not be relevant for MS tissues (Additional file  1: 
Table  S9, Additional file  2: Fig. S4). Therefore, we pri-
oritised rs1059501 and rs881640 and have shown their 
genomic context in Fig.  4B and C. rs1059501 (CD27) 
is independent from the IMSGC susceptibility SNPs 
(rs1800693, rs2364485 and rs12832171) in that region 
and was ranked as strongly suggestive in the IMSGC 
stepwise regression. Both the protective (G) and alter-
native allele (T) lose and gain one miRNA, respectively 
(Fig. 3D). The microRNAs gained/lost due to this SNP 
are expressed in monocytes and haematopoietic cells 
(Additional file  1: Table  S9) [38], while the SNP has 
been shown to decrease CD27 expression in T-cells 
and LCLs, and increase CD27 in monocytes and brain 
tissue [41–45]. Finally, rs881640 is independent from 
the IMSGC genome-wide SNP [chr1:2520527(hg37); 
rs6670198] in that region. Its G (risk) allele binds to 
miR-1471, but not to miR-634 or miR-4781, which are 
recognised by the T allele. Therefore, we expect that 
3′UTR sequence containing the G allele is likely under 
less regulation than the T allele. This SNP has been 
shown to decrease MMEL1 expression in blood, mono-
cytes and T-cells [41, 46, 47].

Overall, we highlighted that the impact of increased 
regulation of SLC2A4RG due to the new miRNA inter-
actions could be significant. In addition, 3 independent 
SNPs in 3′UTRs of BCL2L13, CD27 and MMEL1 meet 
multiple miRNA:target interaction criteria. Therefore, 
we have presented evidence that these SNPs could be 
involved in MS pathogenesis and should be prioritised 
for future investigation.

Discussion
In this study, we presented evidence that microRNA-
associated variants could be implicated in MS. Our anal-
ysis is the first systematic exploration of both microRNA 
and 3′UTR target-binding site variation in MS, using 
GWAS summary statistics. By using the most recent 
meta-analysis [6], we harnessed the largest MS GWAS 
resource available to test our hypothesis. Altogether, 
we identified 30 candidate microRNA-associated vari-
ants from our collation procedure. Those variants meet 
a microRNA-specific Bonferroni-corrected threshold, are 
in LD (Linkage Disequilibrium) with known susceptibil-
ity SNPs or are suggestive SNPs from the IMSGC GWAS 
[6], whose microRNA functions had not been evaluated 
previously. We prioritised 1 of 8 miR-SNPs, rs1414273 
(MIR548AC), and 4 of 22 SNPs in 3′UTR microRNA-
binding sites of SLC2A4RG (rs6742), CD27 (rs1059501), 
MMEL1 (rs881640) and BCL2L13 (rs2587100), based on 
structural and functional predictions. Therefore, these 5 
SNPs are our top candidate microRNA-associated vari-
ants which could play a role in MS pathogenesis.

Our work successfully incorporates multiple micro-
RNA prioritisation methods used elsewhere [12, 19, 21, 
22]. The most relevant comparison to our results is a 
study which implicated 11 microRNAs in MS suscepti-
bility [48]. We noted one major difference in methodol-
ogy. Hecker and colleagues [48] analysed all SNPs within 
microRNA stem loop and Drosha cleavage sites which 
are close (< 250  kb) to the 233 IMSGC GWAS SNPs, 
irrespective of their presence in the summary statistics. 
Therefore, association analysis-based p values were not 
factored in within their prioritisation process. Among of 
their 12 candidate SNPs, 6 had been tested in the GWAS 
and were not Bonferroni-corrected. However, both stud-
ies identified hsa-mir-548ac and hsa-mir-4492 as candi-
date MS microRNAs. Another important comparison is 
against a microRNA GWAS study performed on a pae-
diatric MS cohort [12]. Rhead et  al. [12] adjusted the p 
value threshold for microRNA variants within a paediat-
ric cohort of MS patients, but did not identify any signifi-
cant SNPs. To follow up, those authors used MIGWAS 
[49] to identify enrichment of candidate microRNA–tar-
get network signals. Alternatively, we examined our can-
didates individually, to characterise effects of the variants 
on the functions of microRNAs and targets directly.

Parallel to other studies, we successfully examined 
the effect of risk alleles through in silico methods [22, 
50–52]. Our secondary structure prediction spotlighted 
that the risk allele for rs1414273 is expected to yield 
higher MIR548AC levels. Interestingly, rs1414273 has 
been shown to decouple the transcription of miR-548ac 
from its host gene CD58, leading to increased levels 
of miR-548ac [14]. This is in line with our secondary 
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Fig. 4  A Table showing the p values and odds ratio (OR) for the 6 independent 3′UTR independent SNPs. Among these, only 3 (highlighted in 
bold) meet 3 of the microRNA–target validation criteria (see Methods, Additional file 1: Table S9). Joint p values (from IMSGC’s discovery and 
replication processes) are available for the IMSGC independent (suggestive) SNPs, but not for those identified by FUMA, as these were not among 
the suggestive effects. For the latter group, we have showed the discovery p values and ORs. B LocusZoom plots showing regions around our 
other 2 functionally relevant SNPs (rs2587100 is in Fig. 3E). We have highlighted the 3′UTR SNPs in rs1059501 (CD27) and rs881640 (MMEL1). Our 
candidate SNP rs1059501 is independent from the IMSGC susceptibility/genome-wide SNPs (rs1800693, rs2364485, rs12832171) in that region and 
was ranked as strongly suggestive in the IMSGC stepwise regression. C Our candidate SNP rs881640 is independent from the IMSGC susceptibility/
genome-wide SNP (chr1:2520527(hg37); rs6670198) in that region
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stability model. Despite rs1414273 [chr1:117102649 
(hg37), 0.14 EUR MAF] being significant in the dis-
covery cohort of the IMSGC meta-analysis, it was 
not among the effects prioritised for replication. It 
also appears not to have been captured among the 46 
SNPs within that haplotype between the two replica-
tion datasets [6] (Additional file  1: Table  S11). Con-
versely, the IMSGC’s prioritised effect SNP rs10801908 
alone might paint an incomplete picture, due to the 
presence of MIR548AC within the first intron of 
CD58 and the strong linkage between rs10801908 and 
rs1414273. However, there is limited research into the 
role of MIR548AC in immunological conditions. Next, 
although our candidate rs2648841 did not change the 
structural conformation of miR-1208, another MIR1208 
SNP rs1861842 has been associated with MS in African 
Americans [53], implicating the microRNA further.

In additional in silico experiments, we identified 
changes to MIR6891’s binding ability, which could 
lead to functional changes to the mRNA. However, 
because MIR6891 lies within an intron of HLA-B, a 
class I MHC molecule with protective MS SNPs [54, 
55], it is challenging to segregate the MHC signal 
from the microRNA signal using only summary sta-
tistics. While MIR6891 seed SNP rs2276448 itself has 
not been assessed in MS, miR-6891-3p is linked to 
changes in macrophage-driven inflammation [56]. Our 
microRNA gain/loss analysis also showed that the risk 
allele of rs6742 in SLC2A4RG is likely under stronger 
microRNA regulation than the other allele. This is sup-
ported by the IMSGC’s 2019 study, where SNPs within 
the rs6742 susceptibility locus were all associated with 
reduced SLC2A4RG expression in CD4 + T-cells in an 
MS cohort [6] (Additional file 1: Table S11). SLC2A4RG 
functions as a transcription factor for SLC2A/GLUT4, 
which is among the glucose carriers that are upregu-
lated following lymphocyte activation [57]. This high-
lights a possible link between SLC2A4RG dysregulation 
in CD4 + T-cells and T-cell activation.

After broadening our search for independent SNPs 
through FUMA, we identified changes to the microRNA-
binding ability of CD27, MMEL1 and BCL2L13 due to 
rs1059501, rs881640 and rs2587100, respectively. This 
highlights the value of using different methods to identify 
independent SNPs. The eQTL rs2587100 drives increased 
expression of BCL2L13 in MS patients [6] (Additional 
file 1: Table S11) and aligns with our microRNA gain/loss 
experiment which shows that the risk allele is under less 
regulation than the C allele. BCL2L13 has been linked to 
mitophagy [58]; therefore, investigation of this upregula-
tion in monocytes could be important. However, surpris-
ingly, the non-MS eQTLs for both BCL2L13 and MMEL1 
reduce their expression [38–40]. Genotyping these SNPs 

directly in MS patients could clarify the true direction of 
this eQTL.

Next, at least one other group has incorporated flank-
ing regions in microRNA-specific GWAS, in order to 
explore regulatory features which may influence micro-
RNA transcription [21]. Our identification of a risk SNP 
in an enhancer-like domain [59] flanking MIR4492 sug-
gests the regulation of these microRNA genes by other 
factors. Expression of this microRNA within B-cells is 
proposed to be altered due to Epstein–Barr Virus (EBV) 
infection, which has been shown to increase MS risk 
significantly [4, 13]. The effect of this enhancer SNP on 
MIR4492 expression in MS patients should be investi-
gated further, especially in the context of EBV infection.

The main challenges with interpreting our findings are 
the long-range LD in the MHC region, limited micro-
RNA annotations and the ability of microRNAs to bind 
to multiple targets. We identified consequences of seed 
SNP rs2276448 (MIR6891), but could not confirm its 
independence from HLA-B SNPs (rs2308655, rs3819284, 
rs1050556, HLA-B*52.01, HLA-B*38:01 and HLA-
B*35:03) using only publically available data. Further-
more, we were unable to measure the effect of multiple 
candidate SNPs on microRNAs or their targets by using 
only summary statistics. We also could not annotate the 
flanking SNPs which exceeded the 2-kb region stipulated 
by miRVaS. This is a challenge with microRNA tools such 
as miRVaS, as promoter information is not often avail-
able for intergenic microRNAs [60]. This means that the 
microRNA mapping tools are not fully powered to iden-
tify SNPs in enhancer regions, transcription start sites, 
among others; therefore, this needs to be accounted for 
in downstream analysis. Finally, experimental validation 
of our predicted changes in MIR6891, SLC2A4RG, CD27, 
MMEL1 and BCL2L13 will be necessary in the future due 
to the limitations of microRNA–target prediction algo-
rithms. Finally, this study was limited to publically avail-
able data; therefore, the eQTL data were sourced from 
multiple studies.

Conclusions
Altogether, we identified 30 candidate microRNA-associ-
ated variants through systematic analysis of MS GWAS 
summary statistics. We prioritised 1 microRNA SNP and 
4 3′UTR binding site SNPs based on the effects of the MS 
variants on their function, structure or regulatory abili-
ties. Our in silico work helps to bridge the gap between 
MS GWAS and microRNAs implicated in MS.

Methods
Summary statistics
Summary statistics from the most recent GWAS meta-
analysis [6] on MS patients were requested from the 
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IMSGC through the webpage (https://​imsgc.​net/). In 
short, over 8 million SNPs were imputed and tested 
for 47,429 MS cases and 68,374 control subjects by the 
consortium.

Genomic coordinates for all summary statistics 
(including autosomal and non-autosomal SNPs) were 
provided in hg37. We lifted over to hg38 using Ensembl’s 
[61] Assembly Converter for downstream hg38 SNP inte-
gration. We visualised all regional associations in Locus-
Zoom’s web platform [62]. An overview of the pipeline 
and tools is presented in Additional file 2: Fig. S5.

Text mining
Prior to collating microRNA SNPs, we wanted to test 
whether the microRNA-associated variant databases 
PolymiRTS [26] and miRNASNP v3 [25] were up to 
date. miRNASNP v3 contains SNPs in microRNA seed 
and precursor regions, target 3′UTR SNPs as well as 
predictions of miRNA gain/loss based on these 3′UTR 
SNPs. PolymiRTS was last updated in 2014 and contains 
microRNA seed regions from miRBase v20 and 3′UTR 
sequences for CLASH validated targets. Altogether, this 
resulted in the collation of 56,911 SNPs. We compared 
microRNA SNPs from the literature to those within the 
databases. Specifically, the term “microRNA” was used in 
PubMed’s eFetch commandline tool, to obtain abstracts 
for all relevant papers published between 2014 and 2021. 
We then extracted rsids from these abstracts and manu-
ally confirmed whether the SNPs were referring to the 
microRNAs. Following this manual check, we tested the 
presence of those text mined SNPs within PolymiRTS 
and miRNASNP v3. The absence of recent miR-SNPs 
from the databases guided our independent collation 
step.

Collation of microRNA–associated variants
Variants within microRNA precursor and mature regions 
as well as those in ± 5-kb flanking regions were collated. 
To achieve this, genomic coordinates of microRNA pre-
cursor and mature sequences were downloaded from 
miRBase v22 [63] (https://​www.​mirba​se.​org/​ftp/​CURRE​
NT/​genom​es/​hsa.​gff3) and intersected with genomic 
coordinates from the full dbSNP v151 [23] catalogue 
using BEDTools [64].

Primary transcripts of intergenic microRNAs are not 
well characterised. However, several studies have shown 
that flanking regions between ~ 1  kb and 10  kb are 
likely to contain transcription start sites, CpG islands, 
expressed sequence tag (EST)- and transcription factor 
(TF)-binding sites [21, 60, 65]. By extending the micro-
RNA precursor coordinates by ± 5  kb, we aimed to 
incorporate microRNA regulatory features that might 
be influencing microRNA expression. We extracted 

sequences marked as “microRNA_primary_transcript” 
from the miRBase v22 gff file. These represent precursor 
sequences. These coordinates of these transcripts were 
extended by 5 kb in both directions using the BEDTools 
suite.

microRNA SNPs tested in summary statistics
We intersected the collated microRNA and ± 5-kb flank-
ing SNPs with the lifted over summary statistics. Bonfer-
roni correction was applied on microRNA SNPs found 
among the summary statistics. The p value thresholds 
were adjusted as follows: microRNA SNPs (0.05/314) 
and ± 5-kb flanking SNPs (0.05/36,841).

microRNA‑associated SNPs among susceptibility SNPs
In total, 200 non-MHC autosomal SNPs were signifi-
cantly associated with MS in the most recent meta-anal-
ysis [6]. Those susceptibility SNPs can be obtained from 
Additional file tables (Additional file 1: Table S7) of that 
paper. We intersected the genomic coordinates of our 
collated microRNA, ± 5-kb flanking and 3′UTR target 
SNPs with these susceptibility SNPs. Nominally signifi-
cant SNPs which did not meet the genome-wide thresh-
old were extracted from the IMSGC [6] Additional files 
(Additional file  1: Table  S14). These were merged with 
the susceptibility SNPs to create a dataset of independent 
SNPs. The file names for all datasets extracted from the 
IMSGC study are listed in Additional file 1: Table S11.

microRNA‑associated SNPs in LD with susceptibility SNPs
We aimed to capture entire susceptibility loci by map-
ping variants in linkage disequilibrium with the sus-
ceptibility SNPs. For this step, both the effect SNPs and 
discovery SNPs provided in Additional file 1: Table S7 of 
the IMSGC analysis [6] were used as susceptibility SNPs. 
We obtained all variants in LD with these susceptibility 
SNPs through Ensembl’s perl API, specifically using 1000 
genomes EUR subset as the reference population. LD 
information was available for 174 of the 201 non-MHC 
susceptibility SNPs. This step was carried out for both 
sets of microRNA variants and the 3′UTR variants within 
the summary statistics.

microRNA–target gain/loss analysis
TargetScan 7.0 prediction algorithm was used locally 
to analyse 3′UTR binding changes in variant vs refer-
ence microRNA seed sequence. The SNP position seed 
sequence was located within microRNA reference 
FASTA sequences using SeqKit [66], which we also used 
to swap the reference and alternative alleles. These seed 
sequences were then replaced within the TargetScan 
miR_Family_Info.txt, while the 3′UTR file was retained. 
The transcripts were mapped to gene names, and 

https://imsgc.net/
https://www.mirbase.org/ftp/CURRENT/genomes/hsa.gff3
https://www.mirbase.org/ftp/CURRENT/genomes/hsa.gff3
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differences between the predictions for both microRNA 
sequences were analysed in R.

microRNA variant effect prediction
ADmiRE and miRVaS were used to predict the location 
and effects of microRNA variants, respectively.

Oak et al. [28] provide microRNA annotation tab files 
in the ADmiRE repository. These were formatted into 
BED files and lifted over to hg38. The BED files were 
intersected with vcf files of microRNA variants of inter-
est. This procedure was implemented by Tyc and col-
leagues [67]. miRVaS [27] runs predictions within 2000 
nucleotides of microRNA coordinates using underlying 
tools VARNA and RNAfold [68, 69]. miRVaS is avail-
able online, or in local Windows or Linux packages. SNP 
coordinates were input into miRVaS using the required 
format, and predictions were run based on the hg38 ref-
erence file and miRBase v21.

Collation of 3′UTR target‑binding variants
TargetScan variants
We intersected TargetScan v7.0 [30] bedfiles contain-
ing genomic coordinates of all predicted sites with the 
UTR genome coordinates available on TargetScan. Coor-
dinates in the former set of files were lifted over from 
hg19 to hg38 prior to this intersection. This intersection 
resulted in a collection of TargetScan-predicted binding 
sites within 3′UTRs. The binding site coordinates in the 
resulting bedfile were intersected with dbSNP 151 vari-
ants (Fig.  3A) for a final dataset of 3′UTR SNPs within 
binding sites predicted by TargetScan v7.0. All our inter-
section steps were carried out using combinations of 
VCFtools, BEDtools and SAMtools [70–72].

RNA22 variants
There were over 83 million predicted binding sites avail-
able from RNA22 [29] v2.0. We chose the minimum 
prediction p values for each microRNA–target pair pre-
dicted to interact at 3′UTRs, leading to ~ 14 million pairs 
(p value < 0.0314). Next, a custom R script was used to 
convert the cDNA coordinates to genomic coordinates. 
These were intersected with dbSNP v151 to get 1,223,207 
SNPs (Fig. 3A). Additional file 2: Fig. S6 shows the over-
lap between targets predicted by TargetScan and this 
RNA “best probability” subset.

The dataset containing the union of binding site SNPs 
from TargetScan and RNA22 was used to test the pres-
ence of 3′UTR SNPs among the summary statistics.

3′UTR susceptibility SNPs
After intersecting the coordinates of the collated SNPs 
within 3′UTR binding sites with those of the susceptibil-
ity SNPs from the IMSGC, we identified 5 3′UTR binding 

sites among them. Three of the transcripts relevant to the 
predicted microRNA-binding sites had been archived 
by Ensembl. Therefore, those SNPs could no longer be 
annotated on those transcripts. Joint p values and ORs 
for the two [2] candidate SNPs were obtained from Addi-
tional files (Additional file  1: Table  S7) of the IMSGC 
2019 meta-analysis.

Identification of independent 3′UTR SNPs
The IMSGC identified SNPs among their prioritised 
effects which were independent of the lead SNPs in those 
regions, but did not reach genome-wide significance, and 
were not replicated or whose joint p values were greater 
than the discovery p values. These SNPs are in Additional 
file  1: Tables S6 and S14 of the IMSGC’s paper (Addi-
tional file 1: Table S11).

They identified 201 genome-wide (GW) independent 
effect SNPs, 117 strongly suggestive effect SNPs and 299 
weakly suggestive effects. We collated a list of the weakly 
and strongly suggestive SNPs from these tables.

To identify independent SNPs separately from 
IMSGC’s process, summary statistics were input into 
FUMA’s [31] online platform (https://​fuma.​ctglab.​nl/). 
FUMA [31] uses PLINK’s [73] clumping procedures to 
highlight independent SNPs and lead SNPs. The intersec-
tion between both sets of independent SNPs was used for 
the functional prioritisation pipeline.

Among the 19 independent SNPs identified, the tran-
scripts proposed to contain 7 3′UTR SNPs had been 
archived, and those SNPs had been reclassified as 
intronic SNPs, and the relevant 3′UTR sequences were 
unavailable for 2 (Additional file 1: Table S7). In addition, 
2 independent SNPs had been assessed in the suscepti-
bility SNP analysis, leaving 11 for microRNA gain/loss 
analysis in the next step.

microRNA–target functional pipeline
A number of groups [33–35] have proposed criteria to 
validate microRNA–target interactions. We have sum-
marised these as (1) demonstration of co-expression, (2) 
direct interaction between miRNA and region on tar-
get, (3) gain and loss experiments to show target protein 
interaction and (4) predicted changes have biological 
functions. We have adapted these to suit our bioinfor-
matics approach. By using in silico microRNA gain/loss, 
we will assess the direct interaction condition (condi-
tion 2). We will also use publically available eQTL data 
to meet condition 4 (changed biological functions) and 
are using microRNA expression data in combination 
with the eQTL data to test condition 1. In short, relevant 
3′UTR SNPs change miRNA–target interactions at the 
3′UTR binding site, act as eQTLs for the targets in MS 
relevant tissues (e.g. PBMCs, lymphocytes) and have the 

https://fuma.ctglab.nl/
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lost/gained microRNAs expressed in the same MS rel-
evant tissues. We are limited by study design and will 
not be doing the protein-level gain and loss experiments 
(condition 3). These criteria are highlighted in Additional 
file 2: Fig. S3.

We used the FiveX browser of eQTL catalogue [36] to 
identify the tissues in which our 3′UTR SNPs were acting 
as eQTLs for the predicted targets. We also checked our 
candidate SNPs within a more specific MS eQTL dataset 
which was provided alongside the MS GWAS [6] (Addi-
tional file 1: Table S11). We also identified the probability 
of those SNPs lie in regulatory regions within the genome 
through the probability score (best probability) and the 
type of regulatory site (RDB Rank) from RegulomeDB 
v.2.03 [74]. We also used the human.mirna.cellontology 
dataset from FANTOM5 [38] to check which cells our 
miRNAs were enriched/depleted in. In addition, checked 
the basal expression on the webtool Zenbu miRNA atlas 
(comparing microRNA expression across 0.5 low/10 
medium/1000 highTPM) (Additional file 2: Fig. S3).

microRNA gain/loss analysis
We used TargetScan 7.0 prediction algorithm locally to 
analyse microRNA-binding changes in variant vs ref-
erence 3′UTR sequences. The TargetScan miR_Fam-
ily_Info.txt file was retained, while the reference and 
alternative 3′UTR sequences were formatted using 
SeqKit [66] to match and replace the 3′UTR file. We 
compared the predicted microRNA families compared 
between output files from the alternative and reference 
sequences in an R script.
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