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Abstract 

Background:  Ligation of CD28 with ligands such as CD80 or CD86 provides a critical second signal alongside 
antigen presentation by class II major histocompatibility complex expressed on antigen-presenting cells through the 
T cell antigen receptor for naïve T cell activation. A number of studies suggested that CD28 plays an important role 
in the pathogenesis of various human diseases. Recent genome-wide association studies (GWASs) identified CD28 
as a susceptibility locus for lymphocyte and eosinophil counts, multiple sclerosis, ulcerative colitis, celiac disease, 
rheumatoid arthritis, asthma, and primary biliary cholangitis. However, the primary functional variant and molecular 
mechanisms of disease susceptibility in this locus remain to be elucidated. This study aimed to identify the primary 
functional variant from thousands of genetic variants in the CD28 locus and elucidate its functional effect on the 
CD28 molecule.

Results:  Among the genetic variants exhibiting stronger linkage disequilibrium (LD) with all GWAS-lead variants 
in the CD28 locus, rs2013278, located in the Rbfox binding motif related to splicing regulation, was identified as a 
primary functional variant related to multiple immunological traits. Relative endogenous expression levels of CD28 
splicing isoforms (CD28i and CD28Δex2) compared with full-length CD28 in allele knock-in cell lines generated using 
CRISPR/Cas9 were directly regulated by rs2013278 (P < 0.05). Although full-length CD28 protein expressed on Jurkat T 
cells showed higher binding affinity for CD80/CD86, both CD28i and CD28Δex2 encoded loss-of-function isoforms.

Conclusion:  The present study demonstrated for the first time that CD28 has a shared disease-related primary 
functional variant (i.e., rs2013278) that regulates the CD28 alternative splicing that generates loss-of-function isoforms. 
They reduce disease risk by inducing anergy of effector T cells that over-react to autoantigens and allergens.

Keywords:  Immunological-trait, Genome-wide association study (GWAS), CD28, Primary functional variant, 
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Background
CD28 is a 44-kDa type I transmembrane protein 
expressed on the majority of T cells. Ligation of CD28 
with ligands such as CD80 (known as B7-1) or CD86 
(known as B7-2) provides a critical second signal 
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alongside antigen presentation by class II major histo-
compatibility complex (MHC) expressed on antigen-pre-
senting cells (APCs) through the T cell antigen receptor 
(TCR) for naïve T cell activation [1, 2]. The membrane-
proximal YMNM motif and distal PYAP motif in the 
cytoplasmic tail of CD28 play an important role in the 
activation of NFAT, AP-1, and NF-κB and the subsequent 
transcription of interleukin (IL)-2, which influences T 
cell proliferation, survival, and differentiation. Without 
CD28 co-stimulation, IL-2 production is lost and T cells 
become anergic [3–5]. Therefore, CD28 acts as a posi-
tive regulator of T cell function. Cell surface expression 
of cytotoxic T lymphocyte–associated protein 4 (CTLA4, 
also known as CD152), which is highly homologous to 
CD28, is induced by TCR stimulation and in response to 
IL-2 [6]. CTLA4 binds to CD80 and CD86 with a higher 
affinity than CD28. This causes CTLA4 to compete with 
CD28 for ligand acquisition and suppresses the response 
of effector T cells by providing inhibitory signals that 
override activating signals provided by CD28 [7–9].

Mice lacking cd28 exhibit low basal immunoglobulin 
levels and impaired germinal center formation, and ctla4 
was shown to produce a hyperactivated and disease-caus-
ing phenotype [10–12]. In humans, patients with loss-
of-function mutations in CTLA4 exhibit autoimmune 
phenotypes [13–15]. A number of studies using clinical 
samples have suggested that overexpression of CD80 and 
CD86 is correlated with the development of allergic and 
autoimmune diseases [16, 17]. Therefore, CD28 fam-
ily members (CD28, CTLA4, CD80, and CD86) play an 
important role in the pathogenesis of various human dis-
eases, especially those involving immunological traits.

The human CD28 gene is encoded on chromo-
some 2q33.2. Recent genome-wide association studies 
(GWASs) identified CD28 as a susceptibility gene for 
various immunological diseases and traits, such as lym-
phocyte count, eosinophil count, multiple sclerosis (MS), 
ulcerative colitis (UC), celiac disease, rheumatoid arthri-
tis (RA), and asthma [18–29]. Using data from European 
and East Asian cohorts (10,516 cases and 20,772 con-
trols), our research group reported the largest genome-
wide meta-analysis (meta-GWAS) of primary biliary 
cholangitis (PBC) to date [30]. PBC is a chronic progres-
sive cholestatic liver disease with histological features of 
interface hepatitis, fibrosis, ductopenia, and chronic non-
suppurative destructive cholangitis. These features are 
due to an autoimmune reaction to the intrahepatic bile 
duct [31–35]. The higher concordance rate in monozy-
gotic twins than in dizygotic twins and the higher esti-
mated sibling relative risk suggest strong involvement 
of genetic factors in the development of PBC [36, 37]. 
PBC also showed an association with the CD28 locus in 
our meta-GWAS (Table  1). Although the existence of 

alternative splicing isoforms of CD28 (CD28a, CD28b, 
CD28c, and CD28i) was reported [38, 39], genetic vari-
ants that regulate the efficiency of alternative splicing of 
CD28 have not been identified. In addition, the binding 
affinities of splicing isoform products to CD80 and CD86 
have not been clarified.

GWAS-lead variants exhibiting the strongest asso-
ciations with disease susceptibility in the CD28 locus in 
GWASs are not the same among immunological traits 
[18–30] (Table  1). In the present study, to identify can-
didate primary functional variants in the CD28 locus 
that contribute to various immunological traits, link-
age disequilibrium (LD) mapping of GWAS-lead vari-
ants for each immunological trait was carried out using 
LD data for European and East Asian populations. In 
silico/in vitro functional analyses utilizing CRISPR/Cas9 
gene-editing technology were then performed to identify 
primary functional variants. Finally, we attempted to elu-
cidate the stability and ligand binding effect of alternative 
splicing isoforms of CD28.

Results
LD mapping with GWAS‑lead variants
A total of 157, 155, 154, 154, 135, 110, 135, 137, and 
158 SNPs showed r2 > 0.2 with the following GWAS-
lead variants, rs4675365 (associated with lymphocyte 
count), rs1879877 (associated with lymphocyte count), 
rs4675360 (associated with eosinophil count), rs6435203 
(associated with MS), rs4675370 (associated with PBC), 
rs3116494 (associated with UC), rs45620941 (associ-
ated with celiac disease), rs1980422 (associated with 
celiac disease and RA), and rs55730955 (associated with 
asthma), respectively, by LD mapping using combined 
LD data for the EAS and EUR populations (Fig. 1).

Among the SNPs that showed r2 > 0.2 with each 
GWAS-lead variant, only rs4675362 and rs2013278 
were shared among all immunological traits (Fig.  2, 

Table 1  GWAS-lead SNPs in the CD28 locus for each 
immunological trait

Immunological trait GWAS-lead SNP References

Lymphocyte count rs4675365 [18]

rs1879877 [19]

Eosinophil count rs4675360 [18–20]

Multiple sclerosis (MS) rs6435203 [21]

Ulcerative colitis (UC) rs3116494 [22]

Celiac disease rs45620941 [23]

rs1980422 [24, 25]

Rheumatoid arthritis (RA) rs1980422 [24, 26–28]

Asthma rs55730955 [29]

Primary biliary cholangitis (PBC) rs4675370 [30]
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Fig. 1  Linkage disequilibrium (LD) mapping of CD28 SNPs with GWAS-lead SNPs (combined EAS and EUR population data). SNPs shown as red and 
green solid dots indicate GWAS-lead SNPs and rs2013278, respectively. Horizontal line indicates the physical position of each SNP on chromosome 2 
(hg38). Vertical line indicates the r2 value of each SNP with GWAS-lead SNPs
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Fig. 2  LD of rs2013278 with each GWAS-lead SNP. Densities of red and blue boxes indicate the r2 and D’ values of rs2013278 with GWAS-lead SNPs, 
respectively



Page 5 of 12Hitomi et al. Human Genomics           (2022) 16:46 	

Ta
bl

e 
2 

Li
nk

ag
e 

di
se

qu
ili

br
iu

m
 s

co
re

s 
(r2 ) o

f C
D

28
 S

N
Ps

 s
ho

w
ed

 r2  >
 0

.2
 w

ith
 a

ll 
of

 G
W

A
S 

to
p-

hi
t S

N
Ps

 fo
r 8

 d
is

ea
se

s 
an

d 
tr

ai
ts

 (E
A

S 
+

 E
U

R)

ly
m

ph
oc

yt
e 

co
un

t
Ly

m
ph

oc
yt

e 
co

un
t

Eo
si

no
ph

il 
co

un
t

M
S

PB
C

U
C

Ce
lia

c 
di

se
as

e
Ce

lia
c 

di
se

as
e,

 R
A

A
st

hm
a

SN
P

bp
 (C

hr
2:

 h
g3

8)
rs

46
75

36
5

rs
18

79
87

7
rs

46
75

36
0

rs
64

35
20

3
rs

46
75

37
0

rs
31

16
49

4
rs

45
62

09
41

rs
19

80
42

2
rs

55
73

09
55

rs
46

75
36

2
20

37
25

28
5

0.
90

89
0.

70
86

0.
40

68
0.

89
93

0.
35

74
0.

24
25

0.
21

1
0.

25
31

0.
47

99

rs
20

13
27

8
20

37
25

93
5

0.
90

89
0.

70
86

0.
40

68
0.

89
93

0.
35

74
0.

24
25

0.
21

1
0.

25
31

0.
47

99



Page 6 of 12Hitomi et al. Human Genomics           (2022) 16:46 

Table  2). Although the differences in LD pattern 
between the EAS and EUR populations were observed 
in six GWAS-lead SNPs (rs1879877, rs4675360, 
rs3116494, rs45620941, rs1980422, and rs55730955), 
the major ancestor in each GWAS discovery stage 
showed a higher r2 score with rs4675362 and 
rs2013278 than other ancestors in every GWAS-lead 
SNP (Additional file  1). Neither SNP was located in 
gene expression regulatory motifs such as H3K27Ac 
or the DNase high-sensitivity site (Additional file  2), 
nor was either associated with the expression level of 
CD28 as determined by e-QTL analysis (Additional 
file 3). In contrast, rs2013278 was located in the third 
base of the Rbfox binding motif (GCATG), which is 
related to the regulation of splicing [40]. Similar to 
many genes related to the immune system [41], CD28 
reportedly encodes an alternative splicing isoform of 
CD28 (CD28i) [39]. Therefore, rs2013278 was selected 
as a candidate primary functional variant associated 
with multiple immunological traits in CD28.

rs2013278 regulates CD28 alternative splicing
To identify the main CD28 isoforms expressed in Jurkat 
T cells expressing CD28 abundantly (Fig.  3a), RT-PCR 
analysis was performed. Using primers targeted within 
exon 1 and exon 4 of CD28, three amplification prod-
ucts were identified (Fig. 3b). By sequencing, the longer 
product was found to be the normal CD28 mRNA (full-
length CD28; UniProtKB identifier of protein product: 
P10747-1), whereas the shorter products encoded alter-
native splicing isoforms caused by skipping of a part of 
exon 2 (CD28i; UniProtKB identifier of protein product: 
P10747-3) or a lack of all of exon 2 (CD28Δex2; Uni-
ProtKB identifier of protein product: P10747-2) (Fig. 3c). 
The protein products of CD28i and CD28Δex2 were 
thought to be deficient in a total of 85 and 119 amino 
acids, respectively.

Subsequently, the rs2013278 genotype knock-in ver-
sions of cell lines constructed using the CRISPR/Cas9 
system were used to assess the contribution of rs2013278 
to the endogenous expression levels of each CD28 iso-
form. Jurkat cells were selected to knock in the rs2013278 
alleles because endogenous expression of CD28 was 

Fig. 3  Expression of endogenous CD28 splicing isoforms is regulated by rs2013278. a Endogenous expression levels of CD28 in various human cell 
lines. b Endogenous expression levels of CD28 splicing isoforms in Jurkat T cells. *: non-specific peak. c Exon–intron structure of each CD28 splicing 
isoform. d Endogenous expression levels of CD28i and CD28Δex2 were relatively decreased in the risk allele knock-in version of Jurkat T cells 
generated by genome editing using CRISPR/Cas9 compared with expression levels in the non-risk allele cells
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detected (Fig. 3a). Relative expression levels of total skip-
ping isoforms (CD28i plus CD28Δex2) compared with 
full-length CD28 differed significantly between the geno-
type knock-in Jurkat clones of rs2013278-A/A (n = 5) and 
-T/T (n = 5) (P < 0.05; Mann–Whitney U test) (Fig.  3d). 
These results indicated that rs2013278 is a primary func-
tional variant that directly regulates the alternative splic-
ing of CD28.

Expression of CD28 splicing isoforms
Because no anti-human CD28 antibody that recognizes 
the extracellular domain of CD28i and CD28Δex2 is 
currently available, protein expression of the C-termi-
nal green fluorescent protein (GFP)-conjugated CD28 
isoforms was assessed in transfectants of Jurkat cells 
by western blotting using an antibody against GFP. 
Although full-length CD28 and CD28i showed abundant 
protein expression in transfectant cells, CD28Δex2 did 
not (Fig. 4).

Binding of CD28 splicing isoforms to the ligand CD80/
CD86
Both full-length CD28 and CD28i are reportedly located 
on the cell surface [39]. Although ligation of CD28 with 
both CD80 and CD86 provides an important second 
signal along with antigen presentation by the class II 
MHC of APCs via the TCR for naïve T cell activation 
[1, 2], CD86 (but not CD80) is constitutively expressed 
on APCs and rapidly upregulated by innate stimulation 
of APCs [1, 42]. Concordantly, mice lacking Cd86 (but 
not those lacking Cd80) are unable to undergo antibody 
class switching and formation of the germinal center in 
response to adjuvant-free immunization [43]. Therefore, 
CD86 may play a more important role than CD80 in the 
initiation of immune responses. To confirm the lower 

binding affinity between CD28i and CD86, direct binding 
between C-terminal GFP-conjugated CD28i and recom-
binant His-tagged CD86-Fc was assessed by flow cytom-
etry in CD28-negative HeLa cells (Fig. 3a). Cells in which 
full-length CD28 was strongly expressed bound directly 
to His-tagged CD86-Fc, but CD28i did not (Fig. 5a–c).

In contrast, as recombinant His-tagged CD80-Fc is not 
currently available, direct binding between CD28i and 
CD80 could not be examined. Therefore, the binding 
affinity of CD28i for CD80 was evaluated by in silico pre-
diction. Full-length CD28 was predicted to show higher 
binding affinity with CD80 in their extracellular domains 
(DockQ score: 0.956). However, probably because most 
of the extracellular domain of CD28i is missing, CD28i 
was predicted to show lower binding affinity for CD80 
(DockQ score: 0.001) (Fig. 5d, e).

Collectively, these results indicate that both CD28i and 
CD28Δex2 are loss-of-function splicing isoform products 
that reduce disease risk by inducing anergy of effector T 
cells that over-react to autoantigens and allergens.

Discussion
CD28 family members, including CD28, CTLA4, CD80, 
and CD86, have several common structural and func-
tional features. First, these molecules contain immu-
noglobulin superfamily domains in their extracellular 
region. The MYPPPY motif within this domain mediates 
the interaction between these co-stimulatory receptors 
and their ligands [44–46]. Second, alternative splicing 
isoforms have been reported in all of these genes [39, 47–
49]. However, an association between the disease-related 
polymorphisms and alternative splicing among the CD28 
family genes was reported only for CTLA4 [47]. There-
fore, the present study has demonstrated for the first 
time that CD28 has a shared disease-related primary 
functional variant (i.e., rs2013278) that regulates the 
alternative splicing of CD28. The RNA sequence motif 
GCAUG is bound by Rbfox proteins, which are expressed 
in human T cells [40, 50, 51]. The Rbfox proteins report-
edly inhibit hnRNP M-mediated suppression of splicing 
by forming a complex with hnRNP M, hnRNP H, hnRNP 
C, Matrin3, NF110/NFAR-2, NF45, and DDX5 [40]. 
rs2013278 probably alters the efficiency of alternative 
splicing of CD28 by the presence (disease-risk allele) or 
collapse (disease-protective allele) of the GCAUG motif.

Although the primary functional variant is sometimes 
the same as the GWAS-lead variant (e.g., TNFSF15 
rs4979462, which is associated with PBC [52]), most 
other primary functional variants are not the same as 
the GWAS-lead variants (e.g., several SNPs associated 
with PBC [53–57]). In the present study, rs2013278, 
which was not a GWAS-lead variant, was identified as 
a primary functional variant in CD28 associated with 

Fig. 4  Protein expression of each CD28 splicing isoform product. 
Expression of GFP-conjugated CD28 isoforms was analyzed using 
an anti-GFP antibody. The protein product of CD28Δex2 was not 
detected
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multiple immunological traits. Among GWAS-lead vari-
ants, rs4675365 (associated with lymphocyte count) and 
rs6435203 (associated with MS) showed stronger LD with 
rs2013278 (r2 approximately 0.9). Therefore, susceptibil-
ity to MS and changes in lymphocyte count are probably 
affected by the single effect of rs2013278. However, this is 
not the case with other immunological traits. Although 
rs2013278 was not associated with the CD28 expression 
level, rs3116494, rs45620941, and rs1980422 showed 
relatively strong LD with rs13404978, which exhibited 
the strongest correlation with CD28 expression level in 
the e-QTL analysis (rs3116494: r2 = 0.469; rs45620941: 
r2 = 0.575; and rs1980422: r2 = 0.482). Incidentally, a rel-
atively lower r2 score was observed (r2 = 0.13) between 
rs2013278 and rs13404978. Another possibility is that 
aggregation of the effects of multiple SNPs causes the 
lead SNPs to show the strongest association among SNPs 
in the gene locus (e.g., PBC susceptibility locus STAT4) 
[58]. Therefore, immunological traits in which rs2013278 
and the GWAS-lead variant show weak LD may have 

other primary functional variants characteristic of each 
disease in the CD28 locus.

In the present study, three primarily expressed CD28 
alternative splicing isoforms (full-length CD28, CD28i, 
and CD28Δex2) were identified. CD28i was expressed 
on the cell surface [39]; however, it is incapable of 
binding to its ligand, CD86 (Fig. 5c). Because the total 
amount of the CD28 isoforms was not associated with 
the genotype of rs2013278 (Additional file  3), the 
expression levels of the loss-of-function CD28 isoforms 
(CD28i and CD28Δex2) were inversely proportional to 
that of full-length CD28. Inadequate co-stimulation of 
CD28 and its ligands causes hyper-reactive T cells to 
become anergic; therefore, relatively high expression 
levels of full-length CD28 associated with the disease-
risk allele of rs2013278 would inhibit this anergy. This 
assumption is consistent with the finding that overex-
pression of CD86 is correlated with the development 
of allergic and autoimmune diseases [16, 17]. Although 
the other ligand, CD80, is predicted not to bind CD28i 

Fig. 5  Binding of CD80 and CD86 with each CD28 splicing isoform product. a–c HeLa cells with transiently overexpressed GFP-conjugated CD28 
and CD28i were incubated in the presence of His-tag conjugated CD86-Fc and PE-conjugated anti-His-Tag antibody. Dot plot for mock (a), CD28 
(b), and CD28i (c). The horizontal and vertical axes indicate the expression of GFP-tagged CD28 isoforms and the bindings of His-tagged CD86-Fc, 
respectively. d, e In silico prediction of binding between CD80 and CD28 splicing isoforms. Although binding between CD80 and CD28 was 
predicted (d), that between CD80 and CD28i was not (e)
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by in silico analysis (Fig.  5e), experiments examining 
the binding of CD28i to CD80 could not be performed 
because recombinant His-tagged CD80-Fc is not cur-
rently available. CD86 may play a more important role 
in the initiation of immune responses than CD80 [1, 
42, 43]; however, the weak binding of CD28i to CD80 
will need to be experimentally validated in future stud-
ies. Similarly, it will be necessary to verify the down-
stream signaling pathways involving CD28i, such as 
activation of NFAT, AP-1, and NF-κB and subsequent 
IL-2 transcription [3–5]. Although the Jurkat T cell line 
has been reported to have damaging mutations in genes 
involved in T cell receptor signaling (PTEN, INPP5D, 
CTLA4, and SYK) [59], maintenance of genome stabil-
ity (TP53, BAX, and MSH2), and O-linked glycosyla-
tion (C1GALT1C1), karyotyping and genotyping of 
these genes were not performed in the Jurkat T cells 
that were used in the present study. One limitation of 
the present and future studies is the similarity between 
cell lines and normal human T lymphocytes.

The CD28Δex2 transcript was also abundantly 
expressed at the mRNA level (Fig.  3b); however, the 
protein product of CD28Δex2 was not expressed in 
transfectant cells (Fig. 4). Amino acid sequence changes 
caused by splicing sometimes significantly affect protein 
structure. For example, the unstable protein product of 
TCF4, which is reportedly the causal gene of an undiag-
nosed genetic condition, is degraded in the proteasome 
due to splicing-associated frameshifting [60]. In contrast, 
the protein product of the alternative splicing isoform of 
CD72 (CD72Δex8), which is reportedly a susceptibility 
gene of systemic lupus erythematosus, is not degraded 
by the proteasome and accumulates in the endoplas-
mic reticulum [61, 62]. A new finding regarding protein 
expression of CD28Δex2 was obtained in the present 
study. The protein stability of CD28Δex2 is presumably 
lost due to the lack of amino acids encoded by exon 2.

CD28 family members are considered target molecules 
affecting immunological traits. To date, CTLA4 Ig (abata-
cept), which binds to CD80/CD86 and inhibits inflamma-
tory T cell activation, has been approved by the US Food 
and Drug Administration to treat RA, juvenile idiopathic 
arthritis, and active psoriatic arthritis [63]. A CTLA4 
super-agonist (ipilimumab) has been approved to treat 
melanoma [64]. Although a CD28 super-agonist (ther-
alizumab TGN1412) caused cytokine storm in healthy 
volunteers in a first-in-human study [65], a clinical trial 
of a novel type of CD28 super-agonist (TAB08) has been 
performed [66]. CD28 was identified as a disease suscep-
tibility gene for immunological traits [18–30], and these 
significant associations with disease susceptibility were 
shown in the present study to be related to alternative 
splicing of CD28.

Conclusion
The present study demonstrated for the first time that 
rs2013278, which showed stronger linkage disequilib-
rium with the genome-wide association study lead vari-
ants for multiple immunological traits, regulates CD28 
alternative splicing that generates loss-of-function iso-
forms (CD28i and CD28Δex2). They reduce disease risk 
by inducing anergy of effector T cells that over-react to 
autoantigens and allergens.

Methods
In silico prediction tools and databases
The UCSC genome browser [67] was used to assess the 
potential functional effect of candidate functional vari-
ants on transcriptional regulation (URL: http://​genome.​
ucsc.​edu/​index.​html).

LD data for the East Asian (EAS) and European (EUR) 
populations were obtained from LDlink (URL: https://​
ldlink.​nci.​nih.​gov/) [68].

Data regarding CD28 gene expression levels in various 
cell lines were obtained from the Human Protein Atlas 
(URL: https://​www.​prote​inatl​as.​org/) [50, 51].

Data from the GTEx portal (version 8) were used to 
investigate the correlation between genotypes of all vari-
ants in the CD28 locus and gene expression levels (URL: 
http://​gtexp​ortal.​org/​home/) [69].

Binding affinities between CD80 and splicing isoforms 
of CD28 were evaluated based on the DockQ score [70].

Gene editing (CRISPR/Cas9)
Following the manufacturer’s instructions, guide-RNA 
(gRNA) target sequences (Additional file  4) were sub-
cloned into pGuide-it-ZsGreen1 (Clontech Laboratories, 
Mountain View, CA). The transfection reagent Lipo-
fectamine-3000 (Thermo-Fisher Scientific, Waltham, 
MA) was used to transfect Jurkat cells with gRNAs and 
donor DNAs for each allele of rs2013278 (Additional 
file 4). Transfected cell clones were incubated with RS-1 
and SCR7 (Cayman Chemical, Ann Arbor, MI). A FAC-
SAria II system (BD Biosciences, Franklin Lakes, NJ) was 
used to isolate positive clones from bulk transfectants.

After single-cell cloning, genomic DNA was extracted 
from cell clones using PureLink™ (Thermo-Fisher Sci-
entific). Gene editing of target sites was confirmed using 
Sanger sequencing (ABI prism 3730-XL) with specific 
primers (Additional file 4).

Quantitative RT‑PCR
Total RNA was extracted from rs2013278 allele knock-
in clones using an RNeasy kit (QIAGEN, Valencia 
CA). Next, we synthesized first-strand cDNAs using 
a High-Capacity cDNA Reverse Transcription kit 

http://genome.ucsc.edu/index.html
http://genome.ucsc.edu/index.html
https://ldlink.nci.nih.gov/
https://ldlink.nci.nih.gov/
https://www.proteinatlas.org/
http://gtexportal.org/home/
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(Thermo-Fisher Scientific). RT-PCR was performed using 
the primers shown in Additional file 5 and Ex Taq poly-
merase (Takara-bio, Kusatsu, Japan). Preliminary experi-
ments showed that 33 cycles were optimal for achieving 
linear amplification of each CD28 splicing isoform. 
Quantitation of each transcript was performed using an 
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo 
Alto, CA). Differences in expression levels of CD28 iso-
forms in cells of the two rs2013278 genotypes (i.e., AA 
and TT) were analyzed using the Mann–Whitney U test. 
These experiments were repeated 3 times with essentially 
identical results.

Plasmids
cDNAs containing the entire coding region of full-length 
CD28, CD28i, and CD28Δex2, which do not contain 
nucleotides for the stop codon, were obtained by RT-
PCR analysis of Jurkat cells using the specific primer 
pairs shown in Additional file  6. cDNAs encoding each 
CD28 splicing isoform were inserted into pCR-blunt II 
(Thermo-Fisher Scientific) and subcloned into pAcGFP1-
Hyg-N1 (Takara-bio) using XhoI.

Western blotting
After transfection of the pAcGFP1-Hyg-N1 vectors, cells 
were lysed in RIPA buffer. Proteins in whole-cell lysates 
were separated by SDS-PAGE and transferred onto poly-
vinylidene difluoride membranes. The membranes were 
incubated with anti-GFP (Proteintech, Rosemont, IL) 
and anti-β-tubulin (Fujifilm Wako pure chemical, Osaka, 
Japan) antibodies. Proteins were visualized using the ECL 
system.

Flow cytometry
After transfection of HeLa cells with pAcGFP1-Hyg-N1 
vectors, transfectants were incubated with recombinant 
6 × His-tagged human B7-2/CD86-Fc Chimera  (Bio-
Legend, San Diego, CA), followed by reaction with PE-
labeled mouse anti–6xHis-tag antibody (BioLegend). 
Cells were then analyzed by flow cytometry using a FAC-
SAria II and a FACSVerse system (BD Biosciences). Flow 
cytometry data were analyzed using FlowJo software (BD 
Biosciences).
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