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Identification of a novel signature based 
on unfolded protein response‑related gene 
for predicting prognosis in bladder cancer
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Abstract 

Background:  The unfolded protein response (UPR) served as a vital role in the progression of tumors, but the mol-
ecule mechanisms of UPR in bladder cancer (BLCA) have been not fully investigated.

Methods:  We identified differentially expressed unfolded protein response-related genes (UPRRGs) between BLCA 
samples and normal bladder samples in the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis and the 
least absolute shrinkage and selection operator penalized Cox regression analysis were used to construct a prognostic 
signature in the TCGA set. We implemented the validation of the prognostic signature in GSE13507 from the Gene 
Expression Omnibus database. The ESTIMATE, CIBERSORT, and ssGSEA algorithms were used to explore the correla-
tion between the prognostic signature and immune cells infiltration as well as key immune checkpoints (PD-1, PD-L1, 
CTLA-4, and HAVCR2). GDSC database analyses were conducted to investigate the chemotherapy sensitivity among 
different groups. GSEA analysis was used to explore the potential mechanisms of UPR-based signature.

Results:  A prognostic signature comprising of seven genes (CALR, CRYAB, DNAJB4, KDELR3, CREB3L3, HSPB6, and 
FBXO6) was constructed to predict the outcome of BLCA. Based on the UPRRGs signature, the patients with BLCA 
could be classified into low-risk groups and high-risk groups. Patients with BLCA in the low-risk groups showed the 
more favorable outcomes than those in the high-risk groups, which was verified in GSE13507 set. This signature could 
serve as an autocephalous prognostic factor in BLCA. A nomogram based on risk score and clinical characteristics was 
established to predict the over survival of BLCA patients. Furthermore, the signature was closely related to immune 
checkpoints (PD-L1, CTLA-4, and HAVCR2) and immune cells infiltration including CD8+ T cells, follicular helper T cells, 
activated dendritic cells, and M2 macrophages. GSEA analysis indicated that immune and carcinogenic pathways 
were enriched in high-risk group.

Conclusions:  We identified a novel unfolded protein response-related gene signature which could predict the over 
survival, immune microenvironment, and chemotherapy response of patients with bladder cancer.
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Introduction
Bladder cancer (BLCA) is one of the most common geni-
tourinary cancers and leads to unfavorable outcomes and 
unsatisfactory quality of life worldwide. Smoking and 
occupational exposures are closely associated with the 
tumorigenesis and progression of BLCA [1]. At present, 
surgical treatment remains the main therapeutic strategy 
for patients with BLCA. Despite several achievements in 
surgical equipment and systemic therapy, incidence and 
mortality of BLCA remain unacceptable [2]. Therefore, 
investigating the molecular mechanisms and identifying 
novel biomarkers are of enormous clinical significance to 
BLCA research and management.

The unfolded protein response (UPR), a prevalent bio-
logical phenomenon in eukaryotic cells, is an intracellu-
lar signaling pathway of adaptive cell self-protection [3]. 
Endoplasmic reticulum (ER) homeostasis is constantly 
threatened by physiological demands and pathological 
insults such as ER calcium depletion, hypoxia, altered 
glycosylation, nutrient deprivation, oxidative stress, and 
DNA damage, which can disrupt the protein folding pro-
cess and subsequently result in accumulation of unfolded 
or misfolded proteins in the ER [3–6]. To dispose the 
accumulation of the unfolded or misfolded proteins, a 
series of signal transduction pathways, also collectively 
known as UPR, were activated in the ER, to maintain ER 
homeostasis through altering transcriptional and transla-
tional programs [7–10]. Several  studies have confirmed 
that UPR has been implicated in the tumorigenesis owing 
to the rapid proliferation of tumor cells [5, 11, 12]. The 
research progress of targeted UPR in cancer therapy has 
also attracted increasing attention [7, 13–16].

In the present study, we investigated the mRNA 
expression profiles of UPR-related genes from several 
public databases and established a novel UPR-related 
gene signature for predicting the outcomes and chemo-
therapy sensitivity of patients with BLCA. Furthermore, 
we also found that the UPR-based signature was closely 

correlated with immune cell infiltration and key immune 
checkpoints.

Materials and methods
Data sources
Unfolded protein response-related genes (UPRRGs) were 
obtained from UALCAN (ualcan.path.uab.edu/home) 
database. The mRNA sequencing and clinical data for 
patients with BLCA were downloaded from The Cancer 
Genome Atlas (TCGA, https://​portal.​gdc.​cancer.​gov/) 
database and included data for 19 normal bladder sam-
ples and 414 BLCA samples. In addition, GSE13507 [17], 
containing 165 primary BLCA samples, was used for ver-
ification studies.

Identification of differentially expressed UPRRGs
We used limma package in R software to identify differ-
entially expressed UPRRGs (DEUPRRGs) in the TCGA-
BLCA dataset. UPRGs with |log2fold change (FC)|> 1 
and false discovery rate (FDR) < 0.05 were considered sig-
nificantly differentially expressed.

Gene ontology and KEGG analyses
To further explore the potential molecular mechanisms 
in which the DEUPRRGs were involved, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses of DELRGs were performed 
with packages (ggplot2, org.Hs.eg.db, enrichplot, and 
clusterProfiler) in R software. P < 0.05 was considered sta-
tistically significant.

Protein–protein interaction (PPI) network
The STRING database (http://​www.​string-​db.​org/) was 
applied to acquire protein–protein interaction (PPI) 
information related to DEUPRRGs. Cytoscape software 
(version 3.7.2) was utilized to establish and visualize the 
PPI network.

Highlights 

1.	 We first comprehensive investigated the expression, protein–protein interaction, and prognostic value of 
unfolded protein response-related gene in bladder cancer.

2.	 We constructed and validated a novel prognostic signature based on seven unfolded protein response-related 
genes, which was an independent prognostic factors in bladder cancer.

3.	 We revealed the correlation between the prognostic signature and tumor immunosuppressive microenviron-
ment.

4.	 We investigated the relationship between the prognostic signature and sensitivity of common chemotherapy 
drugs.
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Construction and validation of the prognostic signature 
based on DEUPRRGs
To identify the DEUPRRGs associated with  prognosis 
in patients with BLCA in the TCGA dataset, univariate 
Cox regression analysis was performed. Only DEUPRRGs 
with  p < 0.05 were selected for subsequent construc-
tion of a risk signature with the least absolute shrinkage 
and selection operator (LASSO) Cox regression model 
through packages (glmnet and survival) in R software. 
The risk score was calculated with the following formula: 
risk scores=

∑
n

i
Xi × Yi (where X is the coefficient of the 

prognosis-related DEUPRRGs and Y is the expression of 
the relevant gene). BLCA patients were categorized into 
two groups (high-risk and low-risk) based on the median 
risk score.  Kaplan–Meier analysis was used to compare 
the survival of BLCA patients between the two groups. 
Time-dependent receiver operating characteristic (ROC) 
curves were applied to evaluate the reliability of the con-
structed signature for predicting prognosis. In addition, 
GSE13507 was used to verify the performance of this 
prognostic signature via the same method.

Construction of a nomogram
We investigated the correlation between clinicopatho-
logical characteristics and the prognostic signature. Uni-
variate and multivariate Cox regression analyses were 
performed to ascertain whether this prognostic signature 
was an independent prognostic indicator. To predict the 
overall survival of BLAC patients at 3 and 5  years, we 
constructed a nomogram composed of risk scores and 
clinical variables with R package (rms). The consistency 
index was used to assess the accuracy of the nomogram. 
The calibration curve was utilized to visualize the perfor-
mance of the nomogram.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was conducted 
to further explore the potential molecular mechanisms 
among different groups. FDR < 5% and p < 0.05 was con-
sidered statistically significant.

Immune infiltration analyses
Given the importance of tumor immune microenviron-
ment, ESTIMATE algorithm was conducted to evaluate 
the stromal score, ESTIMATE score, and immune score 
and investigate the relationship between risk score and 
tumor microenvironment. The Cell type Identification By 
Estimating Relative Subsets Of RNA Transcripts (CIBER-
SORT) algorithm was used to identify the immune cell 
fractions of 22 distinct leukocyte subsets between differ-
ent groups. Furthermore, we also performed single-sam-
ple gene set enrichment analysis (ssGSEA) to evaluate the 

differences in immune-related pathways between the two 
groups via package (gsva) in R software. P values < 0.05 
were considered statistically significant.

Chemotherapy sensitivity prediction
To explore the difference of chemotherapy sensitiv-
ity between different groups, we used GDSC database 
to estimate the half maximal inhibitory concentration 
(IC50) of chemotherapy drugs for predicting the sensitiv-
ity of chemotherapy drugs by using the package (pRRo-
phetic). P < 0.05 were considered statistically significant.

Validation of seven prognostic genes
The mRNA expression and promoter methylation level 
of  the seven UPR genes in the prognostic signature  in 
normal tissues and cancer tissues were examined in the 
UALCAN database (http://​ualcan.​path.​uab.​edu/​index.​
html).

Immune infiltrates analysis of seven prognostic genes
The Tumor IMmune Estimation Resource 
(TIMER,  https://​cistr​ome.​shiny​apps.​io/​timer/) database 
was used to explore the relationship between the immune 
cell abundances and the seven prognostic genes in BLCA. 
To further validate the correlation of seven genes with 
immune cells markers, the Gene Expression Profiling 
Interactive Analysis (GEPIA, https://​gepia.​cancer-​pku.​
cn) database was used. Statistical analysis was conducted 
by Spearman’s correlation.

Statistical analyses
All these statistical analyses were conducted in R, ver-
sion 3.6.2. Gene expression, clinical characteristics, 
immune cell infiltration, and risk score were compared 
between different groups through the Wilcoxon test. The 
difference in survival among different groups was evalu-
ated by Kaplan–Meier curve. Independent prognostic 
analysis was performed by univariate and multivari-
ate Cox regression. P < 0.05 was considered statistically 
significant.

Results
Differentially expressed UPRRGs and functions
We acquired 251 UPRRGs from the UALCAN database 
and analyzed the expression of these genes in BLCA 
samples compared with normal bladder tissues in the 
TCGA dataset. Forty-four UPRRGs were considered as 
differentially expressed genes in BLCA with the criteria 
of |log2 FC|> 1 and FDR < 0.05, including 21 downregu-
lated genes and 23 upregulated genes (Fig. 1A, B). The 
results of GO analyses showed that the most enriched 
GO terms in the biological processes were response to 
topologically incorrect protein, response to unfolded 

http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://cistrome.shinyapps.io/timer/
https://gepia.cancer-pku.cn
https://gepia.cancer-pku.cn
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Fig. 1  Differentially expressed UPRRGs in TCGA-BLCA set. A Heatmap showed differentially expressed UPRRGs; B volcano presented of differentially 
expressed UPRRGs, red showed the over-expression of UPR gene, and green showed the down-expression of UPR gene, FC: fold change, fdr: false 
discovery rate
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protein, response to endoplasmic reticulum stress, 
cellular response to unfolded protein, and endoplas-
mic reticulum unfolded protein response (Fig.  2A).  In 
the cellular component category, the DEUPRRGs were 
mainly enriched in endoplasmic reticulum lumen, col-
lagen-containing extracellular matrix, inclusion body, 
and chaperone complex. In the molecular function 

category, chaperone binding, unfolded protein binding, 
cAMP response element binding, structural constitu-
ent of eye lens, and glycolipid binding were enriched 
in these DEUPRRGs.  In the KEGG pathway analyses, 
the results showed that the DEUPRRGs were mainly 
involved in protein processing in the endoplasmic 
reticulum, human T-cell leukemia virus 1 infection, the 

Fig. 2  Enrichment analysis of differentially expressed UPRRGs. A GO analysis including biological process, cellular component, and molecular 
function; B KEGG analysis
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p53 signaling pathway, and longevity regulating path-
way (Fig. 2B).

PPI network
To better understand the roles of these DEUPRRGs 
in regulating BLCA, a PPI network was constructed 
through the utilization of the STRING database. Then we 
used Cytoscape software to analyze and visualize the PPI 
network, which contained 33 nodes and 57 edges (Fig. 3).

Construction and validation of a SLERGs‑based signature
We used univariate Cox regression analysis to iden-
tify the DEUPRRGs closely correlated with the overall 

survival of BLCA patients. Eleven DEUPRRGs were 
selected for subsequent analyses (p < 0.05) (Fig.  4).We 
successfully constructed a prognostic model consist-
ing of 7 DEUPRGs (CALR, CRYAB, DNAJB4, KDELR3, 
CREB3L3, HSPB6, and FBXO6) by performing LASSO 
Cox regression analysis based on the 11 candidate 
genes. The risk score was calculated as follows: Risk 
Score = CALR expression × 0.3265 + DNAJB4 expres-
sion × 0.2036 + CRYAB expression × 0.0609 + KDELR3 
expression × 0.0715 − CREB3L3 expres-
sion × 0.5633 − FBXO6 expression × 0.3616 + HSPB6 
expression × 0.0096. BLCA patients were classified 
into high- and low-risk groups based on the median 
risk score. The Kaplan–Meier curves showed that 
patients in the low-risk group had better outcomes 
than those in the high-risk group (Fig.  5A). The area 
under the ROC (AUC) curve value of the constructed 
model was 0.710 at 5 years (Fig. 5D). The survival sta-
tus of each patient was represented on dot plots, which 
showed that patients in the low-risk group had more 
favorable outcomes than those in the high-risk group 
(Fig.  5B).  Figure  5C  indicates that the high-risk group 
highly expressed CRYAB, DNAJB4, HSPB6, KDELR3, 
and CALR, while the low-risk group highly expressed 
FBXO6 and CREB3L3. We also verified the prognos-
tic capacity of this prognostic signature in the Gene 
Expression Omnibus (GEO) dataset, showing consist-
ent results between GEO dataset and TCGA dataset 
(Fig.  5E, F, H). These results indicated acceptable per-
formance of the prognostic signature.

Construction of a nomogram
Univariate and multivariate Cox proportional hazard 
models were performed to identify the prognostic vari-
ables. Based on the univariate analysis, age (HR 1.037; 
95% CI 1.020–1.055;  p < 0.001), TNM stage (HR 1.783; 
95% CI 1.440–2.207; p < 0 0.001), T stage (HR 1.569; 95% 
CI 1.233–1.998; p < 0 0.001), N stage (HR 1.548; 95% CI 
1.317–1.819; p < 0.001), and risk score (HR 3.556; 95% 
CI 2.315–5.462; p < 0.001) were believed to be related to 
unfavorable outcomes (Fig. 6A). In the multivariate anal-
ysis, age (HR 1.034; 95% CI 1.016–1.052; p < 0.001) and 
risk score (HR 2.724; 95% CI 1.751–4.238; p < 0.001) could 
serve as independent prognostic factors (Fig. 6B). To fur-
ther predict the outcomes of BLCA patients, we con-
structed a nomogram consisting of the risk score and age. 
The nomogram predicted the 3- and 5-year survival rates 
of patients with BLCA (Fig.  7A). The calibration curve 
showed that the actual patient outcomes were in keep-
ing with the predicted outcomes (Fig. 7B, C). The C index 
of the nomogram was 0.645, which indicated the definite 
predictive ability of the nomogram.

Fig. 3  Protein–protein interaction network

Fig. 4  Univariate Cox regression analysis of differentially expressed 
UPRRGs
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Fig. 5  The correlation between the prognostic signature and outcome of BLCA patients. A–E Kaplan–Meier survival analysis of BLCA patients 
between high-risk groups and low-risk groups in TCGA set (A) and GSE13507 set (E); B–F distribution of survival status based on the median 
risk score in TCGA set (B) and GSE13507 set (F); C–G heatmap displayed the seven prognostic genes in TCGA set (C) and GSE13507 set (G); D–H 
time-independent receiver operating characteristic (ROC) analysis of risk scores predicting the overall survival in TCGA set (D) and GSE13507 set (H)
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Fig. 6  The prognostic signature was an independent prognostic factor for BLCA in TCGA set. A The correlations between the risk score for OS and 
clinicopathological factors by univariate Cox regression analysis; B the correlations between the risk score for OS and clinicopathological factors by 
multivariate Cox regression analysis; C ROC curves of the clinical characteristics and risk score
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Fig. 7  Construction of a nomogram. A Nomogram for predicting 3‐ or 5‐year OS; B the calibration plots for predicting 3‐year OS; C the calibration 
plots for predicting 5‐year OS
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The correlation between the prognostic signature 
and clinical characteristics
We also explored the relationship between the prog-
nostic signature and clinical characteristics. The results 
showed that the elevated risk score was closely corre-
lated with several inferior clinical characteristics (TNM 
stage, T stage, N stage, and grade) (Fig. 8A, B). With an 
increase in risk score, the expression levels of CALR, 
CRYAB, DNAJB4, KDELR3, and HSPB6 were increased, 
while the expression levels of FBXO6 and CREB3L3 
were decreased. In addition, the elevated expressions 
of CALR, CRYAB, DNAJB4, KDELR3, and HSPB6 were 
associated with inferior clinical characteristics, while the 
under-expressions of FBXO6 and CREB3L3 were associ-
ated with superior clinical characteristics. Furthermore, 
the signature was related to unfavorable prognosis in 
certain subgroups stratified by sex (male or female), age 
(> 65  years) or (≤ 65  years), N stage (N0), TNM stage 
(I-II) or (III-IV), grade (high), and T stage (T3-T4) 
(Fig.  9). However, the signature showed no differences 
in other subgroups of N stage (N1–N2–N3), grade (low), 
and T stage (T1–T2).

GSEA
We performed GSEA to explore the signaling pathways 
that might be closely enriched among two groups. The 
results of GSEA indicated that focal adhesion, dilated 
cardiomyopathy, ECM receptor interaction, TGF-β sign-
aling pathway, GAP junction, pathway in cancer, calcium 
signaling pathway, MAPK signaling pathway, chemokine 
signaling pathway, GnRH signaling pathway, and hedge-
hog signaling pathway were mainly enriched in high-risk 
group (Fig. 10A). In contrast, oxidative phosphorylation, 
retinol metabolism, fatty acid metabolism, linoleic acid 
metabolism, tyrosine metabolism, PPAR signaling path-
way, and Parkinson’s disease were mainly enriched in 
low-risk group (Fig. 10B).

Immune cell infiltration analyses
To further investigate the relationship between risk score 
and immune cell infiltration, ESTIMATE algorithm was 
first performed. We found that stromal score, immune 
score, and ESTIMATE score were remarkably higher in 
high-risk group than those in low-risk group (Fig. 11A). 
In addition, the results of the CIBERSORT algorithm 
showed the significant differences in the proportions of 
distinct leukocyte subsets between different groups. The 
proportions of CD8+ T cells, follicular helper T cells, 
and activated dendritic cells were higher in the low-risk 
group, whereas those of M0 macrophages, M2 mac-
rophages, and neutrophils were higher in the high-risk 
group (Fig. 11B). Furthermore, the ssGSEA results indi-
cated that a majority of immune-related pathways had 

higher enrichment scores in the high-risk group than 
in the low-risk group. Cytolytic activity, inflammation 
promotion, MHC class I, type I IFN response, and type 
II IFN response were not significantly different between 
the two groups (Fig.  11C). CIBERSORT results showed 
that immune suppressive cells were mainly enriched in 
high-risk group (Fig.  12A). To verify the immunosup-
pressive status of high-risk group, we further investigated 
the expression of immune suppressive molecules among 
different groups. The results indicated that immune sup-
pressive molecules were elevated in high-risk group, 
suggesting that patients of high-risk group have infe-
rior activities of anticancer immune response (Fig. 12B). 
Furthermore, we also analyzed the expression of key 
immune checkpoints (PDCD1, PD-L1(CD274), CTLA-
4, and HAVCR2) and found that PD-L1, CTLA-4, and 
HAVCR2 were upregulated in high-risk group (Fig. 12C). 
In addition, chemokines implicated in immunosuppres-
sive process (IL-10, TGF-β1, TGF-β2, TGF-β3) were also 
elevated upregulated in high-risk group (Fig.  12D). All 
these results indicated that the unfavorable outcomes of 
high-risk patients might be owing to the immunosup-
pressive microenvironment.

TIMER analysis
The TIMER database was used to investigate the cor-
relation between the mRNA expressions of CALR, 
CREB3L3, HSPB6, FBXO6, CRYAB, DNAJB4, KDELR3, 
and the abundances of immune cells in BLCA (Fig. 13). 
The expression level of CALR showed significant 
correlations with the abundances of CD8+ T cells 
(cor = 0.235, p = 5.33e−6), CD4+ T cell (cor = 0.113, 
p = 3.05e−2), macrophages (cor = 0.257, p = 6.22e−7), 
neutrophils (cor = 0.264, p = 3.51e−7), and dendritic 
cells (cor = 0.352, p = 5.33e−12). DNAJB4 was closely 
related to the CD8+ T cells (cor = 0.312, p = 9.98e−10), 
CD4+ T cell (cor = 0.244, p = 0.244e−6), macrophages 
(cor = 0.252, p = 1.02e−7), neutrophils (cor = 0.411, 
p = 2.92e−16), and dendritic cells (cor = 0.315, 
p = 7.19e−10). CRYAB showed strong correlations 
with B cells (cor = − 0.11, p = 3.66e−2), CD4+ T cells 
(cor = 0.16, p = 2.17e−3), macrophages (cor = 0.327, 
p = 1.45e−10), and dendritic cells (cor = 0.106, 
p = 4.35e−2). The expression of KDELR3 displayed sig-
nificant correlation with the abundance of CD8+ T cells 
(cor = 0.116, p = 2.64e−2), macrophages (cor = 0.399, 
p = 2.17e−15), and dendritic cells (cor = 0.164, 
p = 1.62e−3). CREB3L3 was only related to CD4+ T 
cells (cor = 0.125, p = 1.17e−2). FBXO6 showed signifi-
cant correlation with the abundances of CD8+ T cells 
(cor = 0.133, p = 1.11e−2), neutrophils (cor = 0.357, 
p = 2.36e−12), and dendritic cells (cor = 0.29, 
p = 1.58e−8). HSPB6 showed strong correlations 
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Fig. 8  The correlation between the signature and clinical characteristics. A Heatmap showed the correlation between the risk scores and 
clinicopathological factors. The elevated risk score was closely correlated with several inferior clinical characteristics (TNM stage, T stage, N stage, 
and grade). P: 0.05 > * > 0.01 > ** > 0.001 > ***. B Boxplot showed the correlation between the risk scores and clinicopathological factors
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Fig. 9  Subgroup analysis
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Fig. 10  GSEA analysis between high-risk group (A) and low-risk group (B)



Page 14 of 23Zhu et al. Human Genomics           (2021) 15:73 

Fig. 11  Immune cells infiltration and correlated pathways between high-risk groups and low-risk groups. A Immune microenvironment analysis 
between high-risk groups and low-risk groups by ESTIMATE; B immune cells infiltration between high-risk groups and low-risk groups by 
CIBERSORT; C immune-related pathways between high-risk groups and low-risk groups by ssGSEA. P: 0.05 > * > 0.01 > ** > 0.001 > ***
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Fig. 12  The correlation between immune microenvironment and the prognostic signature. A Immune suppressive cells between high-risk 
groups and low-risk groups; B immune suppressive molecules between high-risk groups and low-risk groups; C key immune checkpoints 
between high-risk groups and low-risk groups; D immunosuppressive chemokines between high-risk groups and low-risk groups. P: 
0.05 > * > 0.01 > ** > 0.001 > ***
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Fig. 13  Immune infiltrates analysis of seven prognostic genes by TIMER database
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Fig. 14  The relationship between immune cells infiltration and CNVs of seven prognostic genes by TIMER database. P: 
0.05 > * > 0.01 > ** > 0.001 > ***
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with the abundances of CD4+ T cells (cor = 0.132, 
p = 1.13e−2), macrophages (cor = 0.4, p = 1.78e−15), 
and dendritic cells (cor = -0.137, p = 8.63e−3). Mean-
while, we found that seven UPRGs CNVs were cor-
related with several immune cells (Fig.  14). We also 
revealed the correlation between seven UPRGs and 
immune marker genes of immune cells by using GEPIA 
database. The results suggested that seven UPRGs were 
also related to immune marker genes using the GEPIA 
database (Table 1).

Validation of the mRNA expression of 7 prognostic genes
UALCAN database was used to examine the mRNA 
expression and promoter methylation level of seven 
UPR genes (Fig. 15). The results of UALCAN database 
analysis showed that the mRNA expression levels of 
CALR, CREB3L3, FBOX6, and KDELR3 were increased 
in cancer tissues compared with normal tissues, while 
the mRNA expression levels of CRYAB, DNAJB4, and 
HSPB6 were decreased in BLCA. Furthermore, the 
elevated expressions of CALR, CREB3L3, FBOX6, and 

Table 1  The correlation between seven UPR genes and immune cell markers

***P < 0.001, **P < 0.01, *P < 0.05, ns

Description Gene markers CRYAB CALR DNAJB4 HSPB6 KDELR3 FBXO6 CREB3L3

GEPIA

R P R P R P R P R P R P R P

B cell CD19 0.41 *** 0.12 * 0.13 ** 0.46 *** 0.27 *** 0.24 *** 0.15 **

CD79A 0.42 *** 0.056 ns 0.14 ** 0.46 *** 0.25 *** 0.18 *** 0.11 *

MS4A1 0.36 *** − 0.018 ns 0.17 *** 0.46 *** 0.19 *** 0.13 * 0.16 **

CD8+ T cell CD8A 0.28 *** 0.24 *** 0.3 *** 0.18 *** 0.18 *** 0.46 *** 0.1 *

CD8B 0.23 *** 0.27 *** 0.25 *** 0.19 *** 0.16 ** 0.39 *** 0.08 ns

IL2RA 0.45 *** 0.31 *** 0.41 *** 0.32 *** 0.3 *** 0.38 *** 0.12 *

M1 macrophages PTGS2 0.16 ** 0.11 * 0.34 *** 0.12 * 0.22 *** 0.13 * 0.072 ns

NOS2 0.12 * − 0.081 ns 0.1 * 0.26 *** 0.11 * 0.14 ** 0.13 **

M2 macrophages CD163 0.54 *** 0.36 *** 0.35 *** 0.44 *** 0.42 *** 0.34 *** 0.094 ns

CD209 0.52 *** 0.29 *** 0.43 *** 0.39 *** 0.33 *** 0.31 *** 0.085 ns

MRC1 0.51 *** 0.28 *** 0.39 *** 0.4 *** 0.39 *** 0.29 *** 0.11 *

M0 macrophages CD14 0.56 *** 0.35 *** 0.38 *** 0.39 *** 0.31 *** 0.33 *** 0.057 ns

CD33 0.53 *** 0.31 *** 0.34 *** 0.45 *** 0.33 *** 0.29 *** 0.11 *

ITGAX 0.53 *** 0.26 *** 0.41 *** 0.41 *** 0.36 *** 0.34 *** 0.12 *

TAM CCL2 0.54 *** 0.23 *** 0.34 *** 0.52 *** 0.41 *** 0.27 *** 0.14 **

CD68 0.31 *** 0.29 *** 0.44 *** 0.14 ** 0.11 * 0.37 *** 0.0091 ns

CD86 0.5 *** 0.31 *** 0.45 *** 0.32 *** 0.26 *** 0.38 *** 0.083 ns

Neutrophil CD55 0.13 ** 0.014 ns 0.21 *** 0.14 ** 0.34 *** 0.016 ns 0.07 ns

FCGR3A 0.49 *** 0.37 *** 0.4 *** 0.34 *** 0.39 *** 0.39 *** 0.094 ns

ITGAM 0.5 *** 0.33 *** 0.43 *** 0.39 *** 0.37 *** 0.35 *** 0.15 **

Natural killer cell CD7 0.35 *** 0.27 *** 0.29 *** 0.24 *** 0.19 *** 0.47 *** 0.082 ns

KIR3DL1 0.19 *** 0.16 ** 0.19 *** 0.14 ** 0.14 ** 0.33 *** 0.11 *

Dendritic cell CD1C 0.37 *** 0.0072 ns 0.26 *** 0.36 *** 0.0078 ns 0.018 ns 0.048 ns

THBD 0.25 *** 0.057 ns 0.32 *** 0.048 ns − 0.038 ns 0.16 ** − 0.17 ***

T cell exhaustion CTLA4 0.36 *** 0.26 *** 0.31 *** 0.2 *** 0.19 *** 0.43 *** 0.12 *

LAG3 0.31 *** 0.36 *** 0.28 *** 0.15 ** 0.21 *** 0.47 *** 0.12 *

PD-1 0.32 *** 0.27 *** 0.29 *** 0.23 *** 0.21 *** 0.48 *** 15 **

Treg FOXP3 0.39 *** 0.24 *** 0.38 *** 0.29 *** 0.23 *** 0.39 *** 0.14 **

IL7R 0.51 *** 0.27 *** 0.42 *** 0.35 *** 0.35 *** 0.3 *** 0.075 ns

NT5E 0.4 *** 0.25 *** 0.39 *** 0.18 *** 0.27 *** 0.16 ** − 0.024 ns

Th1 cell CCR1 0.4 *** 0.36 *** 0.36 *** 0.32 *** 0.41 *** 0.34 *** 0.12 *

CCR5 0.37 *** 0.3 *** 0.35 *** 0.28 *** 0.29 *** 0.43 *** 0.15 **

IL12RB1 0.37 *** 0.28 *** 0.34 *** 0.25 *** 0.22 *** 0.46 *** 0.11 *

Th2 cell CCR4 0.35 *** 0.081 ns 0.38 *** 0.39 *** 0.25 *** 0.26 *** 0.17 ***

CCR8 0.34 *** 0.14 ** 0.46 *** 0.25 *** 0.28 *** 0.31 *** 0.18 ***
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KDELR3 and the down-expressions of CRYAB, and 
HSPB6 might be correlated with promoter methylation. 
However, we did not find the correlation between the 
mRNA expression and promoter methylation level of 
DNAJB4. All these results were consistent with previ-
ous results.

Correlation between risk score and chemotherapy 
sensitivity
In the current research, we used GDSC database to 
predict the response to common chemotherapy drugs 
by estimating the differences of IC50 among different 
groups. We found that patients with high risk score 

Fig. 15  Validation of the mRNA expression and promoter methylation of seven prognostic genes
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were more sensitive to several chemotherapy drugs, 
including cisplatin, rapamycin, cyclopamine, and bleo-
mycin, while patients with low risk score were more 
sensitive to metformin and methotrexate (Fig.  16). In 
addition, there was no obvious difference in sensitivity 
of gemcitabine, mitomycin C, and doxorubicin among 
two groups.

Discussion
Bladder cancer (BLCA) is a highly heterogeneous malig-
nancy that develops via a complex multistep biological 
process.  Accumulating evidence has demonstrated the 
crucial role of the UPR in the progression and outcome of 
various types of cancer, including BLCA [12, 18, 19]. The 
UPR was mainly mediated by three ER transmembrane 

Fig. 16  Chemotherapy sensitivity prediction between different groups
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protein sensors: inositol requiring kinase 1 (IRE1), pro-
tein kinase RNA-like endoplasmic reticulum kinase 
(PERK), and activating transcription factor 6 (ATF6) 
[20]. Silencing OTUB1 can markedly suppress the prolif-
eration and migration of BLCA cells through activating 
ATF6 signaling [18]. Most of studies focused on the effect 
of UPR in cancer progression and metastasis, and few 
studies have investigated the prognostic value of UPR-
related genes in cancers, especially in BLCA. Recently, 
mounting evidence has confirmed that multiple genes 
model is being used to predict outcomes and therapeu-
tic effect seems to have high credibility [21–24].

Hence, in the current study, we conducted comprehen-
sive bioinformatics approach to investigate the expres-
sion patterns of 251 UPR-related genes in BLCA and 
their correlation with OS. We identified a prognostic 
signature consisting of 7 UPRGs correlated with pro-
gression and outcomes of patients with BLCA and veri-
fied the novel prognostic signature in an external dataset 
GSE13507. Univariate and multivariate Cox regression 
analysis suggested that the signature based on 7 UPRGs 
was independent prognostic factor for survival in BLCA 
patients. Multivariate ROC analysis showed that risk 
scores were superior to traditional prognostic factors in 
predicting outcomes of patients with BLCA. In addition, 
UPR-based signature was closely associated with inferior 
clinical characteristics. Subgroups analyses stratified by 
clinical characteristics also indicated that patients with 
low risk scores had longer survival than those with high 
risk scores. A nomogram incorporating clinical charac-
teristics and risk score was established to predict the out-
comes of BLCA patients.

Among the seven UPRGs in the prognostic signature 
that we established, calreticulin (CALR), with a high abil-
ity for Ca2+ binding, has been implicated in the homeo-
stasis of Ca2+ and protein folding as well as cell adhesion 
[25]. Several studies have also shown that CALR was 
associated with immune responses and apoptosis [26, 
27]. Mounting evidence suggested that CALR expres-
sion was correlated with carcinogenesis, progression, 
outcome, and drug resistance as well as epithelial–mes-
enchymal transition [28]. Alpha-crystallin B (CRYAB), a 
member of the small heat-shock protein family with the 
functions of suppressing protein aggregation and pro-
moting protein refolding, has been reported to inhibit the 
tumorigenic phenotypes of BLCA cells through suppres-
sion of the PI3K/AKT and ERK signaling pathway [29]. 
DnaJ homolog subfamily B member 4 (DNAJB4), also 
called HLJ1, has been proven to serve as a tumor suppres-
sor role in many types of cancer including lung cancer, 
melanoma, and breast cancer [30–32]. Genetic deletion 
of KDELR3 was found to inhibit the lung metastasis of 
melanoma cells [33]. CREB3L3, an ER stress-associated 

transcription factor, was shown to be related to the pro-
liferation of HBV-associated HCC cells by regulating 
the PI3K/Akt and AMPK signaling pathways [34]. Stud-
ies have confirmed the critical function of HSPB6 in the 
endothelial proliferation and migration of various can-
cers [35, 36]. Overexpression of HSPB6 suppressed BLCA 
T24 cell migration to a certain level but had no effect on 
T24 cell proliferation [37]. F-box protein 6 (FBXO6), a 
vital component of the ubiquitin protein ligase complex, 
has been reported to be involved in the invasion and sen-
sitivity of cisplatin [38]. Wang et al. reported that FBXO6 
might be a CD8+ T cell infiltration-promoting factor and 
improve anti-PD1 drug resistance in BLCA patients [39].

Previous studies have confirmed that UPR was highly 
correlated with immune cell infiltration. In addition, 
accumulating evidence has also confirmed that immune 
cell infiltration  was closely  associated with the develop-
ment, progression, and prognosis as well as the treatment 
of BLCA. Therefore, the stromal score, ESTIMATE score, 
and immune score of BLCA samples were estimated by 
making use of the ESTIMATE algorithm. We found that 
the risk score was positively correlated with immune 
score, stromal score, and ESTIMATE score. Subse-
quently, we further used the CIBERSORT algorithm 
and ssGSEA to explore the relationship between the 
prognostic signature and immune cell infiltration. The 
results indicated that the signature based on 7 UPRGs 
was closely associated with immune cell infiltration. The 
low-risk group had a higher proportion of CD8+ T cells 
than high-risk groups, which was in line with previous 
research showing that the infiltration level of CD8+ T 
cells was positively related to favorable prognosis [39, 40]. 
In contrast, M2 macrophages and neutrophils had higher 
proportions in the high-risk group than low-risk group, 
which was also in accordance with previous studies that 
M2 macrophages and neutrophils were related to unfa-
vorable outcomes [41–43]. In addition, cytokines (IL-10, 
TGF-β1, TGF-β2, TGF-β3) involved in immunosuppres-
sive process and immune checkpoints (PD-L1, CTLA-4, 
and HAVCR2) were elevated in high-risk group, which 
indicated the immunosuppression microenvironment in 
high-risk group. These results exhibited the potential of 
UPR signature in predicting immune microenvironment 
of BLCA, which might improve the immunotherapeutic 
effect of tumor.

We further investigated the potential mechanisms 
among different groups and found that immune and car-
cinogenic pathways were enriched in high-risk group, 
which might explain the unfavorable prognosis and 
immune-suppressive status of patients in high-risk group, 
while the metabolism-associated pathways were highly 
enriched in low-risk groups. In addition, patients with 
high risk score might benefit from several chemotherapy 
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drugs, including cisplatin, rapamycin, cyclopamine, and 
bleomycin, while patients with low risk score might ben-
efit from the treatments of metformin and methotrexate.

In brief, UPR plays a critical role in the occurrence and 
progression of tumors. Our study demonstrated the value 
of a set of UPRGs as a prognostic biomarker in BLCA. 
Nevertheless, as a retrospective study performed through 
bioinformatics analyses, this study inevitably has several 
disadvantages. In addition, the biological mechanisms of 
these prognostic UPRGs remain to be further confirmed 
by relevant experiments and clinical evidence.

Conclusion
In summary, we established and validated a risk model 
based on seven UPRGs for predicting the prognosis, 
immune microenvironment, and chemotherapy response 
of patients with BLCA, which might have reliable poten-
tial for clinical application in BLCA.
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