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Abstract

Background: The severity of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is highly heterogeneous. Studies have reported that males and some ethnic groups are
at increased risk of death from COVID-19, which implies that individual risk of death might be influenced by host
genetic factors.

Methods: In this project, we consider the mortality as the trait of interest and perform a genome-wide association
study (GWAS) of data for 1778 infected cases (445 deaths, 25.03%) distributed by the UK Biobank. Traditional GWAS
fails to identify any genome-wide significant genetic variants from this dataset. To enhance the power of GWAS
and account for possible multi-loci interactions, we adopt the concept of super variant for the detection of genetic
factors. A discovery-validation procedure is used for verifying the potential associations.

Results: We find 8 super variants that are consistently identified across multiple replications as susceptibility loci for
COVID-19 mortality. The identified risk factors on chromosomes 2, 6, 7, 8, 10, 16, and 17 contain genetic variants
and genes related to cilia dysfunctions (DNAH7 and CLUAPT), cardiovascular diseases (DES and SPEG), thromboembolic
disease (STXBP5), mitochondrial dysfunctions (TOMM?), and innate immune system (WSBT). It is noteworthy that DNAH7
has been reported recently as the most downregulated gene after infecting human bronchial epithelial cells with
SARS-CoV-2.

Conclusions: Fight genetic variants are identified to significantly increase the risk of COVID-19 mortality among the
patients with white British ancestry. These findings may provide timely clues and potential directions for better
understanding the molecular pathogenesis of COVID-19 and the genetic basis of heterogeneous susceptibility, with
potential impact on new therapeutic options.
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Introduction

Coronavirus disease 2019 (COVID-19) is a highly infec-
tious disease caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). The pneumonia
was first reported in December 2019 in Wuhan, Hubei
Province, China, followed by an outbreak across the
country [1, 2]. As of September 8, 2020, the pandemic of
COVID-19 has rapidly spread worldwide and caused
over 27 million infected cases and 891,000 deaths (3.3%)
according to JHU COVID-19 dashboard [3]. Currently,
the effective therapeutic measures available to counter-
act the SARS-CoV-2 are limited. While studies have
been dedicated to investigating the clinical features, epi-
demiological characteristics of COVID-19 [4-11], and
genomic characterization of SARS-CoV-2 [12], few are
through the lens of statistical genetics and the host gen-
etic factors contributing to COVID-19 remain largely
enigmatic [13, 14]. Moreover, the severity of COVID-19
and course of the infection is highly heterogeneous. The
majority of COVID-19 cases only have mild or no symp-
toms, while some of the patients develop serious health
outcomes. A UK cross-sectional survey of 20,133 pa-
tients who were hospitalized with COVID-19 showed
that patients with diabetes, cardiovascular diseases,
hypertension, or chronic respiratory diseases were at
higher risk of death [15]. More importantly, evidence
has shown that males and some ethnic groups have in-
creased risk of death from COVID-19 [16—20]. These
observations suggest that there might be host genetic de-
terminants which predispose the subgroup of patients to
more severe COVID-19 outcomes. Undoubtedly, there is
an urgent need for understanding the host genetic basis
of heterogeneous susceptibility to COVID-19 and unco-
vering genetic risk factors. Current studies mainly focus
on investigating associations between host genetic fac-
tors and infection or respiratory failure [13, 14]. Obvi-
ously, infection may only be partially explained by
genetic factors since exposure to the virus could be more
important. Here, we consider the mortality as the trait of
interest for our analysis.

As of early August 2020, UK Biobank [21, 22] has re-
leased the testing results of COVID-19 for 12,428 partic-
ipants, including 1778 (14.31%) infected cases with 445
deaths related to COVID-19. This dataset accompanied
by already available health care data, genetic data, and
death data offers a unique resource and timely oppor-
tunity for learning the host genetic determinants of
COVID-19 susceptibility, severity, and mortality.

In this project, we perform a genome-wide association
study (GWAS) exploiting the concept of super variants
in statistical genetics to identify potential risk loci con-
tributing to the COVID-19 mortality. A super variant is
a combination of alleles in multiple loci in analog to a
gene. However, in contrast to a gene that refers to a
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physically connected region of a chromosome, the loci
contributing to a super variant are not restricted by their
spatial locations in the genome [23-25]. The rationale
behind our analysis is twofold: First, COVID-19 infec-
tions require environmental exposure and the genetic
contribution may be limited relative to the environmen-
tal exposure, while the mortality may have a stronger
genetic effect. Second, COVID-19 is a complex syn-
drome, which may reflect interacting genomic factors,
and our analysis based on super variants enables us to
leverage gene interactions beyond the additive effects.

Methods

Sample processing and genotype quality control

We analyze the COVID-19 data released by UK Biobank
(Category ID: 100091) [22] on August 3, 2020, which in-
clude in total 1778 of COVID-19 infected cases. Here,
we consider an infected case as a sample with any posi-
tive PCR test result or a death with virus found. Among
infected cases, 445 of them are reported death caused
directly or indirectly by COVID-19 and the remainder of
1333 patients are survivors. In our analysis, to limit the
potential effect of population structure, we focus on
samples from white British ancestry. After standard sam-
ple quality controls, there remain 1096 of COVID-19 in-
fected participants, of which 292 are deaths (26.64%)
and 804 are survivors. Their imputed genotype data
(Field ID: 22801-22822) and clinical variables including
gender and age (Field ID: 31, 34) are all accessible from
UK Biobank [21].

Our analysis makes use of imputed single-nucleotide
polymorphism (SNP) datasets from UK Biobank. SNPs
with duplicated names and positions are excluded. After
standard genotyping quality control, where variants with
low call rate (missing probability > 0.05) and disrupted
Hardy-Weinberg equilibrium (p value <1 x 107°) are re-
moved, we retain in total 18,617,478 SNPs. We divide
the whole SNP dataset into 2734 non-overlapping local
sets according to the physical position so that each
set consists of SNPs within a segment of physical
length 1 Mbp.

Statistical analysis

We consider the concept of super variant for GWAS. A
super variant is a combination of alleles in multiple loci,
but unlike a gene that refers to a physically connected
region of chromosome, the loci contributing to a super
variant can be anywhere in the genome [24, 25]. The
super variant is suggested to be powerful and stable in
association studies as it aggregates the strength of indi-
vidual signals. In addition, it accounts for potential com-
plex interactions between different genes even when
they are located remotely. To identify significant super
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variants, a local ranking and aggregation method is
adopted.

The method consists of four steps, and a flowchart
of the method is presented in Fig. 1. In the first step
(Fig. la), chromosomes are divided into local SNP
sets as described above. In the second step (Fig. 1b),
within each set, a tree-based method [26] is utilized
to obtain the so-called depth importance measure [27,
28] of each SNP which leads to a ranking of SNPs in
terms of their marginal contribution to the mortality.
The depth importance measure takes consideration of
the effect of a SNP as a splitting node in a classifica-
tion tree as well as the depth at which it is located in
the tree. The rationale behind such a measure is that
an important SNP tends to be used in the early stage
of the tree growing step. In the third step (Fig. 1lc),
we empirically determine the number of top SNPs to
form a super-variant following [25]. In the last step
(Fig. 1d), top SNPs within each local set are then ag-
gregated into a super variant. In addition, two modes
of transmission, dominant and recessive modes, are
both considered for the super-variant identification.
We refer the readers to [25] for more details.

Our analysis considers the following discovery-
validation procedure. The complete dataset is randomly
divided into two sets, one for discovery and the other for
verification. Each set consists of 146 deaths and 402 sur-
vivors. We apply the aforementioned ranking and aggre-
gation method for super-variant identification on the
discovery dataset. After the discovery of the super
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variants, we then investigate their associations with the
death outcomes of COVID-19 through logistic regres-
sion in the verification and complete datasets. Age and
gender are considered in the regression analyses as con-
founders to remove potential bias. We use 1.83 x 107>
(i.e., 0.05/2734) as the threshold for super-variant-level
association on the discovery dataset since 2734 SNP sets
are considered. A super variant is verified if its logistic
regression coefficient achieves the level of 0.05 signifi-
cance on the verification dataset and super-variant-level
significance on the complete dataset.

To ascertain the stability of the associations, we repeat
the above procedure 10 times and retain the verified
super variants and their contributing SNPs. Typically,
genetic association analyses do not include an internal
assessment, but we replicate our procedure 10 times as a
safeguard strategy for detecting potential and stable sig-
nals without dramatically increasing the computational
burden. Finally, for super variants that are consistently
verified across multiple runs, we conduct Cox regres-
sions with adjustment for age and gender in the
complete dataset to further validate their associations.

Results

We find 216 different verified super variants across 10
repetitions of the discovery-validation procedure. More
importantly, there are two super variants, chr6_148 and
chr7_23, identified in 4 out of 10 repetitions. In addition,
there are 6 super variants, chr2_197, chr2_221, chr8_99,
chr10_57, chrl6_4, and chrl7_26 identified in 3 out of

~N
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Fig. 1 Flow chart of constructing super variants
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10 repetitions. According to the binomial distribution,
the probability of a super variant being verified in 4 (3)
out of 10 repetitions by chance is at most 0.00096
(0.0105) if p value in the verification dataset is assumed
to be uniformly distributed.

In terms of the SNPs contributing to these 8 super
variants, there exist SNPs selected multiple times across
different repetitions. Specifically, for chr6_148, SNP
rs117928001 is a contributing SNP in all 4 times when
this super variant is verified, and there are another 94
contributing SNPs selected 3 times. Similarly, for chr7_
23, SNP rs1322746 is a contributing SNP in 3 repetitions
when this super variant is verified, and another 4 SNPs
are selected 2 times. For super-variant chr2_197 which
is identified in 3 out of 10 repetitions, SNPs rs34011564
and rs71040457 are both contributing SNPs in all 3
times. For chr8 99, SNPs rs4735444 and rs531453964
are contributing SNPs of verified super variants in all 3
repetitions. SNPs rs117217714, rs2176724, rs9804218,
and rs2301762 are contributing SNPs for chrl7_26,
chr2_197, chrl0_57, and chrl6_4 in all 3 repetitions
when these super variants are verified, respectively. We
calculate minor allele frequency (MAF), odds ratio (OR),
and p value for the contributing SNPs of the 8 super var-
iants based on the complete dataset. See Table S1 in
Additional file 1 for the details of all contributing SNPs
which are selected in at least 2 repetitions.

We use SNPs which are selected in at least 2 repeti-
tions to representatively form 8 super variants according
to the same mode of transmission (dominant/recessive)
when they are discovered. Table 1 gives their effects esti-
mated from univariate logistic regression and Cox re-
gression with adjustment for sex and age in the
complete dataset. For the logistic regression, all of them
achieve super-variant-level significance (i.e., p value <
1.83 x 107°). The strongest signal in terms of p value is
given by chr7_23 (p value = 9.5 x 107°), and the largest
odds ratio appears at chrl7_26 (OR = 4.237). For the
Cox regression, the largest individual hazards ratio (HR)
appears at chrl7_26 (HR = 2.956) as well, and the

Table 1 Marginal effects of 8 super variants in the complete dataset
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smallest individual p value is given by chr2_221 (p value
= 52 x 107%). Table 2 lists the details of representative
contributing SNPs with high selection frequency and im-
portant gene mapping results of the 8 super variants.
Figure 2 shows that the survival probabilities of the pa-
tients with identified super variants remarkably drop
during the first 20 days since testing, suggesting of risk
genotypes. Figure 3 presents the survival probabilities
stratified by the number of super variants. Note that the
super variants are weighted equally. The HR of super
variants is 1.778 with 95% CI being [1.593, 1.985], and
the associated p value is 1.1 x 107%*, while the p values
of sex and age are 1.2 x 1072 (HR = 1.489, male) and 2.9
x 107*® (HR = 1.107), respectively. The survival prob-
ability of patients with more than 3 super variants dra-
matically decreases to around 0.6 during the first 3
weeks.

In addition, we use a chi-square test for independence
to investigate whether there are any gender differences
among the distribution of these 8 super variants as well
as differences among distribution of contributing SNPs.
For super variants, chr2_197 has p value 0.0579 when all
samples are considered. The frequency of presenting this
super variant among males and females is 18.09% and
22.93%, respectively. For contributing SNPs, rs4346407
on chromosome 2 has p value 0.050 when all samples
are considered, and SNP 10:56525802_CT_C has p value
0.0078 when only death cases are considered. The distri-
butions of these two SNPs are given in Table 3.

Discussion

As the COVID-19 pandemic creates a global crisis of
overwhelming morbidity and mortality, it is urgent and
imperative to provide insights into how host genetic fac-
tors link to clinical outcomes. With the timely release of
the UK Biobank COVID-19 dataset, we perform a
GWAS for detecting genetic risk factors for COVID-19
mortality. However, due to the limited sample size, the
traditional single SNP GWAS has low power in signal
detection which is evidenced by the Manhattan plot

Dominant Gene OR 95% Cl of OR
chr6_148 STXBP5/STXBP5-AS1 2.909 [1.938, 4.365]
chr8_99 CPQ 1.923 [1.419, 2.605]
chrie_4 CLUAPT 2.725 [1.744, 4.259]
chr17_26 WSB1 4237 [2472,7.263]
Recessive Gene OR 95% Cl of OR
ch2_197 DNAH7/SLC39A10 2.553 [1.801, 3.616]
chr2_221 DES/SPEG 2.739 [1.893, 3.963]
chr7_23 TOMM7 2411 [1.774,3.276]
chr10_57 PCDH15 2.521 [1.736, 3.662]

p value HR 95% Cl of HR p value

14 %107 2,048 (1435, 2.921] 7.7 % 10°
16x10° 1502 [1.119, 2.015] 6.7 %107
7.0 % 10° 2123 (1433, 3.143] 17 %x10%
84 % 10® 2,956 [1.949, 4.482] 34 %107
p value HR 95% Cl of HR p value

73%x10% 1625 [1.170, 2.257] 38 x 107
49 % 108 2614 [1.894, 3.609] 52 %107
95 x 107 1943 (1451, 2.603] 81x10°
7.1 %107 1813 [1.283, 2.561] 74 x 10"
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Table 2 SNPs with high selection frequency and important gene mapping results in 8 super variants

Super variant Chr SNP name Position Minor allele Major allele MAF OR p value
chr2_197 2 1573060484 196364477 C A 0.069 1.945 60 % 10*
1577578623 196369073 T C 0.070 1.939 6.2 x 10"
1574417002 196384505 G A 0.034 1.832 30 x 107
rs73070529 196412097 A C 0.048 2.249 36 % 10*
rs113892140 196439005 A G 0.044 2.031 28 %107
rs200008298 196602155 AATACT A 0.032 1.8 31 x 107
rs183712207 196611282 A G 0.007 4.783 77 %1073
rs191631470 196859045 T C 0.007 3335 39 x 107
152176724 196952410 A G 0.138 1484 6.1 % 107
chr2_221 2 1571040457 220294782 A AG 0.355 1.331 77 %1073
chr6_148 6 rs117928001 147514999 T @ 0.049 2.749 1.1x10°
rs116898161 147538692 G A 0.046 2541 69 % 10°
chr7_23 7 rs13227460 22588381 T C 0.278 13 26 %107
rs55986907 22817292 T C 0.286 1.601 35x 107
chrg8_99 8 157817272 98140470 C T 0.194 1.736 17 %107
154735444 98140991 T C 0.201 1.784 58%10°
rs1431889 98141643 C G 0.193 1.704 35x10°
152874140 98142930 T A 0.194 1.694 40x 107
rs531453964 98143128 CA C 0.185 1.849 3.2x10°
rs7007951 98146644 T C 0.184 1711 44x107
rs920576 98147539 C T 0201 1615 1.6x10*
chr10_57 10 rs9804218 56495374 G C 0.357 1373 3.3x10°
chr16_4 16 152301762 3550977 G @ 0.055 2.541 20x107
chr17_26 17 rs60811869 25590833 C T 0.024 2966 6.5x10
1117217714 25987181 @ T 0.013 6.255 3.3x10°

shown in Fig. 4. This traditional association analysis is
also conducted on the same samples with white British
ancestry and controlled for gender and age. As demon-
strated, the traditional single SNP analysis method is un-
able to detect any genome-wide significant association
with commonly used threshold 5 x 107%, which moti-
vates us to consider the concept of super variant for
GWAS.

From Table 1, we can see that the magnitudes of the
odds ratios calculated for the identified super variants
tend to be larger than those of the traditional GWAS
signals. This might be because some of the super vari-
ants contain rare variants (low MAF) as the contributing
SNPs, and it is known that rare variants with large effect
sizes and common variants with small effect sizes are
relatively easier to identify using GWAS [29]. Indeed,
among the eight identified super variants, half of them
contain rare variants with MAF less than 0.05, one
super-variant chrl6_4 contains a variant with MAF
equal to 0.055. Moreover, the top two super variants
(chr17_26 and chr6_148) with the largest magnitude of

the odds ratio all consist of rare variants. However, in a
previous research of associating super variants and
breast cancer [25], the magnitudes of the odds ratios for
the super variants were found to be comparable to those
of the single SNP variants. Therefore, this phenomenon
appears to be study and disease dependent.

Although the identified super variants are similarly
distributed in males and females, the results presented
in Table 3 suggest that males tend to present more
minor alleles for two contributing SNPs rs4346407
and 10:56525802_CT_C which potentially increase
their risk of COVID-19 mortality. Such a phenomenon
of higher risk for males has been reported in recent
studies [17, 18, 30, 31].

The identified super variants are mapped to annotated
genes. The most interesting signal appears on chromo-
some 2 in the super-variant chr2_197. Within this super
variant, SNPs rs183712207 and rs191631470 are located
in the intron of gene DNAH?7, and SNP rs200008298 is
located in the downstream of gene DNAH?7 (distance =
271bp). Using Combined Annotation Dependent
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Depletion (CADD) tool [32], we find that SNP
rs200008298 has scaled C-score = 14.42, which means
the variant is predicted to be the 14% most deleterious
substitution in the human genome. Gene DNAH?7 en-
codes dynein axonemal heavy chain 7, which is a com-
ponent of the inner dynein arm of ciliary axonemes [33].
A recently published paper showed that gene DNAH?7 is
the most downregulated gene after infecting human
bronchial epithelial cells with SARS-CoV2 [34]. The au-
thors of that study speculated that the downregulation
of gene DNAH?7 causes the reduction of function of re-
spiratory cilia. Our results suggest that COVID-19 pa-
tients with variations in gene DNAH7 may have higher
risk for dying from COVID-19. In addition, within the
super-variant chr2_197, SNPs rs200008298 (3 prime
UTR), rs4578880 (intron), and rs113892140 (upstream)
are related to gene SLC39A10 which encodes a zinc
transporter. This gene has been reported to facilitate
antiapoptotic signaling during early B cell development
[35], modulate B cell receptor signal strength [36], and
control macrophage survival [37].

Signal at super-variant chrl6_4 is also related to cilia.
This super variant consists of a single SNP rs2301762,
which is located in 5 prime UTR of gene CLUAPI and it

Table 3 Allelic distribution of contributing SNPs

rs4346407 0 1 2
Female 218 227 45
Male 236 255 80
10:56525802_CT_C 0 1 2
Female 76 21 9

Male 101 68 13
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belongs to promotor region. Gene CLUAPI encodes
clusterin-associated protein 1 [38, 39], which is an evolu-
tionarily conserved protein required for ciliogenesis [40].

Chr2_221 consists of 3 SNPs. SNP rs71040457 is lo-
cated in the downstream of gene DES (distance = 3322
bp) and the upstream of gene SPEG (distance = 4917
bp). Mutations in both gene DES and SPEG are reported
to be associated with cardiomyopathy [41-43]. Several
studies have reported cardiomyopathy in COVID-19 pa-
tients [44, 45], and acute myocardial damage caused by
SARS-CoV-2 greatly increases the difficulty and com-
plexity of patient treatment [46].

Chr7_23 is composed of five intergenic variant SNPs.
Among them, SNP rs55986907 is an expression quanti-
tative trait locus (eQTL) of gene TOMAM?7 in multiple
tissues according to the Genotype-Tissue Expression
(GTEx) database. This SNP has a scaled C-score = 12.01
from CADD tool. The gene product of TOMM?7 is a
subunit of the translocase of the outer mitochondrial
membrane, and plays a role in regulating the assembly
and stability of the translocase complex [47].

Super-variant chr6_148 contains 101 SNPs. Eighty-
nine of them are located in the intron of gene STXBPS5
and six of them are located in the intron of gene
STXBP5-AS1. On the one hand, a study showed that
gene STXBPS inhibits endothelial exocytosis and pro-
motes platelet secretion, and the variation within
STXBPS is a genetic risk for venous thromboembolic
disease [48]. On the other hand, studies have revealed
that STXBP5-AS1 encodes a long noncoding RNA,
which inhibits cell proliferation, migration, and invasion
via preventing the phosphatidylinositol 3 kinase/protein
kinase B (PI3K/AKT) signaling pathway against STXBP5
expression in non-small-cell lung carcinoma and gastric
cancer cells [49, 50]. Our results suggest that the varia-
tions within STXBP5/STXBP5-AS1 and the interaction
between them may result in increased risk of death
among COVID-19 patients through the mechanism re-
lated to endothelial exocytosis.

Chrl7_26 is composed of three intergenic variant
SNPs. Among them, SNP rs60811869 is an eQTL of
gene WSBI in artery-tibial tissue based on the GTEx
database. This gene has been reported to function as a
Interleukin-21 (IL-21) receptor binding molecule, which
enhances the maturation of IL-21 receptor [51].

Super-variant chrl0_57 contains 11 SNPs and all of
them are located in the intron of gene PCDHI5. Gene
PCDH15 is essential for maintenance of normal retinal
and cochlear function.

Super-variant chr8_99 is composed of 7 SNPs. All the
SNPs are located in the intron of gene CPQ. Among
them, SNPs rs7817272 and rs1431889 have scaled
CADD scores larger than 10. Gene ontology (GO)
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variant regions are annotated

annotations of this gene include protein homodimeriza-
tion activity and carboxypeptidase activity.

There are multiple limitations and future directions to
our study and analysis results. First, the roles of the
identified super variants and related genes in COVID-19
susceptibility are not substantiated by functional valid-
ation. Nevertheless, our results warrant future investiga-
tion to learn the relationship between genetic variations
and the severe COVID-19 outcomes. Second, preexisting
comorbidities may represent important risk factors for
COVID-19 vulnerability. A recent study showed that the
most common comorbidities in hospitalized COVID-19
patients from UK Biobank were hypertension, fragility
fractures, coronary heart disease, type 2 diabetes, and
asthma. However, among these preexisting conditions,
only type 2 diabetes was identified as significant for re-
lated mortality [52]. As a first attempt in identifying po-
tential host genetic risk factors associating with COVID-
19 mortality, it is reasonable for us to focus on genetic
signals given the complexity of the preexisting condi-
tions, but incorporating such information into associ-
ation studies is a valid direction. Third, the impact of
social and economic disparities on COVID-19 suscepti-
bility has been well documented [53, 54]. Although our
study aims to identify genetic risk factors for COVID-19
mortality, further research is needed to determine how
genetic factors may interact with environmental factors

that influence access to high-quality health care. Fourth,
our study is restricted by the limited sample size. We
anticipate a continuous accumulation of data in the
following months and plan to iterate our analysis
whenever more data become available. Last but not
the least, we currently focus on the population with
white British ancestry of UK Biobank in the analysis,
validating the identified risk factors in independent
populations from other resources or ethnic groups
worth further investigation.

Conclusions

We identify 8 potential genetic risk loci for the mortality
of COVID-19. These findings may provide timely clues
and potential directions for better understanding the
molecular pathogenesis of COVID-19 and genetic basis
of heterogeneous susceptibility, with potential impact on
new therapeutic options.
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