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Abstract

Background: Next-generation sequencing (NGS) has been advancing the progress of detection of disease-associated
genetic variants and genome-wide profiling of expressed sequences over the past decade. NGS enables the analyses of
multiple regions of a genome in a single reaction format and has been shown to be a cost-effective and efficient tool
for root-cause analysis of disease and optimization of treatment. NGS has been leading global efforts to device
personalized and precision medicine (PM) in clinical practice. The effectiveness of NGS for the aforementioned
applications has been proven unequivocal for multifactorial diseases like cancer. However, definitive prediction of
cancer markers for all types of diseases and for global populations still remains highly rewarding because of the
diversity of cancer types and genetic variants in human.

Results: We performed exome sequencing of four samples in quest of critical genetic factor/s associated with liver
cancer. By imposing knowledge-based filter chains, we have revealed a panel of genetic variants, which are
unrecognized by current major genomics data repositories. Total 20 MNV-induced, 5 INDEL-induced, and 31
SNV-induced neoplasm-exclusive genes were revealed through NGS data acquisition followed by data curing with
the application of quality filter chains. Liver-specific expression profile of the identified gene pool is directed to the
selection of 17 genes which could be the as likely causative genetic factors for liver cancer. Further study on expression
level and relevant functional significance enables us to identify and conclude the following four novel variants, viz.,
c.416T>C (p.Phe139Ser) in SORD, c.1048_1049delGCinsCG (p.Ala350Arg) in KRT6A, c.1159G>T (p.Gly387Cys) in SVEP1,
and c.430G>C (p.Gly144Arg) in MRPL38 as a critical genetic factor for liver cancer.

Conclusion: By applying a novel data prioritizing rationale, we explored a panel of previously unaddressed liver
cancer-associated variants. These findings may have an opportunity for early prediction of neoplasm/cancer in liver
and designing of relevant personalized/precision liver cancer therapeutics in clinical practice. Since NGS protocol is
associated with tons of non-specific mutations due to the variation in background genetic makeup of subjects,
therefore, our method of data curing could be applicable for more effective screening of global genetic variants
related to disease onset, progression, and remission.
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Background
Cancer is a multifactorial disease mostly influenced by
genetics and environmental factors. At the genetic level,
a cancerous phenomenon results from the accumulation
of genomic alterations leading to the dysregulation of
cell proliferation, regeneration, and apoptosis [9]. Hepa-
tocellular carcinoma (HCC) is the fifth most common
human cancer among different types of cancer, with
approximately 750,000 new cases occurring worldwide
each year [6]. About 85% of hepatocellular carcinoma
(HCC) patients are from developing countries, such as
Southeast Asia and sub-Saharan Africa [25], and world-
wide death for liver cancer is 50%. One clinical finding
suggests that the older HCC patients more often face
hepatomegaly, vascular spider, and pleural effusion [29].
The treatment strategies for patients with HCC include
surgery, radiation, chemotherapy, liver transplantation,
and targeted therapies. Although there have been a lot
of improvements in the diagnosis and treatment proto-
cols, the death rates are increasing for patients with
HCC. The majority of studies showed that a 5-year sur-
vival rate is less than 5% [18]. As of to date, “PubMed”
searches of the phrases “Cancer genomics” and “NGS se-
quencing” have revealed more than 8000 and 3100 hits,
respectively. That means around 40% of total publica-
tions related to NGS are dealt with cancer. This is
clearly suggesting the popularity and acceptability of
NGS technology in the field of cancer genomics. This
study has revealed enormous information regarding the
cause-and-effect relationship of gene and cancer in all
phases of the disease, e.g., cancer onset, cancer progres-
sion, and cancer remission. Particularly, cancer predic-
tion using the genetic markers has become a boon for
humanity as it propels the success rate in cancer treat-
ment by early detection of the disease. Recent advance
in NGS technique has introduced the notion like preci-
sion cancer medicine and precision cancer genomics by
the start of this century [8]. Nowadays, NGS-based
whole-exome sequencing enables the scientific commu-
nity to look closely the detail of genetic aberration pro-
file and associated dysregulated signaling pathways. NGS
techniques ultimately revolutionize precision cancer
medicine through anticancer drug development and tar-
geted therapy [28].
Cancer-associated genomic alterations are more global

than local in nature [13]. The gross chromosomal struc-
ture alterations by amplification, deletion, translocation,
and/or inversion of chromosomal segments are consid-
ered as common characteristics of cancer genomes [12].
The heterogeneous nature of cancers at a spatial and tem-
poral scale has diversified the cancerous genome at the in-
dividual level [3]. Significant numbers of studies with liver
cancer background indicate that NGS plays a crucial role
in cancer diagnosis, classification, and treatment [26].

Importantly, a comprehensive assessment of cancer
genome-associated genetic alteration plays a critical role
in predicting oncology drugs and therapeutic outcomes [5,
26]; these could have druggable as well as a novel target
for drug discovery. Therefore, NGS is an important tool
for both the clinician and scientific community.
NGS-based whole-exome sequencing of individuals as a

tool of personal genomics is a recent trend in cancer re-
search [27]. One of the crucial challenges associated with
such practice is the analysis and extracting out the mean-
ingful information from the overwhelming amount of data
generated by NGS [24]. Lack of valid and precise data
mining pipeline forces the scientist community to identify
authentic variants during mutation analysis of cancer [17].
This study was aimed for identifying liver cancer-specific

genetic variants using a knowledge-based filter chains asso-
ciated with variant prioritizing protocols. Through these
filter chains, a panel of previously unreported liver cancer-
associated variants has been extracted from whole-exome
sequencing (WES) data which has the potential to drive us
for the development of novel therapeutics.

Materials and methods
Subject selection
NGS-based genomic landscape analysis was performed on
a total of four human subjects from South Asian popula-
tion: one metastatic cancer patient and three asymptom-
atic healthy subjects comprising two males and one
female. The selected subjects were aged between 50 and
70 years old. Samples were collected following the institu-
tional ethical policy. The clinicopathologic features of the
neoplasm of a liver patient include hepatomegaly with a
large space-occupying lesion (SOL) in the right lobe of the
liver. Fine needle aspiration from SOL of the liver showed
numerous malignant cells with finely granular chromatin
pattern with hemorrhagic background under microscopy.
Additionally, elevated alpha-fetoprotein level (207.0 IU/
mL) was estimated in the blood.

Genomic DNA isolation
The analysis was performed on the genomic DNA ex-
tracted from the blood samples of patients. An automated
platform (MagMAX™ Express-96 Magnetic Particle Pro-
cessor; Life Technologies, USA) was used to extract the
genomic DNA from blood samples following the manu-
facturer’s instructions of MagMAX™ DNA Multi-Sample
Kits (Life Technologies, USA). The quantity of the ex-
tracted DNA was estimated using Qubit™ dsDNA HS
assay kit (Life Technologies, USA) in combination with
Qubit™ fluorometer (Life Technologies, USA).

Next-generation sequencing
Next-generation sequencing (NGS) was performed as
previously described [4, 7] by Fujita and Damiati in 2017
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and 2016, respectively. In brief, 100 ng of DNA was ampli-
fied for genomic library preparation using the exome en-
richment kit (Ion AmpliSeq™, Life Technologies, USA) in
order to sequence the key exonic regions (> 97% of CCDSs)
of the genome. Ion Chef™ System (Life Technologies, USA)
was used for template preparation and enrichment using
Ion 540™ Kit – Chef (Life Technologies, USA). The same
automated platform was used for loading Ion 540™ Chips
with template-positive Ion Sphere™ Particles. Exome se-
quencing was performed on Ion S5™ XL Sequencer (Life
Technologies, USA) with the loaded chips. Data analysis
was done by Torrent Suite™ Software (v 5.2.2; Life
Technologies, USA). Coverage analysis was performed
using the Coverage Analysis plug-in (v5.2.0.9). Variant
Caller plug-in (v5.2.0.34) was used for mutation/variant
detection against the reference genome (hg19).

Data filtering and prioritization
The Variant Call Format (VCF) and binary version of SAM
(BAM) files for all samples were uploaded into Ion
Reporter™ 5.10.2.0 (Life Technologies, USA) for data
filtering and prioritization using variant-specific filter chain
(Fig. 1) for identifying liver cancer-specific genetic variants.
Total variants of each sample were detected by “Variant
Caller” plug-in where a p value was 0.0–0.01. Despite using
numbers of bioinformatics, data repositories retrieved vari-
ants through most extensive and curated servers and then
categorized according to the variants type, and then impos-
ing distinct variant-specific, customized filter chains. After
that, “Exome Aggregation Consortium South Asian Allelic
Frequency (ExAC SAAF)” hits were filtered out for the
elimination of rare genetic variation for “South Asian”
population.Remaining variants were then filtered by worse
functional impact (SIFT score 0.0–0.05, PolyPhen score
0.85–1.0) and deleterious evolutionary distance (Grantham
scores 101–215), respectively. Somatic mutations across the
range of human cancers were excluded by applying
“Catalog of Somatic Mutations in Cancer (COSMIC)” filter.
After filtering all common variants, existing variants were
classified according to the variant effect (e.g., nonsense,
missense, frameshift insertion, and frameshift insertion mu-
tations). “Single Nucleotide Polymorphism Database
(dbSNP)” and “UCSC common SNPs” databases were ap-
plied for Single Nucleotide Variant (SNV) analysis; “Data-
base of Genomic Variants (DGV)” and “5000Exomes”
databases were applied for Multiple Nucleotide Variant
(MNV) analysis; CNV confidence range and DGV data-
bases were applied for Copy Number Variant (CNV) ana-
lysis; homopolymer length filter and DGV database were
applied for Insertion or Deletion polymorphism (INDEL)
analysis. Variants match with dbSNP, UCSC common
SNPs, DGV and 5000Exomes database were excluded for
downstream prioritization.

Data selection for exclusive mutation
With the variant pools obtained from database analyses,
data were curated for finding intra-subject match hits at
least 100× coverage. A variant was considered for
neoplasm-specific if and only if it occurred exclusively in
GBNGS011 subject. The hits were then screened for
liver-specific protein expression profile, and spatial func-
tional and biological significance through comparison of
“GeneCards” entries.

Results
Coverage analysis and variant detection
The whole-exome sequencing (WES) data from four
subjects were aligned against the reference genome hg19
for the analysis of coverage and detection of variants
(Fig. 2) for probable incidental findings with a confi-
dence level (Table 1).
The range of the mean depth of coverage was 30–233.

The sequence from GBNGS011 has the lowest percent-
age of mapped read. GBNGS011 is aligned on target
with minimal variants (25842) calls, and GBNGS002 is
aligned on target with maximum variant (39339) calls
(see Table 1).

SNV detection
The exome data from four subjects were filtered through
SNP detection filter chain that consists of seven different
filters (Fig. 1a). SNP detection filter chain filtered 411
SNV (Additional file 1: Tables S1, S2, and S3) from 121,
556 variants associated with 400 genes. All the variants
were recognized as missense mutation by default. Be-
sides, frameshift deletion mutations were detected in 15
genes (CDK11B, RCC1, SZT2, LTBP1, USP46, KCNV1,
TECTA, CEMIP, ADAMTSL3, TVP23A, SRCAP, CENPV,
OR10H4, and LANCL3). GBNGS011 possesses almost all
these mutated genes except SNAPC3 that was found
only in GBNGS008 (Fig. 3a). Among these, we retrieved
10 genes with SNV-associated frameshift insertion muta-
tion, which includes EPB41, PPCS, COL21A1, RELN,
NUDT18, DYNC1H1, BAG5, XPO6, FBN3, and CILP2
(Fig. 3b). Among the study cohort, GBNGS008 carried a
mutation on CILP2 and BAG5 genes and the rest of the
mutations were carried only by GBNGS011. No nonsense
mutation was detected by SNP detection filter chain.

MNV detection
MNV detection filter chain (Fig. 1b) generated 222 vari-
ants from 121,556 variants associated with 219 genes. At
first, 222 variants were recognized as missense mutation
(Additional file 1: Table S4). MNV-associated frameshift
insertion mutation filtering analysis revealed that except
MEGF6 gene from GBNGS008, all other genes, viz.,
SLC30A1, EXTL3, FOXB2, FBXL14, NOC4L, CCDC78,
MT4, IRF8, PRR14L, and TRIOBP were from GBNGS011
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(Fig. 3a). We have also observed MNV-induced non-
sense mutation in ZNF333, ANKLE2, and LOXHD1
genes (Fig. 4b) in GBNGS011. A total of 42 genes were
found to be associated with frameshift deletion mutation
(Additional file 1: Table S5) due to MNV. Among these
gene pools, GBNGS008, GBNGS001, and GBNGS002
carried a mutation in KLHL5 genes, PIF1 gene, and
DDX60 gene, respectively. The rest of the mutations (on
ATR, DNAH10, ARID4B, ADAMTS7, JMJD6, MAP3K6,
KLK12, SF3A3, B4GALT3, HSD17B3, SCG5, PFAS,
ARSD, NOS2, KCND2, CUBN, MUC2, WDCP, AHNAK2,
SLC25A29, DNAH2, TJP3, MEPCE, PKD2, TXNDC11,
GTF3A, MYO15A, PHF1, RBM4, RBM14-RBM4, ATP5J2-
PTCD1, PTCD1, IFT46, NRCAM, CHPF2, SH2B1,
METTL23, SNN, and MTIF3 genes) were in GBNGS011.

CNV detection
CNV detection filter chain (Fig. 1c) primarily filtered 85
CNV from 121,556 variants and then applying a COS-
MIC filter which ultimately nullified the CNV output.

INDEL detection
INDEL detection filter chain (Fig. 1d) resulting in 95
variants out of 121,556 associated with 95 involved

genes. At first, 95 variants were recognized as missense
mutation (Additional file 1: Table S4). INDEL-induced
frameshift insertion mutation affected 22 genes present in
GBNGS008 and GBNGS011. Among reported INDEL-
associated frameshift insertion mutation-inflicted genes,
three genes (MEGF6, EPB41, PPCS) were found in
GBNGS008 and the rest 17 genes (SLC30A1, SH3TC1,
COL21A1, RELN, NUDT18, EXTL3, FOXB2, FBXL14,
NOC4L, DYNC1H1, BAG5, CCDC78, XPO6, MT4, IRF8,
FBN3, CILP2) were found in GBNGS011. There was only
one GBNGS011-exclusive INDEL-induced nonsense mu-
tation in ZNF333 gene (Fig. 5b). A total of 42 genes were
detected with INDEL-associated frameshift deletion muta-
tions (Additional file 1: Table S5). All INDEL-incurring
frameshift deletion mutations were found in GBNGS011,
except DDX60 in GBNGS001, PIF1 in GBNGS002, and
KLHL5 in GBNGS008.

Neoplasm-exclusive mutations
The combination of results from different filter chains re-
vealed neoplasm-exclusive SNV-induced mutation in 31
genes, MNV-induced mutation in 20 genes, and INDEL-
induced mutation in five genes (Additional file 1: Table S1),
respectively. Among these candidates, as per “GeneCards”

a b

dc

Fig. 1 Filter chains applied for variant detection. Filter chains normalize common population mutations, known ethnic background, minor allele,
and nonfunctional mutations. a SNP detection filter chain, b MNV detection filter chain, c CNV detection filter chain, and d INDEL detection
filter chain
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entry 17 genes, viz., KRT6A, MUC16, PRKCG, TRIOBP,
RELN, NUDT18, MAP1S, SNX27, AUP1, MIR5004, SVEP1,
SORD,VPS33B, MRPL38, AP5B1, and MYH6 showed liver-
specific expression (Fig. 6).

Discussion
In this study, we performed NGS-based exome se-
quencing of a liver neoplasm patient against age-
matched three asymptomatic subjects where hg19 was
used as a reference genome for alignment. This ex-
periment resulted in a total of 121,556 variant calls.
We figure out a panel of variants for liver cancer
through customized filter chain over 121,556 variants.
These variants were so far unrecognized by major
genomics data repositories.
This study cohort includes one liver neoplasm patient

as a primary target. The objective of this study was figur-
ing out the extent of personalized cancer associate

variant profile. A group of three subjects was selected as
a negative control for eliminating the regional
population-associated variants. We applied knowledge-
based stringent filter chains for overcoming the short-
comings of the small negative control group (n = 3).
Tumor/cancer-associated somatic variant profile has
prognostic value over tumor regression besides its rudi-
mentary diagnostic use [14]. It is not surprising that the
full repertoire of cancer-associated variants is still evolv-
ing [21]. Interestingly, quite a good portion of this diver-
sity resulted from the ethnic and geographic background
[23]. Thus, a comparison of normal to neoplastic DNA
sequence theoretically allows more accurate identifica-
tion of somatic changes [8].
A seven-stage filter chain was applied on the entire

variant pool. The ultimate target of setting such filtering
algorithm was to ensure knowledge-driven variant
prioritization exclusive to neoplasm. Two distinct princi-
ples were considered for setting the entire filter layer: (1)
elimination of population-based common variants and
(2) inclusion of functionally significant and unreported
cancer variants. Irrespective to the objective, a variant
call above 99% confidence was subjected to the subse-
quent data-prioritization workflow.
The dbSNP, UCSC common SNPs, DGV, and

5000Exomes database were allocated within filter chains
for achieving the first goal. The dbSNP and UCSC

GBNGS002

GBNGS001

GBNGS011

GBNGS008

Fig. 2 Whole-exome sequencing (WES) landscape constructed with Ion Reporter™ Genomic Viewer (IRGV). Here, “x”-axis indicate chromosome
number and “y”-axis indicates confidence filter for CNV

Table 1 Analysis of coverage and variant detection

Sample (accession no.) On target (%) Mean depth Variants

GBNGS001 (SRR8293457) 92.63 170.7 35,635

GBNGS002 (SRR8293456) 96.85 233.4 39,339

GBNGS008 (SRR8293455) 92.46 30.79 23,197

GBNGS011 (SRR8293454) 90.88 42.79 25,842
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common SNP annotation expunged neutral and known
phenotypes corresponding polymorphisms from the
variant pool. The DGV hits identified structural vari-
ation in the human genome present in healthy samples
whereas 5000Exomes Global MAF is the database of glo-
bal minor allele frequencies. The cancer risk and treat-
ment outcomes often show the population-based
variation that largely attributed to genetic and environ-
mental variation [11]. We have applied “ExAC SAAF” as
population-based variant removal filter to overcome such
effect. Indeed, the evolutionary forces govern the muta-
tional frequencies across populations to shape the genetic
diversity and ultimately contribute to ethnic and geo-
graphic differences [24]. Therefore, sorting out genetic di-
versity common to the global population as well as a
particular ethnic group was included in the filter chain as
exclusive variant prioritization strategies.
After exclusion of possible variants, we took func-

tional relevance as a second dimension tool for iden-
tification of non-relevant variant exclusion. The
variants were selected through SIFT, PolyPhen, and
Grantham score cutoff, which have been considered
associated with worse functional impact on a protein
and also damage evolutionary distance. Specific filter
chains were applied thereafter for gathering COSMIC
unmatched variant to call cancer exclusion variants. A
typical WES-data generates large numbers of genetic

variants [16]. Prioritization of the variants in the con-
text of disease study incorporates the urge of sorting
functional relevant variants [1]. Thus, fixing these two
filets in the filter chain enabled searching disease-
relevant variants.
A pool of 17 genes was selected from liver-specific ex-

pression profile. Identified genes are quite diversified in
their biological significance and disease association [20].
KRT6A encodes for keratin 6A and involved in wound
healing; defects in this gene primarily leads to hyper-
trophic nail dystrophy (pachyonychia congenita 3 and
pachyonychia congenita 1). Cell surface-associated
Mucin 16 (MUC16) is used as a marker for different can-
cers and associated with an ovarian cyst. Protein Kinase C
Gamma (PRKCG) is a member of serine- and threonine-
specific protein kinase family that phosphorylates p53/
TP53 and promotes p53/TP53-dependent apoptosis in re-
sponse to DNA damage. TRIOBP encodes for TRIO and
F-actin-binding protein. By interacting with the trio,
TRIOBP controls actin cytoskeleton organization, cell mo-
tility, and cell growth. Reelin, encoded by RELN, regulates
cell-cell interactions and modulates cell adhesion. Nudix
hydrolase 18 (NUDT) is linked to purine metabolism.
Microtubule-associated protein (MAP1S) mediates mito-
chondrial aggregation and consequential apoptosis.
Sorting Nexin Family Member 27 (SNX27) is involved in
recycling of internalized transmembrane proteins. AUP1
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Fig. 3 Heat map of SNP variant impacts. a SNP with frameshift Insertion (SIFT score 0.00–1). b SNP with frameshift deletion (SIFT score 0.00–1).
Worse functional impact SIFT score ranges from 0.00 represents a deleterious effect in genes to 1 represents tolerated effect in genes. SIFT score
ranges from 0.00 (deleterious) to 1.0 (tolerated). Variants with scores closer to 0.00 are more confidently predicted to be deleterious. Variants with
scores 0.05 to 1 are predicted to be tolerated (benign). Variants with scores very close to 1 are more confidently predicted to be tolerated.
Horizontal axis represents the gene order distance
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encodes for lipid droplet regulating VLDL assembly factor,
a protein that plays an essential role in the quality control
of misfolded proteins in the endoplasmic reticulum and
lipid droplet accumulation. MIR5004 is an RNA gene that
codes for MicroRNA 5004 which belongs to the miRNA
class. This miRNA is affiliated with RET proto-oncogene
signaling. SVEP1 encodes “EGF and Pentraxin Domain
Containing 1”. SVEP1 is associated with calcium ion bind-
ing and chromatin binding. Diseases related with sorbitol
dehydrogenase (SORD) include cataract and microvascu-
lar complications of diabetes 5. MRPL38 encodes for
Mitochondrial Ribosomal Protein L38 and related to or-
ganelle biogenesis and maintenance and mitochondrial
translation. The protein encoded by AP5B1 (adaptor-
related protein complex 5 subunit beta 1) is involved with
hereditary spastic paraplegia. Myosin heavy chain 6
(MYH6) is associated with ERK signaling and cytoskeleton
remodeling. Defect in myosin heavy chain 6 causes atrial
septal defect 3 and cardiomyopathy.
Among these 17 genes, four genes showed the highest

level of expression: MRPL38, SORD, SVEP1, and KRT6A.
Though direct experimental data was unavailable about
the association of these genes with liver neoplasm, data
mining showed indirect association of the target gene
pools with cancerous events. For example, mitochondrial
ribosomal protein L38 (MRPL38) has been reported to
be overexpressed (~ 4 times) in precursor T cell lympho-
blastic leukemia (pre-T LBL) [10]. SORD expression and
activity was upregulation in colorectal adenomas whereas

SORD knockdown significantly blocked epithelial-to-
mesenchymal transition (EMT) [17, 22]. The cell adhesion
molecule SVEP1 can induce EMT and associated with
disseminating cancer cells to secondary organ [2]. An up-
regulation of KRT6A gene product has been reported in
non-melanoma skin cancer [15]. It is noteworthy to men-
tion that the cancer patient was graded to be metastatic
whereas two of the candidate genes (SORD and SVEP1)
were able to induce EMT.
A number of WES data analysis workflow is available to

help extract useful information about disease-associated
variants. Some of the pipelines emphasizes the variant an-
notation according to the variant effect that is conserved
to our present proposed workflow. Unlike most of the
data analysis platform, a number of public databases were
incorporated in the proposed filter chain to figure out the
unreported variants. The workflow designed and executed
in this study enabled us to detect a panel of variants unre-
ported in cancer database, which needs a functional study
for further characterization.
Whole-exome NGS enables adopting effective and

safer therapeutic decision targeting specific genetic alter-
ations [19]. As a matter of fact, the data analysis pipeline
used in this study was not free from the generic draw-
back for WES data analysis. The data analysis used a
number of public databases whereas public databases
containing variant information are not complete and
error-free [1]. Though changing the filter sequence does
not influence the ultimate filtering outcome, the
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Fig. 4 Heat map of MNV variant impacts. a MNV with frameshift insertion (SIFT score 0.00–1). b SNP with nonsense mutation (SIFT score 0.00–1).
Worse functional impact SIFT score ranges from 0.00 represents a deleterious effect in genes to 1 represents tolerated effect in genes. Variants
with scores closer to 0.00 are more confidently predicted to be deleterious. Variants with scores 0.05 to 1 are predicted to be tolerated (benign).
Variants with scores very close to 1 are more confidently predicted to be tolerated. Horizontal axis represents gene order distance
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sequence of the filter in the filter series is not warranted.
Additionally, the filter chain possesses variant-specific
database involvement that can be only explained by
scientific justification with experimental proof.
“Inter-individual variability and tumor heterogeneity”

is a well-known phenomenon in cancer genomics re-
search [5]. Scientists have been focusing on “sera bio-
markers” or “cancer hotspot-dependent” diagnostics for
cancer detection. These types of diagnostic techniques
are suitable for later/developed stage of disease onset,
and efficacy of existing treatments for cancer are not
very efficient. Therefore, a predictive diagnostics meth-
odology would be very rewarding for the prognosis of
cancer in a subject before the onset of the disease. Un-
like cancerous tissue sample (either solid tumor or meta-
static tissue) where genetic variability is observed [5], we
relied on germline DNA for identification of causative
markers for liver cancer.

Our subjects were identified and confirmed using
available medical diagnostic protocols. We used these
subjects with the confirmatory status of either diseased
or healthy condition, collected their germline DNA from
peripheral blood mononuclear cell (PBMC), and used a
reversed engineering approach to reveal causative rele-
vant functional mutations for this disease. The result of
the method will provide an opportunity for foretelling
the emergence of the disease at later time of life of a
subject, so that a time-dependent confirmatory test pro-
gram can be assigned. This approach will ensure the
earliest confirmation of cancer onset and will provide
the best efficacy for the treatment. If appropriate, life-
style planning regimen can be adopted to avert or delay
disease onset.
In summary, this research reiterates/votes for the im-

portance of personalized cancer genomics as a tool for
precision cancer management. The most important
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Fig. 5 Heat map of INDEL variant impacts. a INDEL with frameshift insertion (SIFT score 0.00–1). b INDEL with nonsense mutation (SIFT score
0.00–1). Worse functional impact SIFT score ranges from 0.00 represents a deleterious effect in genes to 1 represents tolerated effect in genes.
Variants with scores closer to 0.00 are more confidently predicted to be deleterious. Variants with scores 0.05 to 1 are predicted to be tolerated
(benign). Variants with scores very close to 1 are more confidently predicted to be tolerated. Horizontal axis represents the gene order distance.
c IRGV visualization for locus chr19:14829263 of GBNGS011
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outcome of this study is a panel of previously unad-
dressed cancer-associated variants applying a novel data
prioritizing rationale. The scientific community working
with NGS platform can take the opportunity from this
advantageous data prioritizing strategy for searching
subject-exclusive mutation.

Additional file

Additional file 1: Table S1. SNV-induced neoplasm-exclusive mutations.
Table S2. INDEL-induced neoplasm-exclusive mutations. Table S3. SNP-
induced neoplasm-exclusive mutations. Table S4. SIFT score of total SNP
sorted by SNP detection filter chain. Table S5. SIFT score of total MNV
sorted by MNV detection filter chain. Table S6. Splice variant
impact of 42 genes incurred with frameshift deletion mutation due to
MNV. Table S7. SIFT score of total INDEL sorted by INDEL detection filter
chain. (DOCX 110 kb)
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Fig. 6 Tissue-specific expression profile of 17 neoplasm-exclusive genes in the liver. The data was congregated from “GeneCard”; x-axis indicates
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