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Epigenetic inheritance and the missing
heritability
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Abstract

Genome-wide association studies of complex physiological traits and diseases consistently found that associated
genetic factors, such as allelic polymorphisms or DNA mutations, only explained a minority of the expected
heritable fraction. This discrepancy is known as “missing heritability”, and its underlying factors and molecular
mechanisms are not established. Epigenetic programs may account for a significant fraction of the “missing
heritability.” Epigenetic modifications, such as DNA methylation and chromatin assembly states, reflect the
high plasticity of the genome and contribute to stably alter gene expression without modifying genomic
DNA sequences. Consistent components of complex traits, such as those linked to human stature/height,
fertility, and food metabolism or to hereditary defects, have been shown to respond to environmental or
nutritional condition and to be epigenetically inherited. The knowledge acquired from epigenetic genome
reprogramming during development, stem cell differentiation/de-differentiation, and model organisms is today
shedding light on the mechanisms of (a) mitotic inheritance of epigenetic traits from cell to cell, (b) meiotic epigenetic
inheritance from generation to generation, and (c) true transgenerational inheritance. Such mechanisms have been
shown to include incomplete erasure of DNA methylation, parental effects, transmission of distinct RNA types (mRNA,
non-coding RNA, miRNA, siRNA, piRNA), and persistence of subsets of histone marks.
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Introduction
Patterns of heritable traits within the human population
determine body phenotypes, through a deeply inter-
twined interaction between genetic components and the
environment. Specific genetic/DNA sequence variants
are typically inherited transgenerationally as Mendelian
alleles and are supposed to carry with them all the
genetic information that acts as inheritable determinant
[1]. Genome-wide association studies (GWAS) have re-
cently demonstrated that multiple genomic loci are
linked to complex traits, such as body development and
height ([2, 3] and references therein). Several common
disorders, such as type 2 diabetes, Crohn’s disease, and
rheumatoid arthritis, were also shown to possess signifi-
cant genetic components, as provided by multiple poly-
morphic loci [4–6]. These findings led to postulate
models whereby numerous genetic factors provide small,
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independent contributions to complex phenotypes, such
effects being essentially additive [5]. However, simple
models of additive effects of ever-smaller components
have remained as yet unproven [4–7]. On the other
hand, identified genetic factors associated with complex
diseases have been found to confer far less disease risk
than expected from empirical estimates of heritability
and typically explain only a minority of the heritable
traits. As a consequence, “pure” genetic models are
prone to underestimate the interactions among loci [5],
globally designated as epistasis. Epistatic components
need to be integrated by estimates of the contribution of
non-genetic factors, globally designated as the “missing
heritability” [7, 8]. Hence, the issue remained open,
whereby identified genetic factors associated with com-
plex diseases conferred far less disease risk than ex-
pected from empirical estimates of heritability. As an
example, Crohn’s disease is a recessive disorder which
shows about 80 % heritability. However, the genetic
components identified to date only explain 20 % of this
heritable fraction [9]. An additional example is that of
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Table 1 Molecular mechanisms of epigenetic transgenerational
heredity

Steps Molecular mechanisms

DNA sequence-invariant
heritable traits

DNA methylation/histone
post-translational modifications

DNA methylation
maintenance across
cell division cycles

Hemimethylated DNA-guided,
DNMT1-mediated CpG methylation
pattern maintenance

DNA demethylation Passive DNA demethylation

5-mC to 5-hmC conversion

Active DNA demethylation

Glycosylase-mediated base
removal and base excision
repair mechanisms

Histone code Condensed chromatin

HAT inactivation

HMT activation

Relaxed chromatin

HAT activation

HMT inactivation

Epigenetic modulation
of mother-to-fetus
transmission

Maternal nutrition status

Maternal exposure to environmental
toxins and food contaminants

BPA

Phthalates

Dioxins

Tobacco smoke

Cell differentiation
and body development

Epigenetic signature reprogramming

Erasure/reprogramming in
the zygote (mitotic transmission)

Erasure/reprogramming in PGCs
(meiotic transmission)

Gamete-carried transmission

DNA methylation profiles in
sperm and oocytes

H3K4 and H3K27 histone
methylation in sperm cells

RNA molecules carried by sperm
cells (mRNA, non-coding RNA, miRNA,
siRNA, piRNA)

Stem cell
reprogramming

Epigenetic signature of induced
pluripotency

Decreased TETs/decreased
hydroxymethylation at ES gene promoters

Reprogramming-resistant regions
enriched for H3K9me3
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human population stature [2, 3]. A significant fraction of
height-determining genes has been identified by GWAS
analysis [10–12]. Most of these genes were demonstrated
to be largely overlapping in Caucasian and non-Caucasian
populations [13, 14], consistent with an actual identifica-
tion of the most relevant height-associated determinants.
However, the identified polymorphisms were found to
account only for a minor fraction of stature heritability.
Although dedicated procedures for SNP-associated
analyses have significantly increased their combined pre-
dictive power [15], a large amount of heritable height-
associated factors remains undetectable by conventional
GWAS, suggesting that such non-DNA sequence-linked
information may be associated to epigenetic heredity.

Epigenetic heritability
Epigenetic modifications, such as DNA methylation,
can contribute to alter gene expression in heritable
manner without affecting the underlying genomic se-
quences. Such epigenetic contribution would be sys-
tematically missed by conventional DNA sequence-
based analyses. A model of epigenetic inheritance, as
additional to Mendelian heredity of polymorphic DNA
sequences, would thus efficiently explain the lack of
detection in conventional GWAS as “missing heritabil-
ity”. It would also help explaining the cases of rapid,
heritable adaptations to changing environmental con-
ditions, such as for human stature [2, 3], and the oc-
currence of hereditary epistatic effects. Support for
this model is provided by the evidence that phenotypic
plasticity can emerge over rapid time scales, at rates
that are orders of magnitude higher than the processes
of natural selection [16, 17].
However, to be tenable, such a model of epigenetic

inheritance poses rigorous requirements: (a) mitotic
inheritance of epigenetic traits across cell generations
(see discussion on DNA methylation maintenance
through mitotic cycles); (b) epigenetic inheritance
across successive meiotic divisions (see the paragraphs
describing gamete generation and the development of
primordial germ cells (PGC); and (c) true transgenera-
tional inheritance, which requires proof of heritability
beyond the first generation that has not been unex-
posed to the causal epigenetic modifiers (see the para-
graphs describing transgenerational inheritance of
DNA methylation and of chromatin states).
Evidence is now accumulating that provides insight in

the mechanisms that underlie epigenetic transmission.
These include the following: (1) DNA methylation, (2)
histone modifications and chromatin remodeling, (3)
inheritance of specific mRNAs, long non-coding RNAs
(ncRNAs) and siRNAs/miRNAs, (4) feedback loops
through which mRNA or protein products of a gene can
stimulate its own transcription and enable “heritable
states” of gene expression, and (5) the activity of chaper-
ones such as Hsp90 that plays an important role in chro-
matin remodeling and can mediate epigenetic
transgenerational variation. The most relevant mecha-
nisms are described in Table 1.
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DNA methylation
Approximately 60–80 % of the 28 million CpG dinucleo-
tides in the human genome are methylated [18, 19]. DNA
methyltransferases (DNMT) recognize hemimethylated
sites (maintenance methylation) or specific unmethylated
sequences (de novo methylation) (Fig. 1). Maintenance
DNA methylation occurs during DNA replication and is
predominantly dependent on DNMT1, whereas de novo
DNA methylation is carried out by DNMT3A, DNMT3B
[20], and DNMT3L [21, 22]. Both DNMT3A and
DNMT3B localize to methylated, CpG-dense regions and
preferentially bind to the bodies of transcribed genes but
are excluded from regions of active promoters and en-
hancers [23].
DNA methylation at CpG islands modulates gene tran-

scription and is involved in alternative promoter usage
and regulation of short and long ncRNA processing and
of enhancer activity [24–26]. DNA methylation also af-
fects determinants of higher-order DNA structure, e.g. in
Fig. 1 DNA methylation/demethylation mechanics. a Methyl groups (gree
methyltransferases (DNMT) catalyze this process. In the “active DNA dem
which is further processed to 5-fC and 5-caC. These residues are targets f
hTDG, which is responsible also for the repair of U:G and T:G mismatches
deamination, which is catalyzed by AID/APOBEC enzymes. This gives rise
repaired by the TDG/BER pathway. b De novo and maintenance methylation
DNA as templates for DNMT enzymes. In the absence of maintenance methy
replication can determine the appearance of unmethylated DNA. This proces
X chromosome inactivation, imprinting control regions
(ICR) [27], heterochromatin folding and maintenance of
genomic stability [28, 29].

DNA demethylation
The dynamic on/off switching of gene expression re-
quires a balanced action of DNA methylation versus
DNA demethylation. Both active and passive DNA de-
methylation have indeed been shown to occur.
Active DNA demethylation, i.e. replication-independent

enzymatic removal of 5-methyl cytosine (5-mC), occurs
through the processing of 5-mC to 5-hydroxymethyl
cytosine (5-hmC) catalyzed by the ten-eleven transloca-
tion (TET) dioxygenases [30–32]. 5-hmC is then con-
verted to 5-formylcytosine (5-fC) and 5-carboxylcytosine
(5-caC) [30]. The thymine DNA glycosylase (TDG) effi-
ciently excises both 5-fC and 5-caC [33, 34]. This leaves
an abasic site that is subsequently processed through
the base excision repair (BER) pathway [33] (Fig. 1).
n circles) are transferred to C in order to generate 5-mC. DNA
ethylation” the TET DNA demethylase converts 5-mC to 5-hmC,
or the DNA repair pathway, whose most critical component is the
. DNA demethylation can also occur through spontaneous cytosine
to 5-hmU and T bases. Transient U:G and T:G mismatches can be
occur using unmethylated DNA and hemimethylated/post-replication
lation, progressive dilution of 5-mC or its oxidized derivatives at DNA
s is known as “passive DNA demethylation”
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Passive DNA demethylation can also proceed through
the processing of 5-mC to 5-hmC [30–32] (Fig. 1). Nei-
ther maintenance methylase DNMT1 nor de novo
methylases DNMT3A and DNMT3B recognize 5-hmC,
and no mechanisms for 5-hmC maintenance have been
as yet identified [32]. Hence, 5-hmC is inevitably lost at
each replication cycle [35]. This appears to have a func-
tional impact on PGC, which progressively lose 5-mC
between embryonic day (E) E9.5 and E10.5, until 5-mC
becomes undetectable by E11.5 [31]. This progressive
loss of 5-mC occurs concurrently with an enrichment
of 5-hmC, suggesting a genome-scale conversion of 5-
mC to 5-hmC for the epigenomic reprogramming of
these cells [31].
An additional path of passive DNA demethylation

proceeds through destabilization of DNMT1, which is
then followed by “loss by dilution” of 5-mC through
successive replication cycles. Overexpression of SET7
leads to decreased DNMT1 levels via induction of
proteasome-mediated degradation [36]. SET7 directly
interacts with DNMT1 and specifically monomethy-
lates Lys-142 of DNMT1 [36]. On the opposite side,
AKT1 phosphorylates DNMT1 at Ser143 and stabilizes
the protein [37]. Phosphorylation of DNMT1 at Ser143
interferes with monomethylation of the nearby Lys142
[37], making these two modifications mutually exclu-
sive. Rb and ATM also affect the stability of DNMT1
[38]. The inactivation of pRB promotes a Tip60 (acetyl-
transferase)-dependent ATM activation. This allows acti-
vated ATM to physically bind to DNMT1, forming a
complex with Tip60 and the E3 ligase ubiquitin-like
containing PHD and RING finger domain protein 1
(Uhrf1) and accelerates the DNMT1 ubiquitination driven
by Tip60-dependent acetylation [38, 39]. In contrast, his-
tone deacetylase 1 (HDAC1) and the deubiquitinase
HAUSP (herpes virus-associated ubiquitin-specific prote-
ase) stabilize DNMT1 [39].
Of note, 5-mC frequently undergoes deamination

(Fig. 1). Hence, a DNA methylation-dependent modifica-
tion can end up in a permanently fixed DNA sequence
change. Physiological enzymes are involved, raising the
intriguing issue of “guided” mutagenesis of Mendelian
traits. The AID and APOBEC enzyme families catalyze
the cytosine processing which leads to cytosine deamin-
ation. This occurs predominantly on 5-hmC and 5-mC
residues, giving rise to formation of 5-hydromethyluracil
(5-hmU) and thymine (T) bases, respectively [40] (Fig. 1).
Consequently, transient U:G and T:G mismatches can be
generated, though most of these mutations can be effi-
ciently repaired by the TDG/BER pathway [40]. Notably,
dysregulated APOBEC3B-catalyzed deamination can
provide a chronic source of DNA damage, with conse-
quent TP53 inactivation; this was shown to lead to de-
velopment of breast cancer [41].
Reversible changes of epigenetic patterns
Epigenetic reprogramming through the mechanisms
described above has been demonstrated in mammals
over distinct, key developmental stages:

Erasure of DNA methylation patterns in the zygote
Erasure of DNA methylation patterns of the gametes
(oocyte and sperm [42]) in the zygote was shown to
occur immediately after fertilization. This process has
been traditionally considered as a mechanism for reset-
ting epigenetic marks between generations, to ensure
the totipotency of the zygote after fertilization. Recent
evidence from genome-scale DNA methylation analysis
of human development confirmed a transient, highly
dynamic state of global hypomethylation that affects
most CpGs [43]. However, neither histone codes nor
DNA methylation patterns are completely erased and
are carried over through zygote divisions and generation
of PGCs, thus, providing some of the means for transge-
nerational inheritance.

Erasure and reconstitution of DNA methylation
patterns in PGCs Epigenetic marks have been shown to
undergo reprogramming across meiotic divisions of
PGCs during gametogenesis. However, genome-wide
DNA methylation profiling in PGCs revealed that, al-
though the bulk of the genome becomes demethylated
[44, 45], several loci escape this epigenetic erasure [46].
This leads to preserving the methylation status of more
than 40 % of all 5-mC [16]. Substantial numbers of
genes have been found to retain parental DNA methyla-
tion patterns in sperm and oocytes as a result of epigen-
etic transmission from PGCs [47]. It was recently
reported that 5-hmC and 5-fC do exist in both maternal
and paternal genomes and that 5-mC or its oxidized deriv-
atives can be converted to unmodified cytosines through
active demethylation rather than by passive dilution
during embryonic development [48].

Erasure and reconstitution of epigenetic signatures
during early body development Reprogramming/re-es-
tablishment of epigenetic signatures was also shown to
be necessary for proper development of a mature organ-
ism [49]. It has been shown that during early mitotic
divisions of a mammalian embryo, daughter cells derived
from the zygote have a globally hypomethylated genome
[50] and a transcriptionally active chromatin due to his-
tone H4 acetylation [51]. Therefore, they are an epige-
netically homogeneous cell population [52, 53]. At the
blastocyst stage, peripheral cells (that will become the
extraembryonic tissue) have low levels of DNA methyla-
tion and are epigenetically different from cells of the inner
cell mass (ICM, which will form the embryo) that have
already undergone re-establishment of some methylation
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patterns [52, 53]. A major epigenetic switch then occurs
during implantation at the transition from the blastocyst
to the post-implantation epiblast [47].
Erasure and reconstitution of DNA methylation
patterns in adult stem cells Somatic cell nuclear trans-
fer has been utilized as one of the procedures to obtain
reprogramming of somatic cells toward a totipotent
state, with the generation of induced pluripotent stem
cells [54, 55]. This, and the possibility to isolate embry-
onic stem (ES) cells from the blastocyst ICM, provided
unprecedented opportunities to investigate the me-
chanics of erasure and re-establishment of epigenetic
patterns and to define the molecular components in-
volved in these processes. Declining levels of TETs
during differentiation were shown to be associated with
decreased hydroxymethylation levels at the promoters
of ES cell-specific genes [32]. Thus, the balance be-
tween hydroxymethylation and methylation in the
genome appears to be linked with the balance between
pluripotency and lineage commitment [32]. Moreover,
reprogramming-resistant regions strongly enriched for
H3K9me3 were demonstrated to be critical barriers for
efficient reprogramming [56]. Hence, modulation of epi-
genetic inheritance appears to play a key role in stem cell
differentiation/de-differentiation.
Gamete-carried epigenetic traits
Nucleosomes are largely replaced by protamines in
mature human sperm, thus erasing most chromatin
patterns. However, not all histones in sperm are replaced
by protamines, and epigenetic marks such as H3K4me2
and H3K27me3 have been detected in sperm [57, 58].
These retained nucleosomes are significantly enriched at
loci of developmental importance, including imprinted
gene clusters, microRNA clusters, HOX gene clusters,
and the promoters of stand-alone developmental tran-
scription and signalling factors [57]. H3K4me2 was
found to be enriched at promoters of genes coding for
developmental transcription factors, whereas H3K4me3
was found predominantly localized at promoters of
genes important for spermatogenesis and rearrangement
of nuclear architecture and presumably active during the
gametogenesis [57].
Our findings indicated that sperm methylation pattern

of the CD5/Leu1 and CD8/Leu2 genes is incompletely
erased. This had a heavy impact on gene function and
tightly prevented the expression of the CD5 gene,
though not of CD8 [59]. Genes encoding olfactory re-
ceptors, in cases where mice associated specific odors
with fearful experience, were also found differentially
methylated in sperm, and this methylation pattern was
transmitted to F1 and F2 generations [60].
RNA molecules packaged in sperm represent an
additional contributor to transgenerational transmission
of epigenetic traits and have been shown to profoundly
affect offspring phenotypes [61, 62]. Injecting sperm
RNA from traumatized males into fertilized wild type
oocytes reproduced the altered behavior in the offspring.
Moreover, miRNA-mediated signals can change DNA
methylation patterns in the F2 sperm, and this signature
can be maintained and replicated through subsequent
mitotic and meiotic cycles [63].
Notably, RNA expressed in somatic cells can be

transferred to gametes via extracellular vesicles [64].
Subcutaneous injection of human melanoma cells sta-
bly expressing enhanced green fluorescent protein
(EGFP) led to the transfer of EGFP mRNA in murine
sperm heads, likely through exosomes-mediated trans-
port [65]. Furthermore, in C. elegans, it has recently
been shown that neurons can transmit double-stranded
RNA (dsRNA) to the germ cells to initiate transgenera-
tional silencing of their target genes [16, 66]. Thus,
extracellular vesicles have been revealed as an import-
ant route for transgenerational inheritance of epigenetic
signatures.

Transgenerational inheritance of DNA methylation
patterns
Transgenerational inheritance of epigenetic patterns
[16, 66] is key to a model of “epigenetic missing
heredity”. In this regard, it should be noted that purely
parental effects, such as the impact of direct in utero
exposure to particular nutritional, hormonal, or stress/
toxin environments, do not represent true transgenera-
tional heredity [67]. In addition, F1 gametes are poten-
tially exposed in utero to maternal experiences, and
this may subsequently affect F2 offsprings. Hence, proof
of transgenerational transmission of ancestral memory
requires demonstrating the passing of the epigenetic
trait through unexposed F2 gametes to F3 offsprings
[16].
Physiological traits, such as body stature, were shown

to rapidly and progressively adaptate to changing envi-
ronments, e.g., nutritional status [2]. The epigenetic in-
activation of height-associated genes (e.g., BMP2,
BMP6, CABLES1, DLEU7, GNAS, GNASAS, HHIP,
MOS, PLAGL1) was shown to be functionally equiva-
lent to Mendelian physical loss of the corresponding
alleles. Moreover, distinct epigenetic defects, such as in
Beckwith–Wiedemann, Prader–Willi, Angelman’s, Rett,
and Silver–Russell syndromes ([2] and references
therein), were correspondingly shown to cause heredi-
tary growth anomalies, indicating that body stature is
under a heritable epigenetic control.
Correspondingly, the appearance of several pathological

conditions with heritable components, such as diabetes
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and Crohn’s disease, is affected by interaction with dy-
namic environmental factors, such as host pathogens or
nutritional status [68]. Exposure of parents to distinct diet
regimens, stress, drugs, or endocrine/metabolic dysfunc-
tions, was shown to additionally affect the transgenera-
tional transmission of altered DNA methylation patterns
[69–75]. As an example, F2 generation offspring (i.e., the
grandchildren) of alcohol-abusing women have a higher
Fig. 2 Histone modifications and DNA cooperate in re-shaping chromatin
methylation occurs on unmethylated DNA. It is catalyzed by the DNMT3, w
through physical interaction with unmethylated H3K4. a (right) Maintenanc
by the DNMT1. Uhrf1 and proliferating cell nuclear antigen (PCNA) associat
activity on hemimethylated DNA. The Uhrf1 TTD domain interacts with H3K
patterns throughout mitosis. b (top) HDAC and the transcription factor com
deacetylation. HMT-driven methylation of the histone tails causes tight wra
expression. b (bottom) The accumulation of HAT-driven histone acetylation
HAT-sensitive promoters; this leads to increased transcription and gene exp
dependent mechanisms of regulation of gene activity (top). Hsp90 has a
demethylases H3K9 (middle). Non-coding RNAs alter the histone code thr
between BORDERLINE ncRNAs and H3K9me for binding to the HP1 prote
boundary sites and counteracts the spreading of heterochromatin into ne
HAT histone acetyltranferase, HDAC histone deacetylase, HMT histone met
tendency to show fetal alcohol syndrome than the F2 pro-
geny of control women [76, 77].
Epigenetic modifications were also shown to be caused

by exposure to environmental toxins, including metals
(cadmium, arsenic, nickel, chromium, and methylmer-
cury), solvents (trichloroethylene), air pollutants (black
carbon, benzene), food-chain contaminants (dioxins), and
tobacco smoke (nicotine, benzo(a)pyrene) [78, 79]. In
organization and regulating gene expression. a (left) De novo DNA
hose subunits can be positioned in proximity of their target sites
e DNA methylation occurs during the DNA replication and is catalyzed
es to DNMT1 and recruit it to the replication fork, concentrating its
9me. This binding allows a faithful propagation of DNA methylation
plex (TFC) can be recruited on sensitive promoters, leading to histone
pping of DNA around nucleosome cores and inhibition of gene
determines DNA relaxation around the nucleosomes surrounding
ression. c Methylation of H3K9 plays a central role in non-DNA-
strong effect on the histone code via stabilization of KDM4B, which
ough siRNA-dependent mechanisms that lead to direct competition
ins, such as Swi6. This occurs at heterochromatin/euchromatin
ighboring euchromatin (bottom). A acetyl groups, M methyl groups,
hyltransferase
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utero and neonatal exposure to low doses of Bisphenol
A and/or phthalates causes epigenetic alterations [71],
such as differential methylation at CpG islands, histone
modifications, and altered expression of ncRNAs and
miRNAs [80, 81]. DNA methylation was shown to be
affected by periconceptional maternal plasma concen-
trations of micronutrients involved in one-carbon
metabolism, such as folate, B2 vitamin, methionine, and
betaine [70]. The first evidence in mammals for a true
transgenerational transmission of exposure-determined
epigenetic traits was obtained in rats exposed to
endocrine disruptors vinclozolin or methoxychlor
during gestation. This induced in the F1 generation
an adult phenotype of decreased spermatogenic cap-
acity and of increased incidence of male infertility.
Remarkably, transgenerational transmission of these
effects through the male germ line was then observed
in F1 to F4 generations [82]. DNMT3L has been re-
ported to be necessary for maternal methylation im-
printing [22]. DNMT3L is enzymatically inactive but
acts as a stimulatory factor for de novo methylation
Table 2 Epigenetic hereditary traits contribution to developmental

Non-cancerous syndromes Phenotypes/clinical features

ATR-X Upswept frontal hair line; hypertelorism; epican
small triangular upturned nose; tented upper li
hypotonic facies

Fragile X Mild to severe intellectual disabilities; elongated
ears; macroorchidism; stereotypic movements (
anxiety

ICF Hypertelorism; low-set ears; epicanthal folds; m

Angelman Severe intellectual and developmental disabilit
seizures; jerky movements (e.g., hand-flapping)
smiling; a happy behavior

Prader–Willi Low muscle tone; short stature; incomplete se
cognitive disabilities; chronic feeling of hunge
eating and life-threatening obesity

Beckwith–Wiedemann Macroglossia; macrosomia; midline abdominal
ear pits; neonatal hypoglycemia

Rett Small hands and feet; decelerated rate of head
stereotyped hand movements (e.g., wringing a
hands into the mouth); gastrointestinal disorde
scoliosis; growth failure; constipation

Rubinstein–Taybi Short stature; moderate to severe learning diffi
first toes; increased risk of developing benign a
leukemia, and lymphoma

Coffin–Lowry Abnormal growth; cardiac defects; kyphoscolio
abnormalities

Silver–Russel Feeding problems; hypoglycemia; excessive sw
face with a small jaw and a pointed chin that t
age; curved down mouth; blue tinge to the wh
children; normal size of head circumference, di
body size; wide and late-closing fontanelle; clin
growth; precocious puberty; low muscle tone;
disease; lack of subcutaneous fat; late closing o
heart hemispheres; constipation

aPhenotype-genotype correlations were extracted from the OMIM databank (www.n
by DNMT3A [21]. DNA methylation signatures driv-
ing altered behavioral/metabolic phenotypes (from ex-
posure to maternal stress) were subsequently shown
to be transgenerationally transmitted to the offspring
[83], through miRNA delivery by sperm cells to the
oocyte [63, 83].

Transgenerational inheritance of chromatin states
Distinct types of histone post-translational modifica-
tions (PTMs) play a critical role in the nucleosome-
dependent regulation of gene transcription. The largest
body of knowledge has been gathered on histone
methylation and acetylation [84], which cooperates in
re-shaping chromatin organization. This histone code
interacts closely with DNA methylation: unmethylated
Lys-4 on H3 histone (H3K4) acts as a docking site for
DNMT3A, which is recruited on nucleosomes and
methylates associated target nucleotides [21, 22]. Re-
cent findings showed that in the absence of histone H3,
DNMT3A exists in an autoinhibitory form, in which
the ATRX–DNMT3–DNMT3L (ADD) domain binds to
diseasesa

Molecular defects

thic folds; flat nasal bridge;
p; everted lower lip;

Mutations in ATRX gene, hypomethylation
of specific repeat and satellite sequences

face; large or protruding
e.g., hand-flapping); social

Expansion and methylation of CGG repeat
in FMR1 5′UTR, promoter methylation

acroglossia DNMT3B mutations, DNA
hypomethylation

ies; sleep disturbance;
; frequent laughter or

Deregulation of one or more imprinted
genes at 15q11–13 (maternal)

xual development;
r leading to excessive

Deregulation of one or more imprinted
genes at 15q11–13 (paternal)

wall defects; ear creases or Deregulation of one or more imprinted
genes at 11p15.5 (e.g., IGF2)

growth; repetitive
nd/or repeatedly putting
rs; seizures; no verbal skills;

MeCP2 mutations

culties; broad thumbs and
nd malignant tumors,

Mutation in CREB-binding protein (histone
acetylation)

sis; auditory and visual Mutation in Rsk-2 (histone
phosphorylation)

eating; triangular shaped
ends to lessen slightly with
ites of the eyes in younger
sproportionate to a small
odactyly; body asymmetric
gastroesophageal reflux
f the opening between the

Loss of methylation on the ICR1 paternal
allele at the H19/IGF2 locus (11p15)

cbi.nlm.nih.gov/omim)

http://www.ncbi.nlm.nih.gov/omim


Table 3 Epigenetic heredity of cancer-causing genes

Cancers

Bladder Aberrant methylation of TWIST, NID2, and RUNX3

Brain Aberrant methylation of RASSF1A and MGMT

Breast Aberrant methylation of BRCA1, Sat-2, IGF2, ATM,
RASSF1A, and other genes

Cervix Hypermethylation of CDKN2A/p16

Colon-Rectum Aberrant methylation of MHL1, SEPT9, IGF2, THBD,
C9orf50, and other genes

Esophagus Aberrant methylation of CDH1, PIGR, RIN2, and
other genes

Head/Neck Hypermethylation of CDKN2A/p16 and MGMT

Kidney Hypermethylation of TIMP-3

Leukemia Hypermethylation of p15 and chromosomal
translocations involving HATs and HMTs

Liver Aberrant methylation of multiple genes

Lung Hypermethylation of CDKN2A/p16, p73, RARb,
RASSF1A, GSTP1, MGMT, and other genes

Lymphoma/
Myeloma

Hypermethylation of DAPK

Ovary Hypermethylation of BRCA1 and hypomethylation
of SAT2

Pancreas Hypermethylation of APC and hypomethylation of
other genes

Prostate Hypermethylation of BRCA2

Rhabdomyosarcoma Hypermethylation of PAX3

Stomach Hypomethylation of Cyclin D2

Thymus Hypomethylation of POMC

Urothelial Hypomethylation of Satellite DNA

Uterus Hypermethylation of hMLH1 leading to
Microsatellite instability
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the catalytic domain and hinders its DNA-binding
capacity [85]. Once the DNMT3A–DNMT3L complex
is recruited to the nucleosome, unmethylated H3K4
binds to the ADD domain and stimulates DNMT3A to
undergo a significant conformational change from an
autoinhibitory form to an active form that can bind
DNA and exert DNA methylation activity [85]. More-
over, interaction of Dppa3 with histone H3K9me2
blocks the activity of TET3, favoring the maintenance
of DNA methylation [86]. Less common histone PTMs
have been recently identified [87, 88]. Among them,
histone H1 arginine 54 citrullination (H1R54ci) deter-
mines histone displacement from chromatin and chro-
matin decondensation. Histone PTMs were further
shown to be a critical mechanism for maintaining stem
cell pluripotency [89].
Histone PTMs and corresponding DNA methylation

patterns can affect imprinting in mammalian cells
[90, 91] through the selective recruitment of effector
proteins, known as “readers” (e.g. the bromodomain
motif that docks onto acetylated lysines [92]), which
drive chromatin packaging around nucleosomes [88, 91]
(Fig. 2).
Histone PTM-driven heritable silencing of gene ex-

pression is also affected by various chromatin remodel-
ing factors. Among them, the polycomb-group (PcG)
proteins recognize specific histone modifications such as
the H3K27me3 and participate in maintenance of re-
pressed chromatin domains [93]. PcG proteins take part
to the regulation of X-chromosome inactivation and
maintenance of stem cell identity [94]. Correspondingly,
the molecular chaperone Hsp90 was shown to alter the
histone code via interaction and stabilization of KDM4B,
which demethylates H3K9. Pharmacological inhibition of
Hsp90 results in ubiquitin-dependent proteasomal deg-
radation of KDM4B, which is accompanied by increased
methylation of H3K9 [95] (Fig. 2).
Although the mechanisms through which DNA methy-

lation states can propagate across cell divisions have been
studied in depth, it is still unclear how the histone code
(e.g., the histone PTM levels) is restored through multiple
rounds of DNA replication. During DNA replication, nu-
cleosomes are disrupted ahead of the replication machin-
ery and reassembled on the two newly synthesized DNA
strands. Histones PTMs are transmitted with high effi-
ciency at replication forks, indicating a specific recycling
of old histones. However, incorporation of new, largely
unmodified histones also occurs [96–98]. Reincorporated
parental, modified histones may serve as a blueprint to
modify neighboring new histones, limiting the possible
“dilution” of the corresponding code. Recent findings sug-
gested that most PTM levels are maintained according to
the simple paradigm that new histones acquire modifica-
tions to become identical to the old ones [99]. These and
other findings also demonstrated that H3K9me3 and
H3K27me3 are central marks for cellular memory [97, 100],
and are propagated by continuous modification of both
new and old histones through the generations. Epigen-
etic heritability of H3K9 methylation was recently inves-
tigated in fission yeast and demonstrated to involve the
activity of a single H3K9 methyltransferase, Clr4, that
directs all H3K9 methylation and heterochromatin
through a “read-write” mechanism [101, 102]. Hence,
histones act as carriers of epigenetic information, and
the kinetics of PTM restoration appears to play a critical
role in epigenetic inheritance [90, 98].

Epigenetic inheritance in model organisms
Non-DNA methylation-mediated epigenetic heritability
has been demonstrated also in non-mammalian species,
such as C. elegans [1], D. melanogaster [103], and S.
pombe [104].
C. elegans lacks DNA methylation and has evolved his-

tone methylation/demethylation pathways to regulate the
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transmission of epigenetic information through multiple
generations [1, 105]. In C. elegans, transgenerational in-
heritance has been shown to be mediated by transmission
of piRNAs. piRNAs induce a highly-stable, long-term gene
silencing, which persists at least through 20 generations.
The inheritance of the phenotype then becomes inde-
pendent of the original piRNA, as is taken over by siRNAs
[106]. These siRNAs act by modulating transcriptional
gene silencing of histone methyltransferases, with conse-
quent rearrangement of the chromatin structure [106].
Such heterochromatin-like configuration is required for
stable silencing [16].
D. melanogaster shows “paramutations,” a form of epi-

genetic inheritance whereby one allele at a gene locus is
capable of inducing a structural modification in the paired
allele, in the absence of DNA sequence changes, which is
then inherited through meiotic divisions [103]. The para-
mutated allele itself becomes paramutagenic and is cap-
able to epigenetically convert a new paramutable allele.
The paramutation has been shown to occur without any
chromosome pairing between the paramutagenic and the
paramutated loci and is mediated by maternal inheritance
of piRNAs.
In the yeast S. pombe, transgenerational inheritance

has been demonstrated to be mediated by multiple
long ncRNAs termed BORDERLINEs, which act in a
sequence-independent but locus-dependent manner
[104] (Fig. 2). BORDERLINE ncRNAs are processed
Fig. 3 Epigenetic factors influencing human development and growth. The
influencing the epigenetic programs and the maintenance of epigenetic p
maternal lifestyle during pregnancy and the personal exposure to harmful
by Dicer into short RNAs referred to as brdrRNAs
[104]. brdrRNAs then compete with H3K9me for
binding to the HP1 protein Swi6. This prevents
spreading of the HP1 protein Swi6 and histone H3K9
methylation beyond pericentromeric repeat regions
and leads to Swi6 removal from chromatin, which
counteracts the spreading of heterochromatin into
neighboring euchromatin by preventing the spreading
of H3K9me [104].
Phenotypic impact of epigenetic heredity
Epigenetic alterations can have strong impact on heredi-
tary disease phenotypes. Altered balance of epigenetic
networks has been reported to cause major pathologies,
including complex phenotype syndromes and cancer
(Tables 2 and 3).
Most hereditary diseases linked to defect of epigenetic

control present with multi-organ abnormalities and over-
all developmental defects. Several of these syndromes are
characterized by mental retardation and other central
nervous system defects. Bone and cartilage growth abnor-
malities are also frequent, consistent with a key role of
epigenetic regulation in body development [2, 3].
Notably, several epigenetic, hereditary syndromes are

also characterized by gross chromosomal anomalies. This
is consistent with the role that epigenetic mechanisms that
play in the regulation of chromosome architecture and
human life cycle is represented in the scheme. Major factors
atterns at both DNA and chromatin (histone code) levels are the
environments during post-natal growth and adult life
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maintenance of genomic stability [28, 29], as well as in
modulation of regulatory networks that involve p53.
Epigenetic changes can also have a major role in the

development of cancer [107]. Most studied examples
include patients with sporadic colorectal cancer with a
microsatellite instability phenotype that shows methyla-
tion and silencing of the gene encoding MLH1 (Table 3),
indicating that epigenetic silencing can result directly in
genomic instability in transformed cells [108, 109]. How-
ever, epigenetic regulation of key oncogenes/tumor
suppressor genes appears much more widespread than
commonly appreciated, as major targets include cyclins,
cyclin inhibitors, APC, BRCA1, retinoic acid receptors,
protease modulators, IGF2, and transcription factors as-
sociated with epithelial-mesenchymal transition, e.g.
Twist.
Conclusions
The genomes of eukaryotic organisms are adaptable to
non-genetic/environmental-driven changes through epi-
genetic modulation of gene expression across generation
cycles (Fig. 3). Epigenetic modifications include DNA
methylation and histone modifications. These have the
ability to alter gene expression patterns without affecting
the nucleotide sequence of the underlying genome, the
only exception being deamination of 5-mC to thymine.
Tight regulation of the activity of DNA methyltransfer-
ases as well as of demethylases plays a mechanistic role
in the establishment, maintenance and transient erasure
of DNA methylation patterns. Correspondingly, post-
translational modifications of histones and of regulatory
proteins were shown to play a role in hereditary transmis-
sion of chromatin composition and configuration states,
both in mammals and in model organisms. Thus, epigen-
etic programs contribute to the transgenerational inherit-
ance of complex traits, which may help accounting for the
“missing heritability” in current GWAS studies.
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