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Abstract

Knowledge of vertebra location, shape, and orientation is crucial in many medical
applications such as orthopedics or interventional procedures. Computed tomography
(CT) offers a high contrast between bone and soft tissues, but automatic vertebra
segmentation remains difficult. Hence, the wide range of shapes, aging, and
degenerative joint disease alterations as well as the variety of pathological cases
encountered in an aging population make automatic segmentation sometimes
challenging. Besides, daily practice implies a need for affordable computation time.
This paper aims to present a new automated vertebra segmentation method (using a
first bounding box for initialization) for CT 3D data which tackles these problems. This
method is based on two consecutive steps. The first one is a new coarse-to-fine
method efficiently reducing the data amount to obtain a coarse shape of the vertebra.
The second step consists in a hidden Markov chain (HMC) segmentation using a
specific volume transformation within a Bayesian framework. Our method does not
introduce any prior on the expected shape of the vertebra within the bounding box
and thus deals with the most frequent pathological cases encountered in daily practice.
We experiment this method on a set of standard lumbar, thoracic, and cervical
vertebrae and on a public dataset, on pathological cases, and in a simple integration
example. Quantitative and qualitative results show that our method is robust to
changes in shapes and luminance and provides correct segmentation with respect to
pathological cases.

Keywords: Clinical imagery, Automatic vertebra segmentation, Coarse-to-fine
modeling, SLIC clustering, Hidden Markov chain

Background
Primitive bone tumors such as osteoid osteoma, metastatic lesions, and degenerative dis-
orders such as arthritis or vertebral body collapse and traumatic injuries can affect one or
several vertebrae. Diagnosis and characterization of these spine lesions rely on medical
imaging. Computed tomography (CT) is yet one of the first-line imaging procedures. This
cross-sectional imaging technique discriminates tissues along their densities and allows a
good contrast between bones, surrounding organs, and soft tissues. However, identifica-
tion of vertebrae can be difficult. Even if vertebrae vary in shape and orientation along the
spine, these modifications can be slight between two neighbor elements of the backbone,
making assessment of the exact level sometimes challenging.
A precise knowledge of vertebrae location, shape, and orientation is however essen-

tial. Hence, an imaging follow-up of spine lesions requires a precise identification of
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the affected levels and consequent reliable vertebrae identification. The same considera-
tions are relevant in case of multi-modality imaging, that is to say supplementary spinal
imaging procedures (e.g., bone scan with SPECT/CT, 18F-fluoride PET/CT) performed
so as to allow a better characterization of lesions or tumor burden. This is even more
crucial for preoperative planning and for interventional radiology treatments. Vertebra
segmentation and identification is therefore a key issue for many medical applications.
Beside their ambiguous shapes and boundaries, one of the major concern in a segmen-

tation perspective is the varying vertebrae neighborhood and shapes in a single patient,
which led to the development of region-specific methods. Another important problem for
clinical application is the eventuality of pathological cases, which is not always taken into
account in previous works. This is challenging because of the wide range of diseases, e.g.,
on CT scans a spine lesion can affect the vertebra local shape (primitive tumor), global
shape (scoliosis, fused vertebrae, degenerative disorders), or the intensity of some regions
(hyper- or hypo-dense tumors). On top of that, one has to consider that a reliable verte-
bra segmentationmethod is one of the requirements needed to perform further advanced
processing such as efficient image registration.
Medical image segmentation methods can be divided in three types: the iconic, the

texture-based, and the edge-based methods [1]. Iconic methods rely directly on voxel
intensities and include amplitude segmentation (e.g., thresholding) and region-based
methods [2]. Texture-based methods rely on local operators [3] to describe and dis-
criminate objects along their apparent texture. Edge-based methods use more abstract
descriptors to constrain the shapes and boundaries. As mentioned in [4], vertebra seg-
mentation is a challenging problem since vertebrae are inhomogeneous in intensity and
texture and have complex shapes, which make traditional segmentation techniques inef-
ficient to the problem. The vast majority of recent methods dedicated to vertebrae
segmentation are edge-based and rely on deformable models performing an adaptation of
prior data, such as templates or statistical atlases, to the vertebrae volume. For example,
[5, 6] use a prior statistical shape model [7] as an initialization followed by a rigid or non-
rigid registration, and in [4, 8, 9], the authors use a shape-constrained deformable model
to fit a prior mesh into the data.
Nevertheless, two main key issues limit these works:

(1) The algorithms use complex shape description and processing, which dramatically
increase global processing time.

(2) Methods are validated on a limited set of vertebrae in terms of scope (lumbar,
thoracic, or cervical) and healthiness (middle-aged patient, healthy cases).

We assume in the following that vertebrae are properly isolated in bounding boxes,
delimited roughly by their inter-vertebral disk and corresponding mean planes. Sev-
eral methods of vertebra localization can produce such planes, such as the works
presented in [4, 8, 10]. Since spine partition is not in the scope of this paper, the vol-
ume extractions are made manually. Therefore, this work focuses on the segmentation
of vertebral elements contained in the volume, which may include parts of neighbor
vertebrae.
Our method overcomes limitations listed above, since it does not rely on prior shape

information or on complex shape descriptors. To restrain the computation time, we pro-
pose a coarse segmentation algorithm which drops voxel clusters from the data volume.
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Fig. 1 Flowchart of the coarse segmentation algorithm

This first step of the segmentation is built on the basis of a coherent voxel cluster statistical
testing and is therefore robust to local and global luminance change. This coarse segmen-
tation step will be referred as “Carving”. The second step aims at discriminating the two
classes in the remaining volumewithin a robust HiddenMarkov Chain (HMC) framework
and thus performs coherent voxel-level segmentation. No shape priors are introduced
in the algorithms; thus, the method can deal with any type of standard vertebrae from
lumbar to cervical as well as with most of the non-standard cases one can expect in clin-
ical context. In the Sections “Coarse segmentation” and “Fine segmentation based on
HMCmodeling” the two-pass segmentation algorithm is described. The Section “Results”
explains the experiments and the results obtained with the proposed method. A dis-
cussion on the results is given in the Section “Discussion and conclusion” as well as a
conclusion on the method.

Method
Coarse segmentation

In the context of medical image processing, coarse-to-fine methods are mostly used to
perform fast registration (see, e.g., [11] or [9]) as they reduce computation time. On
the other hand, image clustering is a well-known tool grouping individual elements (i.e.,
voxels) following a specific similarity criterion [12] (based on a given distance met-
ric) and thus produces consistent high-level elements. In our case, it is desirable to
combine both approaches to rapidly ensure a first accurate and consistent estimation
of the anatomical vertebral volume. Therefore, a new algorithm is introduced to per-
form a coarse segmentation of the data volume within a previously delimited bounding
box [4, 8, 10]. It processes the volume layer by layer iteratively, following three steps
(see Fig. 1):

– The layer construction consists in selecting the external layer to be processed from
the volume of interest in the current iteration.

– The layer clustering produces clustered voxels with a joint space-luminance criterion.
– The cluster selection tests if the clusters should be rejected or included in the final

volume.

The three steps are repeated until the volume is completely processed within the initial
bounding box.

Layer construction

This step isolates the external layer of voxels on which the further processing will be
applied. The first layer is defined by its depth I1 from the borders of the volume. Given
the boundary from the previous step, the following layers cover both an inner part of
depth Ij and an outer part of height Oj, j > 1. The layer are isolated with mathematical
morphology operator.
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More precisely, let V̂j−1 be the binary partially segmented volume obtained at the step
(j− 1) and R(a) be a ball structuring element of radius a. The layer Vj at the j-th iteration
is then defined as:

V1 = V0 − V0 � R(I1)

Vj = Vj−1 ⊕ R(Oj) − Vj−1 � R(Ij) ∀j > 1
(1)

V0 is the initial bounding box, and the operators ⊕ and � stand for morphological
dilatation and erosion, respectively1. The external layer is used to avoid artifacts cre-
ation by processing the layer boundary regions at least twice. Figure 2 illustrates the layer
construction step.

Layer clustering

We develop a clustering method based on the simple linear iterative clustering (SLIC)
method proposed by Achanta et al. [13]. The authors presented a clustering method for
color images we generalize in the 3D gray level case. Thereafter, it will be referred as
“SLIC-3D”. In the color image case, a pixel i can be defined by its Cartesian coordinates
(xi, yi) and the L∗a∗b intensities (li, ai, bi). In [13], the authors combine the two represen-
tation spaces in one distance using two weighting parameters calledm and S:m is used to
balance the contributions of the color distance with respect to the Euclidean distance and
S stands for the number of pixels a super-pixel is expected to contain. The SLIC algorithm
proposed in [13] consists in clustering the pixels in order to approximately minimize for
each pixel its combined distance to the cluster centroid.
We propose on a similar principle a clustering algorithm addressing 3D data. The

Euclidean distance covers then a 3D space and the luminance of a voxel stands for the
color channel. As CT data is processed, its intensity is expressed in Hounsfield Units (HU)
corresponding to X-ray absorption ratio of organic tissues with respect to water [14]. A
given voxel i is then represented by its spatial coordinates (xi, yi, zi) and its luminance li.
For a given voxel cluster k containing |k| elements, we define its centroid Ck as its mean
value along the four features:

Ck =[ xk , yk , zk , lk]T = 1
|k|

∑
i∈k

[ xi, yi, zi, li]T (2)

Fig. 2 2D illustration for layer construction at the k-th iteration. Shaded parts are not processed at this step
and are already excluded (outer part) or not proceeded yet (inner part)
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Then, a mixed distance Dm combining the four features between a cluster centroid Ck
and a voxel i is given by:

Dm(Ck , i) =
√(

dc(Ck , i)
m

)2
+

(
ds(Ck , i)

S

)2
(3)

where ds is the 3D Euclidean distance and dc is a luminance distance between Ck and i:

ds(Ck , i) =
√

(xk − xi)2 + (yk − yi)2 + (zk − zi)2

dc(Ck , i) = |lk − li|
(4)

The cluster centroids are initialized on a regular cubic grid of size S. For each clus-
ter, the algorithm processes a cubic 2S × 2S × 2S region centered on the centroid spatial
coordinates. Each voxel in the region closer to the cluster centroid than to its current
cluster centroid is then re-labeled. Finally, the cluster centroids are updated, and the pro-
cedure can be repeated for a few iterations. The SLIC-3D procedure is summarized in
Algorithm 1.

Algorithm 1 SLIC—3D
Require: Bounding box V obtained from a previous processing, parameters m and S

from Eq. (3), iteration number nItr
Ensure: Label map L, pixel-centroid distance map D

1. INITIALIZATION

Place the cluster centroids Ck on a cubic grid of sample size S.
For each voxel i: L(i) ← −1 and D(i) ← ∞.

2. ITERATIVE PROCESSING

for Itr = 1 : nItr do
for each cluster centroid Ck do

for each voxel i in a (2S)3 cube centered on (xk , yk , zk) do
Compute Dm(Ck , i) : Eq. (3).
if Dm(Ck , i) ≤ D(i) then

L(i) ← k
D(i) ← Dm(Ck , i)

end if
end for

end for
Update the cluster centroids.

end for

Cluster selection

The clusters from a given layer need to be tested to assess if they belong to the vertebra
volume. Since vertebrae are mainly bone tissue and have typical luminance in CT volume,
the test is built with the mean luminance lk of each cluster k. Thus, voxels are accepted
or rejected by cluster, avoiding to deal with local irrelevant voxel variations. Furthermore,
the test must be robust to changes in the vertebrae to proceed. Thus, simple test such as
thresholding are not satisfying and a more elaborate procedure is needed. This is why an
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adaptive test is developed to ensure robust and consistent clusters acceptance or rejec-
tion. The test is based on the statistical region merging approach, proposed by Nock and
Nielsen [15]. Whereas the authors use the test for a pixel pair set, we propose to test
the clusters with respect to a reference luminance l0 corresponding to the typical bone
luminance in CT scans. For a given cluster k, let a first bone merging predicate be:

P0(k) : |lk − l0| ≤ b(k) (5)

where b(·) is amerging threshold [15]:

b(k) = g

√
1

Q|k| ln
(
1
δ

)
(6)

where |k| is the number of voxels in the cluster k, g is the grey level range, and δ is the
acceptable probability of error for the predicate. Q stands for the expected number of
underlying independent random variables (r.v.) for the current region, and according to
[15], it allows to quantify its statistical complexity. The bone merging predicate can then
be stated as “accept the cluster k if |lk − l0| < b(k)”.
Furthermore, an alternative is added to the test: vertebrae being compact objects, each

interior cluster is necessarily part of the result. A predicate is needed to assert for a given
cluster, the interiority of its neighbors. We define as interior to the remaining volume any
point closer to the remaining volume center v = (xv, yv, zv) than the centroid of the super-
voxel. Then, an interiority predicate is built for a given cluster k and any of its neighbor
k′:

Pk
I (k′) : ds(Ck′ , v) ≤ ds(Ck , v) (7)

where Ck and Ck′ are the centroids of the clusters k and k′, respectively, and ds is the
Euclidean distance defined in (4). Finally, the two predicates (5) and (7) are combined in
the following vertebral predicate to test a cluster k:

P(k) : P0(k) or Pk′
I (k) ∀k′ such as

{
k and k′are neighbor,
P(k′) is valid.

(8)

This predicate allows an efficient selection of voxel cluster. Figure 3 illustrates the whole
coarse segmentation step.

Fig. 3 Graphical summary of a coarse segmentation step. Gray regions are not proceeded at this step, orange
regions are the current layer and include the brown vertebrae region. White limits represent cluster boundaries.
aWhole slice with the zoom-in region b in the dotted limits. c Result from the SLIC-3D clustering.
d Possible outcome of the selection step with only the bone merging predicate (5). Blue accepted clusters,
red rejected clusters. e Neighborhood search example for the two light-gray clusters f Expected outcome of
the vertebral predicate (8)
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Model and parameters

The model requires calibrating several parameters. They were evaluated on a first set of
12 lumbar thoracic and cervical vertebrae. Motivations are given below:

• Equation (1) defining the layer construction and the SLIC-3D method (Algorithm 1)
both depend on a size parameter. We choose to define them only with the S
parameter from SLIC-3D, meaning that we link the layer depth to the expected size
of supervoxels. Thus, this parameter quantifies both the depth of the current layer
and the scale of the supervoxel to exclude. We choose the two first values of S to be
higher than the latter ones, as we process in a coarse-to-fine fashion. S is given in
millimeters to ensure isotropy between axes and between scans.

• The m parameter used in clustering (Algorithm 1) mostly defines the clusters shape
between a spatial regularity and an intensity regularity. We use decreasing values of
m along iterations to exclude first spatially coherent and then intensity-coherent
clusters.

• The statistical parameters g, Q, and δ used for cluster selection (Predicate 5) can be
computed automatically on the basis of the cluster to proceed: g is the range of the
current layer intensity and Q must be set lower than g to reduce the expected
complexity of the bone merging predicate. The error probability δ can be fixed
arbitrarily, e.g., as the inverse of the cardinal of the cluster.

• The reference intensity l0 (Predicate 5) is the intensity of typical bone in CT scans
and is provided by an expert.

The algorithm is built on the three steps previously detailed and processes the volume
iteratively. For a volume of height h, the number of iterations J is given by2:

J = 2 +
⌈
h − S1 − S2

Sj

⌉
(9)

where �·� is the ceiling operator, S1, S2, and Sj stands respectively for the two first values
of S and its value for any iteration j > 2. The model is tolerant to parameter variations, as
long as their order from coarse to fine is preserved. Note that variations of the S parame-
ters may produce changes in terms of computation time, since it influences the number of
iteration to proceed in (9). In all cases, we observed convergence towards similar results.
The entire coarse segmentation method that we called Carving, as well as the parameters
value, are summarized in Algorithm 2. Figure 4 illustrates the results obtained at this step.

Fig. 4 Result of the coarse segmentation step for a L3 vertebra. The three sectional views are the sagittal,
axial, and coronal middle slice of the source volume. The result is represented by its red superimposition and
the 3D interpolation of the coarse segmentation volume
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Algorithm 2 Carving
Require: Initial volume V0
Ensure: Binary coarse volume segmentation of V0

Compute the number of iterations J.
for each iteration j < J do

Build Vj: Eq. (1) with Oj and Ij.
Update g, Q and δ with the current values.
Cluster Vj: Alg. 1 with Sj andmj.
for each cluster k do

Test P(k): Eq. (8) with g, Q, δ, l0.
if P(k) is false then

Exclude the voxels corresponding to k from the volume.
end if

end for
end for

Parameters values:
Oj, Ij Ij = Sj ∀j, O1 = 0 and Oj = (Sj−1 + Sj)/2 ∀j > 1
mj m1 = 100, linear decrease untilmJ = 70
Sj S1 = 23mm, S2 = 17mm, Sj = 11mm ∀j ≥ 2
g Intensity range in the current Vj
Q 0.4 × g
l0 1300 HU
δ 1/|Vj|

The result of the coarse segmentation is very nice given the expectation: the first
need is to reduce the data amount to proceed, which is efficiently done. The algo-
rithm actually does more than data volume reduction since the results already have the
shape of the underlying vertebrae. However, this step alone remains too coarse, and
we have now to use a finer segmentation to perform a voxel-level classification of the
remaining volume.

Fine segmentation based on HMCmodeling

The coarse segmentation results obtained at the previous section are smaller than the
initial volume and include most of the anatomical vertebrae volume. However, to allow
an efficient final segmentation, we need to have in the volume enough voxels of the
two classes to separate. Thus, a region of interest (ROI) is built based on the pre-
vious coarse result. It is a morphological dilation with a ball structuring element of
radius 10 mm. In this section, this ROI will be processed, as it preserves the expected
shape of the vertebra and includes enough non-vertebral voxels to allow automatic
separation.
We are interested in a robust, voxel-wise segmentation method. The Bayesian frame-

work meets these requirements and offers a consistent statistical modeling for the
segmentation of an image into classes. When processing images or volumes, Hidden
Markov Random Field (HMRF) [16] modeling often provides good results because the
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model do consider spatial relationships. However, using HMRF can be computation-
ally time-consuming. This is mainly due to the sampling needed to perform estimations
from an analytically unknown distribution. On the other hand, the classical HMC
framework, while having the advantages of Bayesian segmentation, does not have the
drawbacks of HMRF. It provides faster computations, and we use it with a specific volume
transformation to preserve the most important spatial features. The Baum-Welch algo-
rithm [17] is used for segmentation, based on parameters estimated with the Stochastic
Expectation-Maximization (SEM) [18] method.

Volume transformation

First of all, the 3D data needs to be transformed to obtain a one-dimensional chain.
This point must be carefully considered, since while it permits fast computation, it
introduces an artificial 1D order in 3D data and thus uses only 2 out of 26 neigh-
bors for each voxel. A 3D volume can be transformed by sweeping each line, col-
umn, and row from first to last but this transformation induces too much distortion
to the original data structure. Another alternative is the Hilbert curve [19], which
is known to be successful for transforming 2D or 3D images into chains (see, e.g.,
[20–22]). The resulting chain is more spatially regular; however, it creates artifacts in
the HMC segmentation because the chain requires having relatively few state tran-
sitions to produce a smooth segmentation estimate. The Hilbert curve path does
not ensure this; therefore, in this section, a new volume-to-chain transformation is
introduced, relying on the shape information obtained at the coarse segmentation
step.
The volume is processed by slices. Given the symmetries of a vertebra, horizon-

tal slices are retained: the axis of our spirals is axial3. For each slice, a spiral along
concentric perimeters of the ROI section is built. The spiral path goes alternatively
inward and outward, so that consecutive spiral extremities are spatially close from
one slice to another. Algorithm 3 summarizes the process, which is illustrated in
Fig. 5.

Fig. 5 Spiral transform illustration. The shaded regions represent the ROI sections, and the red line follows the
chain path. a Example of a 10 × 10 pixel slice. b Example for three consecutive slices
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Algorithm 3 Spiral transform of a ROI
Require: Binary ROI, initial volume
Ensure: Coordinates/values set of the spiral chain transform

Set the first spiral direction to "inward".
for Each horizontal slice of the ROI do

Built concentric perimeters of the ROI in the slice.
Sort the perimeters according to the current spiral direction.
Add the current voxel coordinates/values set to the previously obtained data.
Invert the current spiral direction.

end for

Forward-backward algorithm

This algorithm allows the computation of posterior densities required for segmentation.
Let N be the length of the chain obtained from the spiral transform. X = (X1, . . . ,XN )

and Y = (Y1, . . . ,YN ) are respectively the random variables sequences representing
the spiral transformation of the class volume and the observed volume. We will note
x = (x1, . . . , xN ) and y = (y1, . . . , yN ) their respective realizations. The class volume ele-
ments take their values in � = {ω0,ω1} since we want to discriminate vertebral (ω1) from
non-vertebral (ω0) elements. The observed volume voxels remain in Hounsfield Units,
typically in a range of [−2000, 2000] HU. For clarity, we note p(xn) and p(x) instead of
p(Xn = xn) and p(X = x), respectively, and likewise for the Y process.
We assume that (X,Y ) is a HMC with independent noise (HMC-IN). The following

properties are verified:

• X is a Markov chain:

p(x) = p(x1)p(x2 | x1) . . . p(xN | xN−1) (10)

• The (Yn)1≤n≤N are conditionally independent with respect to X :

p(y | x) =
N∏

n=1
p(yn | x) (11)

• The noise independence is verified :

p(yn | x) = p(yn | xn) ∀n ∈ {1, . . . ,N} (12)

• The previous points lead to the following expression for the joint (X,Y ) probability
distribution:

p(x, y) = p(x1)p(y1 | x1)
N∏

n=2
p(xn | xn−1)p(yn | xn) (13)

Then the classical forward-backward decomposition [17] of the posterior marginal
probability yields:

ξ(xn) = p(xn | y) = α(xn)β(xn)∑
ω∈�

α(ω)β(ω)
∀n ∈ {1, . . . ,N} (14)
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Where α and β are respectively the forward and backward probabilities for
n ∈ {1, . . . ,N}:

α(xn) = p(xn, y1, . . . , yn)

β(xn) = p(yn+1, . . . , yN | xn)
(15)

Both α and β can be computed using the following recursions:

Initializations:
{

α(x1) = p(x1, y1)
β(xN ) = 1

Inductions:

∀1 ≤ n ≤ N − 1 :

⎧⎪⎨
⎪⎩

α(xn+1) =
( ∑

ω∈�

α(ω)p(xn+1 | ω)

)
p(yn+1 | xn+1)

β(xn) = ∑
ω∈�

β(ω)p(ω | xn)p(yn+1 | ω)

(16)

The posterior marginal probabilities (14) can then be computed, and the maximum
posterior mode (MPM) class estimation [23] yields:

∀1 ≤ n ≤ N x̂n = arg max
ω∈�

p(Xn = ω | y) (17)

The distribution in (16) requires the knowledge of noise and model parameters. In an
unsupervized segmentation framework, they must be estimated. An estimation method
is reported in the next section.

Parameter estimation

The parameters from Eq. (13) need to be estimated to perform the class estimation. We
note:

p(X1 = ωi) = πi

p(Xn = ωj |Xn−1 = ωi) = πij ∀n ∈ {1, . . . ,N} (18)

Note that the π parameters do not depend of n since we supposed theHMC to be homo-
geneous. We use the SEM algorithm [18] to perform the parameter estimation. SEM is
chosen over its determinist counterpart EM [24] for robustness reasons, since the algo-
rithm needs to efficiently deal with non-standard cases (e.g., noise, pathologies, artifacts)
and to avoid local extrema convergence. We assume that we are in the case of a Gaussian
mixture:

p(yn |Xn = ωi) ∼ N (μi, σi) with i ∈ {0, 1} for n ∈ {1, . . . ,N} (19)

The set of parameter to estimate is � = {
πij,πi,μi, σi

}
for i, j ∈ {0, 1}. With com-

plete data (x, y), one can perform the estimation of � with the maximum likelihood (ML)
estimators. Complete data are however unavailable. This is why SEM iteratively provides
simulations of x along posterior distributions.
The SEM algorithm requires an accurate initialization to ensure fast parameter estima-

tion convergence. At this step, we split the process: in some known cases, the volume can
include air elements, which are clearly distinct from both soft tissues and bones. To avoid
wrong class clustering, we use for the initialization a set of reference parameters obtained
from other vertebra of the same patient without air in the neighborhood. This allows cor-
rect calibration with respect to the patient and the scanner, while avoiding wrong class
clustering. In any other cases, we use a simple initialization where μ0 = 0.25, μ1 = 0.75,
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and σ0 = σ1 are estimated through the ML estimator from the whole sequence y and
πij = πi = 0.5 ∀i, j ∈ {0, 1}. These initializations are choosen to ensure class separation
and avoid reliance on other algorithm(s) convergence (e.g., the K-means algorithm [25]).
For the simulation (S) step, one needs to compute the posterior transition probabilities,

given by:

p
�k (x | y) = p(x1 | y)

N∏
n=2

p(xn | xn−1, y)

p(xn | xn−1, y) = p(xn | xn−1)p(yn | xn)β(xn)∑
ω∈�

p(ω | xn−1)p(yn | ω)β(ω)
∀2 ≤ n ≤ N

(20)

An additional step in the original SEM procedure is introduced to produce a conver-
gence measure for the parameters estimate. Since the individual π , μ, and σ parameters
differ in nature, we cannot use a direct Euclidean distance comparison between two con-
secutive estimations of�. However, the forward-backward class estimation provides for a
given� and fixed observations y a determinist result. The convergence between two SEM
steps is then estimated through the variations between consecutive on-the-fly forward-
backward estimates based on the consecutive parameter estimation. The convergence
rate between two consecutive parameter estimations �k and �k−1 is computed together
with their corresponding forward-backward estimates x̂k and x̂k−1, respectively, as:

ε = 1
N

N∑
n=1

(
x̂kn − x̂k−1

n

)
. (21)

We assume that the SEM algorithm has converged when ε < 1%. This choice allows
performing the algorithm in a small number of iterations: typically less than 15 iterations
are needed. Setting a smaller ε increases the global processing time and does not pro-
vide noticeable improvement to the result. The adapted SEM algorithm is summarized in
Algorithm 4.

Algorithm 4 Adapted SEM algorithm
Require: Observed data y, initial parameters �0

air and �0, convergence threshold ε

Ensure: Parameters estimation �̂

if Air is present in the volume then
Use �0

air as the initial parameters.
else

Use the default parameters �0.
end if
Initial estimation x0 = x̂0 with (17) and initial parameters.
while ε < 1% do

(M) Estimate �k with the ML estimator based on (xk−1, y).
(E) Compute the posterior transition probabilities p�k (x | y) (20).
(S) Simulate xk according to p�k (x | y).
Compute the current forward-backward estimation x̂k (16) and the convergence

ratio ε (21).
end while
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HMC segmentation algorithm

First, the segmentation algorithm transforms the volume along a spiral path adapted to
the coarse shape. The parameters of the mixture are then estimated with the SEM algo-
rithm. Once the mixture estimation is done, posterior marginal probabilities (14) can
be computed to find the MPM estimation (17) of the observed vertebra. Finally, the
segmented volume is re-built along the initial chain path. Algorithm 5 summarizes the
segmentation procedure, and Fig. 6 illustrates the result for the segmentation following
the coarse result from Fig. 4.

Algorithm 5 Spiral HMC segmentation
Require: Coarse volume
Ensure: Complete segmentation V̂ of the vertebra

Produce the ROI with a 10mm disk dilatation of the coarse volume.
Transform the ROI into a chain: Algorithm 3.
Estimate the mixture parameter with SEM: Algorithm 4.
Compute the MPM estimation (17).
Transform of the chain into a volume along the inverse path.

Complementary results are presented in Fig. 7. The gain of the HMC segmentation step
is clear from the 3D interpolations: the results match our expectations of the vertebral
volumes and does not include processing artifacts. Note that while the HMC excludes the
inner part of the vertebral body for some lumbar vertebrae (e.g., the vertebra from Fig. 6),
the border boundaries are well separated. This is not a key topic for a localization purpose,
but other goals (e.g., biomechanicalmodelling)may require some post-processing in these
cases. Further extensive and comparative results are presented in the next section, as well
as robustness examples and whole-spine segmentations.

Results
In this section, the method performance is evaluated. First, the method is qualitatively
evaluated on a set of 339 standard vertebrae acquired in daily practice. Then, quantita-
tive results on manually segmented data are reported. Pathological cases make then the
robustness evaluation possible. Finally, we provide simple integration examples with a
segmentation of the full spine.

Fig. 6 Result of the segmentation step for a L3 vertebra. It follows the coarse result presented in Fig. 4, with
the same legend
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Fig. 7 3D interpolations of the coarse and fine segmentation results. The first and second rows correspond
to lumbar (L4) and thoracic (T11) vertebrae processing, respectively. The first column represents the result of
the Carving method (Algorithm 2), and the second column contains the results after the HMC segmentation
(Algorithm 5). Note that the observed granularity corresponds to the voxel size, which is the minimal size
addressed in this work

Standard cases: qualitative results

The method is evaluated on a set of vertebral volumes from the whole spine of 15 con-
secutive patients in an oncologic tertiary center, with exclusion of patients with bone
tumors or metastatic spine involvement. Patients had a mean age of 63 and presented
degenerative joint alterations and some osteoporotic changes, reflecting most of the situ-
ations encountered in daily practice; 339 vertebral volumes were extracted and evaluated,
meaning that almost all patients’ vertebrae were tested.
Each volume is applied successively Algorithm 2 for coarse segmentation and

Algorithm 5 for fine segmentation. For the sake of comparison, the K-means algorithm is
used as a benchmark since it has common ground with the proposedmethod: it processes
the voxel intensities and has no prior on the volume shape. Since the two-class K-means
classification fails when air is present in the volume, we use a sub-sample in which no air
is present to provide a more accurate comparison.
For this data, there is no available ground truth (e.g., manual segmentation). Therefore,

one must resort to qualitative evaluation. We define, in a similar fashion than in [4], the
following ranking:

– Excellent (100): the vertebra is exactly delimited inside its bounding box.
– Good (75): most of the anatomical structure is covered, but some voxels are

segmented out.
– Bad (50): the vertebra is recognizable but noticeable part are missing from the result.
– Poor (25): the vertebra is not recognizable enough.
– Fail (0): the segmentation fails to proceed.

The results were visually inspected by an expert with respect to these criteria. Table 1
summarizes the results obtained for the proposed method and the K-means method.
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Table 1 Results for the subsample without air and for the full sample. This parting provides accurate
comparative results on the sub-sample

Partial set: 178 volumes Full set: 339 volumes

Grade (score) Proposed method K-means Proposed method

Excellent (100) 75 (42.13 %) 46 (25.84 %) 98 (28.91 %)

Good (75) 64 (35.96 %) 83 (46.63 %) 129 (38.05 %)

Bad (50) 31 (17.42 %) 35 (19.66 %) 80 (23.60 %)

Poor (25) 6 (3.37 %) 9 (5.06 %) 29 (8.55 %)

Fail (0) 2 (1.12 %) 5 (2.81 %) 3 (0.88 %)

Average score 78.65 71.91 71.39

Considering that both good and excellent results provide sufficient data for vertebrae
segmentation and further advanced processing, our method provides about 78 % of suc-
cessful results on the subsample where K-means gives 72 % of successful results, whereas
on the full sample, the method yields 67 % of successful result and the 2-class K-means
fails on the remaining 161 volumes including air (yielding thus an average score of 37.76 %
on the full sample). Keeping in mind that the sample originates from daily routines and
includes a significant proportion of minor pathologies, these results are of significant
interest for clinical use.
The algorithms were developed and tested using Matlab on an Intel i5 (2.6 GHz) on one

core, without specific optimization of the code. The processing time is of 36 s by vertebra
on average, with 10 s for the Carving step and 26 s for the HMC step. This processing
time depends on the size of the vertebra to segment, the average total time being 71.4 s
for lumbar vertebrae and 19.8 s for cervical vertebrae. For daily practice implementation,
the use of C/C++ language is expected to provide a gain of a factor at least 10 to the
processing time.
Our method yields satisfying results. Noteworthy, bad and poor results provided by the

method are mainly encountered in levels with either pronounced degenerative joint dis-
eases alterations or marked osteoporosis with consequent low contrast (see Fig. 8). In
such cases, our method provides better results than the K-means segmentation, support-
ing the evidence that our proposal is more reliable in data reflecting daily practice. In only
6.5 % of the cases, the K-means segmentation provided better results than our method.
The results presented here cover standard volumes mostly encountered in practice, but

did not yield voxel-wise error rate. The next section presents a quantitative evaluation of
the method, with respect to manual segmentations.

Fig. 8 Illustrative comparison between K-means segmentation (a) and the proposed method (b) for the L3
vertebra in a patient with marked osteoporosis. K-means segmentation is rated 50, whereas the proposed
segmentation is rated 75
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Quantitative results

When considering vertebral segmentation in CT images, there are few available complete
dataset allowing a quantitative evaluation of a method. We use the dataset presented at
the CSI 2014 challenge [26], available on the public SpineWeb platform [27]. This dataset
contains 10 spine scans from a trauma center, acquired during daily clinical routine work.
Patients were aged 16 to 35, and the scans covered thoracic and lumbar vertebrae in most
cases. A total of 175 segmented volumes were extracted from the dataset. The perfor-
mances are measured as the rate of correctly classified voxels (true positives and true
negatives).
Figure 9 summarizes the results with respect to the provided vertebra segmentation. On

average, the proposed method yields 89.39±5.54 % of correct segmentation. On the same
dataset, the K-means segmentation provides 81.65±12.23 % correct segmentation. These
results imply that our method provide both good results and a small variability on the
output. Note that these results concern only the vertebra of interest: a correctly labeled
neighboring vertebra is ignored in the measurements. An illustration of the ground truth
compared to a segmentation result is provided in Fig. 10.
Errors are either false positive (type I error) or false negative (type II). False positive

are most encountered in the presence of high-intensity elements, such as calcifications or
ribs near thoracic vertebrae. On the other hand, false negatives are either missing voxels
at the vertebrae boundary or missing voxels within the vertebral body.
These results are satisfying, given that most error sources are known and that specific

post-processing could easily remove them. So far, the performances were evaluated on
standard cases: the next section presents pathological cases that may be encountered in
practice.

Pathological cases: robustness evaluation

As our method performs correctly on standard case, it has to be evaluated in more diffi-
cult situations, namely pathological cases. Since we aim at a clinical implementation, the
method robustness to the most frequent non-standard cases is indeed mandatory. We
first briefly describe the selected cases and the corresponding challenges, then we provide
their corresponding segmentation results and discussion.
The two main key points are changes in shape and in intensity of the object to segment.

They correspond to anatomical and structural deformations, respectively. Structural

0.5 0.6 0. .7 0 8 0.9 1.0
True positive rates

Our method

K-means

Fig. 9 Box plots for the quantitative results. The average rates are 0.816 for the K-means segmentation and
0.894 for the proposed method (see text)
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Fig. 10 Ground truth (first row) and segmentation (second row) on a L1 vertebra. Source volume and colored
superimposed results are displayed from left to right within the median axial, coronal, and sagittal planes. In
this case, the correct segmentation rate is 94.19 %

changes are related to alterations of bone and medullar matrix, with consequent modi-
fication of density and signal intensity in the CT volume. Changes of shape and density
can be related to aging alterations. In particular, arthrosis is responsible of spine alter-
ations in a general population, and we selected it as the first specific case (see Fig. 11a).
The frequency and intensity of these modifications is in close relationship with age. After
40 years, hernia, osteophytes, and degenerative joint diseases are commonly encoun-
tered. We also selected a hernia case as an instance of common low-intensity structural
alteration (see Fig. 11b).
On the other hand, many pathologic conditions can lead to bone density variations.

For instance, osteoblastic cancerous tumors will increase bone density. On the other side,
osteolytic tumoral involvement is associated with bone destruction and is therefore seen
as areas of decreased bone density. Finally, treatments—general treatments as chemother-
apy or interventional treatments as cementoplasy—can induce bone density alterations.
In particular, cementoplasty, which can be described as the interventional introduction

Fig. 11 a coronal and b, c axial sectional views of the selected cases. The arrows highlight their specificities
(see text for details)
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of artificial high-density material inside the vertebral body, represents an extreme case of
overdensity. This is the third case we retained (see Fig. 11c).
Figure 12 provides the results on the three selected cases. They are discussed below:

– From Fig. 12a, it appears clearly that the changes of the vertebral body boundaries do
not impede the segmentation result, which is similar to the result presented in Fig. 6.
Some imprecisions appears in the 3D interpolation; however, they are minor given
the overall result.

– The hernia case presents a region which can be seen as a vacuum in the bone
material. This vacuum is segmented out by the method since it differs from the bone
in intensity. However, this particular point does not prevent the method to perform
the segmentation correctly. Noteworthy, some inner parts of the vertebral body are
included in the segmentation, which is not the case for standard lumbar vertebrae
(e.g., Figures 6,12a). This is due to the relative overdensity induced by the hernia in
the surrounding material.

– Finally, the cementoplasty case represents a more challenging test. It produces indeed
an almost homogeneous bright region inside the vertebral body, leading to a global

Fig. 12 Results of the proposed segmentation method on the selected particular cases. They include parts
of the upper and lower vertebrae as they appear in the bounding boxes. a Arthrosis on a L3 vertebra.
Boundaries differs in width and in shape from a typical lumbar vertebrae. b Hernia in a L4 vertebra. Note
that some calcifications are also segmented since their intensity is close to the bone intensity, and they are
located near the vertebral body. c Cementoplasty in a T12 vertebra
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distortion of the data in comparison with the standard cases. Nevertheless, the
proposed method successes in providing a correct result (Fig. 12c), which does not
cover the full vertebra volume but does represent most of the underlying vertebra. It
also shows that natural overdensities of lower range can be handled by our method,
the cementoplasty being one of the most extreme cases.

The results presented here show that the proposed method is robust to some of the
most frequent particular cases met in clinical context. Furthermore, as it provides a
correct result for a challenging case, one can expect it to be robust to most of the lower-
intensity specificities. We provide in the next section further results covering the range of
all vertebrae for two patients.

Integration examples

We present in this section examples of full-spine segmentations. Two CT scans acquired
in clinical routine were selected: the first one does not present specificities in its spine and
can be considered as a standard healthy case. The second one presents vertebral compres-
sion, which corresponds to a flattening of the inter-vertebral disk and occurs mostly with
age. From each scan, we manually defined the vertebral bounding boxes so as to enclose
the vertebral bodies. Each volume is processed separately and placed at its initial location.
The final results are presented in Fig. 13.
First of all, one can notice on both results that the segmentations include some

separation artifacts due to the delimitations of the volumes (initial bounding box).
Thus, some vertebral elements have been segmented out from the total result, as they
are initially badly delimited. Note also that some non-vertebral elements have been
segmented in; this is in particular the case with the L1 vertebra from the second
case which present calcifications (as in Fig. 12b). This also happens with surround-
ing bones, such as the ribs for thoracic vertebrae and the pelvis for the L5 verte-
bra. Nevertheless, the segmentation is not impacted by these inclusions and performs
correctly.
From Fig. 13, the changes in vertebrae shape and size are clear within one patient and

also between patients. Indeed, it is noticeable that the seven lower vertebrae shape differs
between the two cases. The vertebral compression induces deformations in the observed
vertebral bodies; thus, their shape does differ from prior expectations. Note also that
the second case presents an arthrosis between T12 and L1, causing vertebral bodies to
join. Despite these specificities, our method performs correctly on all vertebrae; all of the
vertebrae sub-structure are clearly segmented.
The results show that the proposed method can be successfully integrated within a sim-

ple spine processing and thus can be used in more complex framework. Given the results
from the previous sections, one can expect our method to perform well in most practical
situations, regardless of the vertebra type, position, and specificity. Further discussion on
the method is given in the next section.

Discussion and conclusion
Vertebra segmentation is a challenging task. The wide range of shapes, the high rate of
aging modifications, and the pathologic alterations frequently encountered in real cases
explain the difficulties of an automatic segmentation in daily practice patients.
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Fig. 13 Integration examples on the two selected cases. The whole spines are segmented, with the 7 cervical,
12 thoracic, and 5 lumbar vertebrae. The volume rendering is interpolated from the binary segmentations
and vertebral volumes are delimited with different colors, within the same color set. a: healthy spine. b:
arthritic spine, with degenerative joint alterations, a thoracic Forestier’s disease, and a L4 compression

Hence, most of the published works about vertebra segmentation seem to be devel-
oped and evaluated on ideal data, namely in a young population in which vertebra are
well separated, with CT providing a very high contrast between medullar bone, vertebra
boundaries, and soft tissues. Additionally, sometimes only the lumbar spine is evaluated,
with a consequent lack of information about the robustness of the presented schemes
toward thoracic and cervical vertebrae.
This work is part of a larger project on spinal registration for patients presenting

bone tumors. The segmentation method we present is thus developed in a real prac-
tice perspective, explaining why we took into account pathologic cases as well as the
most frequent aging modifications, without any prior on vertebrae shape and luminance.
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Bounding box initialization method can be obtained automatically using state-of-the art
techniques.
The presented method results fulfills the requirements of automatic bone segmentation

prior to registration processes, with an affordable computational time.

Endnotes
1Note that this operation is similar to a morphological gradient, with two different

structuring elements instead of one.
2We use volume height since it is shorter than depth or width for the vertebral volumes

we process.
3Experiments show that other perimeter-based path such as using a coronal axis slice

by slice or using concentric helix leads to similar results.
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