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Computational modeling to predict the
functions and impact of drug transporters

Pär Matsson1,2* and Christel A S Bergström1,2*
Abstract

Transport proteins are important mediators of cellular drug influx and efflux and play crucial roles in drug distribution,
disposition and clearance. Drug-drug interactions have increasingly been found to occur at the transporter level and,
hence, computational tools for studying drug-transporter interactions have gained in interest. In this short review, we
present the most important transport proteins for drug influx and efflux. Computational tools for predicting and
understanding the substrate and inhibitor interactions with these membrane-bound proteins are discussed. We have
primarily focused on ligand-based and structure-based modeling, for which the state-of-the-art and future challenges
are also discussed.

Keywords: Drug transport; Membrane transporter; Carrier-mediated transport; Structure-activity relationship;
Ligand-based modeling; Structure-based modeling
Introduction
Transport proteins, which are expressed in all tissues of
the body, facilitate the transmembrane transport of essen-
tial solutes such as nutrients and signal substances. They
also play an important role in the removal of metabolites
and toxicants from cells and tissues. Transporters of xeno-
biotics such as drug molecules are typically divided into
influx and efflux transporters, where the former mediate
the transport of compounds into the cell interior and the
latter secrete compounds out from the cell. In addition,
the role of transporters in the flux of compounds between
subcellular organelles is increasingly recognized.
The main gene superfamilies involved in the trans-

port of drugs and similar molecules are the ATP-
binding Cassette (ABC) family and the solute carrier
(SLC) family (Giacomini et al. 2010, Schlessinger et al.
2010, Hediger et al. 2013, Hillgren et al. 2013). Seven ABC
subfamilies have been identified in humans, all of which
are involved in the secretion of compounds from the cyto-
sol, typically to the cell exterior. The most important ABC
transporters for the efflux of drugs and drug-like mole-
cules are P-glycoprotein (MDR1/P-gp; ABCB1), Breast
Cancer Resistance Protein (BCRP; ABCG2), Bile Salt
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Export Pump (BSEP; ABCB11), and the members of the
multidrug resistance-associated protein family (MRP;
ABCC) (Giacomini et al. 2010, Hillgren et al. 2013).
About 40 human ABC transporters are known to

date, while more than 350 SLC transporters have been
identified (Schlessinger et al. 2010, Hediger et al. 2013,
Schlessinger et al. 2013a, b). Only a small number of
these have so far been proven to be involved in drug
distribution, disposition and elimination. The SLCs
have more diverse functions than the ABCs; the major-
ity mediates cellular influx, while others are bidirectional
or predominantly mediate cellular efflux. For drug-like
molecules, the most important SLCs are encoded by genes
in the subfamilies SLCO (predominantly negatively
charged substrates), SLC15 (di- and tripeptides), SLC22
(mainly organic cations and anions) and SLC47 (mainly
organic cations). The names and tissue expression pat-
terns of transport proteins of demonstrated importance
for drug transport and/or drug-drug interactions (DDI)
are listed in Table 1.
Review
Transporters in Drug Disposition
The importance of transporters in drug absorption, dis-
position and elimination has been realized relatively re-
cently, and a great deal of effort has been put into
understanding their contribution to pharmacokinetics
This article is distributed under the terms of the Creative Commons Attribution
ns.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40203-015-0012-3&domain=pdf
mailto:<?A3B2 twb=.27w?><?A3B2 tlsb=-.21pt?>par.matsson@farmaci.uu.se
mailto:christel.bergstrom@farmaci.uu.se
http://creativecommons.org/licenses/by/4.0/


Table 1 Nomenclature and protein-based tissue expression of common drug transport proteins

Gene name Protein name Organ Expression level Reference

ABCB1 MDR1a Small intestine Moderate Oswald et al. 2013

Liver Low to moderate Pedersen 2013

Kidney Low Human Protein Atlas

Brain High Shawahna et al. 2011

ABCB11 BSEP Small intestine Not detected Human Protein Atlas

Liver High Human Protein Atlas

Kidney Not detected Human Protein Atlas

Brain Low Human Protein Atlas

ABCC1 MRP1 Small intestine Moderate Human Protein Atlas

Liver Not detected Human Protein Atlas

Kidney High Human Protein Atlas

Brain Low Human Protein Atlas

ABCC2 MRP2 Small intestine Low to moderate Oswald et al. 2013

Liver Moderate to high Pedersen 2013

Kidney Moderate Human Protein Atlas

Brain Moderate Human Protein Atlas

ABCC3 MRP3 Small intestine Moderate Human Protein Atlas

Liver Not detected Human Protein Atlas

Kidney Moderate Human Protein Atlas

Brain Low Human Protein Atlas

ABCC4 MRP4 Small intestine Data not found

Liver Data not found

Kidney Data not found

Brain Low to moderate Shawahna et al. 2011

ABCC5 MRP5 Small intestine Low Human Protein Atlas

Liver Not detected Human Protein Atlas

Kidney High Human Protein Atlas

Brain Low Human Protein Atlas

ABCG2 BCRP Small intestine Moderate Oswald et al. 2013

Liver Low to moderate Pedersen 2013

Kidney Low Human Protein Atlas

Brain Low to high Shawahna et al. 2011

SLC15A1 PEPT1 Small intestine High Oswald et al. 2013

Liver Moderate Human Protein Atlas

Kidney Moderate Human Protein Atlas

Brain Moderate Human Protein Atlas

SLC22A1 OCT1 Small intestine Moderate Human Protein Atlas

Liver Moderate Human Protein Atlas

Kidney Moderate Human Protein Atlas

Brain Low Human Protein Atlas

SLC22A2 OCT2 Small intestine Not detected Human Protein Atlas

Liver Not detected Human Protein Atlas

Kidney High Human Protein Atlas

Brain Low Human Protein Atlas
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Table 1 Nomenclature and protein-based tissue expression of common drug transport proteins (Continued)

SLC22A3 OCT3 Small intestine Moderate Human Protein Atlas

Liver Moderate Human Protein Atlas

Kidney High Human Protein Atlas

Brain Moderate Human Protein Atlas

SLC22A8 OAT3 Small intestine Not detected Human Protein Atlas

Liver Not detected Human Protein Atlas

Kidney Moderate Human Protein Atlas

Brain Low Human Protein Atlas

SLC47A1 MATE1 Small intestine Moderate Human Protein Atlas

Liver Low Human Protein Atlas

Kidney High Human Protein Atlas

Brain Low Human Protein Atlas

SLC47A2 MATE2 Small intestine Low Human Protein Atlas

Liver Not detected Human Protein Atlas

Kidney Low Human Protein Atlas

Brain Moderate Human Protein Atlas

SLCO1B1 OATP1B1 Small intestine Not detected Human Protein Atlas

Liver Moderate Human Protein Atlas

Kidney Not detected Human Protein Atlas

Brain Not detected Human Protein Atlas

SLCO1B3 OATP1B3 Small intestine Not detected Human Protein Atlas

Liver High Human Protein Atlas

Kidney Not detected Human Protein Atlas

Brain Not detected Human Protein Atlas

SLCO2B1 OATP2B1 Small intestine Not detected Human Protein Atlas

Liver Low Human Protein Atlas

Kidney Not detected Human Protein Atlas

Brain Moderate Human Protein Atlas

Tissue expression data taken from The Human Protein Atlas (www.proteinatlas.org) accessed July 14, 2015. Tissue data from the protein atlas are based on
antibody staining of normal human tissue and this source was used together with listed references based on proteomics from which data on transport proteins
are emerging. Tissue expression is only shown for small intestine, liver, kidney and brain; the transport proteins may be expressed in other tissues as well. Not
detected means that the protein has been analyzed but the level is too low to be detected with the used method. Data not found means that we were not able
to find reported tissue expression data when this review was prepared. Conflicting results were reported for BCRP where The Human Protein Atlas showed low
expression whereas significant amount of protein was observed by Shawahna et al. (2011)
aMDR1 is also known as Pgp
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(PK), pharmacodynamics (PD) and drug-related toxicity
over the last decade (Giacomini et al. 2010). Influx
transporters can enable the permeation of compounds
with low rates of diffusion across the lipoidal membrane
(typically hydrophilic, polar, charged and/or large mole-
cules), and may thus enable the oral absorption and tis-
sue exposure of such molecules. These transporters have
also been shown to cooperate with metabolic enzymes
and hence they not only facilitate absorption from the
gut but also enable the elimination of drug compounds
in metabolically active tissues such as the liver (Benet
2009, Neve et al. 2013, Nordell et al. 2013, Li et al.
2014). Conversely, efflux transporters limit the intestinal
absorption of substrate drugs, but also limit access to
other tissues and are particularly involved in the limited
distribution into the brain (Begley 2004, Hermann et al.
2006, Mahringer et al. 2011). They also contribute to the
complex interplay between cellular influx, transcellular
diffusion, drug metabolism and excretion of metabolites
in pharmacokinetically important tissues such as the liver
and kidneys (Masereeuw and Russel 2012, Pedersen
2013). A schematic overview of the expression pattern of
ABC and SLC drug transporters expressed in the liver is
shown in Fig. 1a.
The important, complex roles of transporters in the

disposition of drug molecules in the body make it of
great interest to study these processes in silico, with the
ultimate goal of predicting PK profiles and possible DDIs

http://www.proteinatlas.org/


Fig. 1 a Expression of transporters of importance for the handling of drug molecules, exemplified by the expression of such proteins in the liver.
b Schematic procedure of ligand-based modeling of drug-transporter interactions. Molecular descriptors that encode fundamental molecular properties
(e.g., size, shape, polarity, charge) or structural features (e.g., presence of specific substructures) are calculated for a set of drug molecules (ligands and
non-ligands). Multivariate regression or classification methods are then used to relate the molecular descriptors to the measured activity (e.g., affinity for
the transporter, transport rates, or a binary classification: inhibitor/non-inhibitor or substrate/non-substrate). Commonly applied statistical methods include
Partial Least Squares (PLS) projection, Support Vector Machines (SVM) and Decision Trees/Random Forests. Once properly validated (using, e.g.,
cross-validation and external test set procedures), the models can be used to predict drug-transporter interactions for new molecules. c Protein structures
of transporters (e.g., mouse MDR1/P-gp, Protein Data Bank ID 4KSD) are used to predict ligand-transporter binding in computational docking experiments.
When crystal structures are lacking, structures can be inferred from homologous proteins (homology/comparative modeling). The interactions
between ligands and transporter binding sites are scored based on the complementarity of functionalities (e.g., hydrogen bond formation,
charge interactions and hydrophobic interactions) and the energies needed for the ligand to adopt a favorable conformation
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even before the compound is synthesized. A wide variety
of computational approaches has been applied for this
purpose, as extensively reviewed in (Montanari and Ecker
2015). The toolbox available for molecular-level modeling
of drug-transporter interactions is the same as that
for other applications of structure-activity relationship
(SAR) modeling, and is typically divided into ligand-based
(Fig. 1b) and structure-based (Fig. 1c) approaches. Below,
we discuss the respective applications, advantages and dis-
advantages of these approaches, along with some recent
developments that should lead to improved models in the
near future.

Ligand-based modeling of drug-transporter interactions
As the name implies, ligand-based approaches use infor-
mation about the structure and molecular properties of
the ligands to explain their interactions with the trans-
porters. Statistical methods are used to relate measure-
ments of drug transport or drug-mediated transporter
inhibition with numerical descriptions of the ligand chem-
ical structures. The assumption is that such molecular de-
scriptors will contain information that is relevant for
explaining the drug-transporter interaction – e.g.,
hydrogen bonds, charge and hydrophobic interactions,
and steric effects. A wide variety of approaches are avail-
able for both the structural description and the statistical
model development, and the experimental data used to
train the models also come in several different shapes and
flavors. Some advantages and disadvantages are, however,
common to all ligand-based approaches. Explicit informa-
tion about the transporter structure is not necessary,
which is a clear advantage since, for the majority of the
drug transporting proteins, relevant crystal structural in-
formation is still lacking. The models are typically of a
multivariate nature. Methodologies commonly applied in
ligand-based modeling include partial least squares projec-
tion to latent structures (PLS), support vector machines/
regression (SVM/SVR), artificial neural networks (ANN)
and random forests (RF). Importantly, statistical SARs like
these are trained on a specific set of measured data and
their applicability will be determined by the compounds
included, the experimental method used, and the quality
of the training data. For example, a model trained on a
structurally related series of compounds will probably
have limited predictivity outside that series, but should be
able to identify series-specific details that the more general



Matsson and Bergström In Silico Pharmacology  (2015) 3:8 Page 5 of 8
models could miss. In contrast, models trained on struc-
turally diverse compound sets will better identify global
trends and can be used, for example, to identify
compound series that are likely to exhibit transporter
liabilities. Conversely, the absence of protein-structure
information entails that drug-transporter interactions
cannot be calculated directly based on physical princi-
ples. Since molecular interactions are instead inferred
from the properties and features of the ligands, models
will be sensitive to the particular drug molecules used
to train them.
Ligand-based modeling has been applied to most of

the major ABC and SLC transporters implicated in drug
transport (Giacomini et al. 2010, Hillgren et al. 2013,
Sedykh et al. 2013). MDR1/P-gp in particular has been ex-
tensively studied in silico, see e.g. Gombar et al. 2004, Boc-
card et al. 2009, Matsson et al. 2009, Broccatelli et al.
2011, Broccatelli 2012. The reasons for this are two-fold:
P-gp is one of the most important transporters in the cel-
lular protection and detoxificafion process and, because it
was the first efflux transporter to be identified, a large
body of experimental data is available. More recently, as
experimental data are becoming available, the same
types of modeling approach have been applied to other
drug-transporting ABCs and SLCs, including BCRP
(Matsson et al. 2007, Matsson et al. 2009), MRP2
(Pedersen et al. 2008, Matsson et al. 2009) OCT1 (Ahlin
et al. 2008), OCT2 (Suhre et al. 2005, Kido et al. 2011)
OATs (Truong et al. 2008, Soars et al. 2014), OATPs
(Karlgren et al. 2012, De Bruyn et al. 2013) and MATE1
(Wittwer et al. 2013).
Descriptions of chemical structure range from binary

fingerprints that encode the presence or absence of cer-
tain substructural features in each transporter ligand, via
descriptors of general molecular properties (including
size, shape, lipophilicity, polarity and charge), to phar-
macophores (describing the three-dimensional locations
of ‘pharmacophore features’, i.e., functionalities involved
in charge interactions, hydrogen bonding or hydropho-
bic interactions) and molecular fields (describing the
interaction potential of the ligand with ‘interaction
probes’ placed in a grid around the molecule). The latter
two approaches have the advantage of providing three-
dimensional information about molecular interactions
between the ligand and its environment (Dong et al.
2013). However, they strongly rely on accurate alignment
of the transporter-interacting compounds to derive cor-
rect spatial information, and may thus be more suitable
for series of structurally related ligands that bind the
same site in the transporter than for modeling structur-
ally diverse compounds that potentially bind to different
regions of the transporting protein. In contrast, models
based on general molecular descriptors may be advanta-
geous for structurally diverse ligands that potentially
interact with several different binding sites or with more
diffuse ‘binding regions’ (Kido et al. 2011, Pedersen et al.
2013) as observed, for example, in the crystal structures
of some ABC transporters (Aller et al. 2009).
Each way of representing the ligand structure has its

advantages and disadvantages, and will thus be more or
less suitable depending on the particular application and
set of compounds to be modeled. For example, substruc-
ture fingerprints are sensitive to how frequently the dif-
ferent substructures occur in the sets of interacting and
non-interacting compounds. If a substructure that is in-
volved in ligand-transporter binding is rare in a set of
interacting compounds, it may not be detected as statis-
tically enriched. In contrast, substructural motifs that
are common in a series of structurally related interacting
compounds can be detected even when they are not dir-
ectly involved in ligand-transporter binding (instead,
they will be proxies for the particular compound series).
Notably, consensus-based modeling approaches that
combine different ways of representing ligand structures
(e.g., pharmacophore- and molecular descriptor-based
models) have been shown to improve predictions of ex-
ternal validation sets (Broccatelli et al. 2011).

Structure-based modeling of drug-transporter
interactions
In contrast to the ligand-centric methods, structure-
based modeling starts from spatial information about
the protein structure of the transporter, most commonly
derived using X-ray crystallography. This allows direct
modeling of ligand-transporter interactions, for example
through computational docking experiments in which li-
gands are introduced into the transporter structure and
its binding pocket. The interactions are scored based on
the complementarity between the ligand and the binding
site with respect to size/shape, binding motifs and con-
formational strain.
Structure-based modeling thus has clear benefits in

allowing direct inference of which ligand and target fea-
tures are involved in an interaction. In contrast to ligand-
centric modeling approaches, the scoring functions used
are typically based on fundamental physics principles
(concerning, e.g., the energetics of inter-atomic inter-
actions and conformational flexibility). Structure-based
models are thus less sensitive to the choice of ligands than
ligand-based models. Importantly, the results of a docking
experiment strongly depend on the quality of the template
structure. To date, most available transporter structures
have been obtained from bacterial proteins that are dis-
tantly related to human drug transporters. However, re-
cently, the structures of the mouse Mdr1/P-gp ortholog
(Aller et al. 2009, Ward et al. 2013) and the human glu-
cose transporter GLUT1 (SLC2A1) (Deng et al. 2014)
have been revealed.
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In the absence of human transporter structures, com-
parative (homology) modeling can be used; in this method,
unknown protein structures are inferred based on their
homology to crystallized template structures. The trans-
porter sequence of interest is aligned to that of the
template protein, and the unknown protein structure is
modelled based on spatial constraints (obtained from the
alignment to the template structure), atomic statistical po-
tentials, and molecular mechanics (see, e.g., Sánchez et al.
2000 and Schlessinger et al. 2013a, b for reviews). Such
modelled structures should of course be used with some
caution, especially if the aim is to derive ligand-transporter
interaction information. Typically the overall protein
fold is maintained at relatively low sequence homology
(Schlessinger et al. 2010, Schlessinger et al. 2013a, b) but
the template and model structures need to be closely re-
lated if atomic-scale resolution is to be maintained to
allow high-quality modeling of ligand binding. Further,
docking experiments are complicated in that most struc-
tures have been crystallized in the absence of prototypical
substrates, and may thus reflect conformational states that
are less relevant for substrate binding.
These caveats aside, structure-based modeling has been

successfully used to identify new ligands for several
transporters, including MDR1/P-gp (Dolghih et al. 2011,
Ferreira, (Ferreira et al. 2013)) and the noradrenaline
transporter NET/SLC6A2 (Schlessinger et al. 2011).
It should be noted that, in the few cases where structure-
based modeling has been used in conjunction with ligand-
based approaches, predictivity statistics have been
somewhat in favor of the latter (see e.g. Klepsch et al.
2014). However, the numbers indicate that docking-
based predictions of transporter ligands are possible,
and the spatial information inherent in the method-
ology provides an advantage over purely ligand-based
methods for interpreting the predictions. Combination
approaches using these complementary methodologies
are thus likely to yield synergistic information (Tan et al.
2013, Klepsch et al. 2014) and as an example, ligand-based
structure-activity relationship data have been used to
prioritize structure-based predictions (Klepsch et al. 2014).

Conclusions
Computational models of molecular-level interactions
have been developed for a number of important trans-
porters, using both ligand-based and structure-based
methodologies. These models can be used to predict the
likelihood of interactions between a new chemical entity
and a particular transporter. Most of the datasets ex-
plored so far are based on transport inhibition measure-
ments, where large numbers of compounds have been
screened for their potential to inhibit the transport of a
known substrate. Smaller datasets of substrate transport
have also been modeled using similar methods, but
currently these datasets are too small to allow general
conclusions regarding the molecular determinants for
influx or efflux. Methodological advances in different as-
pects of drug-transporter interaction modeling can be ex-
pected to continue to improve the quality of predictions
as well as our understanding of the transport process at a
molecular level. This includes improved description of lig-
and structures that will accurately capture the features in-
volved in the ligand-protein interaction; improved scoring
functions for molecular docking that will more precisely
replicate ligand binding energies; and improved statistical
techniques that will describe the nonlinear relationships
between ligand features and drug binding and transport.
Such technological advances will allow better use of the
available drug-transporter interaction data.
However, the most noticeable improvements will come

from extending the database of high-quality experimen-
tal data, i.e. from experimentally obtained descriptions
of human transport protein structures (crystal structures
of ABC and SLC transporters) and the interaction pat-
terns of these transporters (increasing the size of the lig-
and datasets). Sufficiently large datasets of drug-mediated
transporter inhibition are available for only a limited num-
ber of transporters. For the remaining transporter panel,
modeling exercises are reliant on the merging of data from
multiple sources – thus including cell type, assay type, and
inter-laboratory variability in the training data. This is par-
ticularly true for the modeling of transported substrates,
where large consistent datasets are as yet unavailable in
the public domain. Structure-based modeling and ligand-
docking approaches are limited by the availability of crys-
tal structure information for human transporters (or for
transporters closely enough related to provide atomic-
level accuracy in homology models). Technological and
methodological advances allowing structure determination
for these membrane-bound proteins are central to the im-
provement of drug-transporter interaction predictions.
Most importantly, such advances will facilitate an under-
standing of the molecular interactions taking place when
drug compounds are transferred across cell membranes.
In summary, the wish-list of developments that would

facilitate future modeling efforts includes: i) additional
large and internally consistent datasets of ligand-
transporter inhibition (ideally, such datasets should be
characterized by inhibition mechanism to distinguish
competitive inhibitors from inhibitors with possible
allosteric or non-specific mechanisms); ii) large datasets
of verified transported substrates; and iii) atomic reso-
lution structures of relevant transporters, preferably
captured in several states of the transport cycle, and
with co-crystallized model ligands to provide experi-
mental data to which binding poses predicted by virtual
screens can be compared. Efforts to fulfill this wish-list
are underway in several laboratories world-wide, and
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significant progress can thus be anticipated over the
next few years.
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