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Prediction and assessment of drought effects
on surface water quality using artificial neural
networks: case study of Zayandehrud River, Iran
Hamid R. Safavi* and Kian Malek Ahmadi

Abstract

Although drought impacts on water quantity are widely recognized, the impacts on water quality are less known.
The Zayandehrud River basin in the west-central part of Iran plateau witnessed an increased contamination during
the recent droughts and low flows. The river has been receiving wastewater and effluents from the villages, a
number of small and large industries, and irrigation drainage systems along its course. What makes the situation
even worse is the drought period the river basin has been going through over the last decade. Therefore, a river
quality management model is required to include the adverse effects of industrial development in the region and
the destructive effects of droughts which affect the river’s water quality and its surrounding environment.
Developing such a model naturally presupposes investigations into pollution effects in terms of both quality and
quantity to be used in such management tools as mathematical models to predict the water quality of the river and to
prevent pollution escalation in the environment.
The present study aims to investigate electrical conductivity of the Zayandehrud River as a water quality parameter and
to evaluate the effect of this parameter under drought conditions. For this purpose, artificial neural networks are used
as a modeling tool to derive the relationship between electrical conductivity and the hydrological parameters of the
Zayandehrud River. The models used in this research include multi-layer perceptron and radial basis function. Finally,
these two models are compared in terms of their performance using the time series of electrical conductivity at eight
monitoring-hydrometric stations during drought periods between the years 1997–2012.
Results show that artificial neural networks can be used for modeling the relationship between electrical conductivity
and hydrological parameters under drought conditions. It is further shown that radial basis function works better for
the upstream stretches of the river while multi-layer perceptron is more efficient for the downstream stretches.

Keywords: Discharge, Drought, Temperature, Electrical conductivity, Artificial neural networks, Multi layer perceptron,
Radial basis function

Introduction
In recent decades, the available water has decreased to
the extent that it barely, if at all, meets the human de-
mands or the requirements for preserving the biological
systems. Pollution and water scarcity are the two most
important challenges facing most countries, especially
those in arid and semi-arid regions. In this context,
much attention has been focused on the physical avail-
ability of water resources at the expense of neglecting
water quality which is also a main concern. Nowadays,

an integrated and systematic approach to qualitative and
quantitative management of water resources has gained
a great significance due to the increasing components of
these systems, the complex interrelationships, and their
far reaching effects. For example, according to the
Malaysia’s Department of Environment, many rivers ex-
perience a loss of quality, which in turn affects people’s
health, the nation’s economy, and the environment [1].
The main causes of river pollution are often associated
with people’s attitudes and their lack of environmental
awareness. This pollution is diffused due to development
along the river [2].* Correspondence: hasafavi@cc.iut.ac.ir
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On the other hand, periods of drought and low flows
can have dramatic effects on aquatic systems by redu-
cing the quantity of river flows [3]. The impacts of
drought conditions on river water quality may be sub-
stantial. Although the drought appeared to have signifi-
cant adverse environmental effects, the actual impacts
on water quality are not well understood. Typical effects
are increases in total dissolved solids and their constitu-
ent ions and biochemical oxygen demand, and decreases
in dissolved oxygen [4]. There have been few studies
evaluating impacts of droughts and low flow rivers on
water quality or aquatic systems. These studies focused
on modeling and discussing the possible impacts of
drought and low flows on water quality [5–14]. Most of
the models developed are complex and require a signifi-
cant amount of field data to support analysis.
Recently, the neural networks approach has been ap-

plied in the areas of water engineering. Artificial neural
networks are able to accurately approximate complicated
non-linear input–output relationships. ANN model is
flexible enough to accommodate additional constraints
that may arise during its application. Moreover, the
ANN model can reveal hidden relationships in historical
data, thus facilitating the prediction and forecasting of
water quality [2, 15, 16]. Many studies have been re-
ported on water quality modeling and prediction by
using ANNs [17–23]. Hence, motivated by successful

applications in modeling non-linear system behaviors,
ANNs are used in the present study for modeling and
prediction of surface water quality in drought or low
flow conditions.
The objective of this study is to predict and simulate

electrical conductivity (EC) as a water quality parameter
and to assess this parameter in drought conditions for
the Zayandehrud River flows in west-central Iran. In this
research, the relationship between electrical conductivity
and hydrological parameters of the river investigated is
obtained by artificial neural networks as the modeling
tool hereinafter we can estimate the relation between
hydrological parameters and water quality parameter.
This modeling tool consists of the multi-layer percep-
tron (MLP) and the radial basis function (RBF). Finally,
the two models are compared with respect to their
performance.

Materials and methods
Study area
The Zayandehrud River basin covers an area of 26,917
Km2 located between latitudes 310 15’ and 330 45’ north
and longitudes 50° 02’ and 53° 20’ east in west-central
Iran (Fig. 1). The total precipitation in the basin varies
between 1500 mm in the west and 50 mm in the east
with an average annual value of 140 mm, which ranks
the basin as a semi-arid region. The mean annual
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Fig. 1 The Zayandehrud River basin in Iran
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temperature in the basin is 14.5 °C with a low of −12.5 °C
in January and a high of 42 °C in July. The potential an-
nual evapotranspiration in the region is 1900 mm [24].
The Zayandehrud River is the most important river in

the basin originating in the eastern slopes of the Zagross
Mountain Range. The Zayandehrud storage dam with an
efficient storage capacity of 1400 MCM is located 75
Km downstream the origin of the Zayandehrud River
which has a natural average flow of about 900 MCM. To
augment the water supply in the basin and to keep up
with the increasing demand, inter-basin transfers have
been implemented. Three tunnels have been constructed
and are currently being operated which deliver an
annual flow of 850 MCM into the basin. The flow down-
stream the dam supplies water for agricultural, munici-
pal, and industrial uses. The total river length spans over
a route of 350 Km to end in Gavkhooni wetland [25].
In recent decades, water has become increasingly

scarce and the Zayandehrud basin has shown signs of
salinization of agricultural land and increased pollution

in the lower reaches of the river. While the river is
subjected to multiple human impacts including water
abstraction for domestic use in urban and rural areas,
industrial and agricultural uses, and urban and agricul-
tural runoff and drainage, it has also been receiving raw
and treated sewages. Furthermore, the severe drought in
recent years is a current phenomenon affecting water
quantity and quality in the basin. Water quality generally
shows a considerable spatial variability from upstream to
downstream and deteriorates from Isfahan city down-
ward the river’s course. The objective of this article is to
evaluate the impact of droughts and low flows on the
water quality of the Zayandehrud River.

Methods
Artificial neural networks
General concepts of artificial neural networks
An artificial neural network is created to mimic natural
neural networks using computing processes. ANN
models have been used to model wrapped non-linear

Fig. 3 RBF-NN structure

Fig. 2 MLP-NN structure
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input–output relationships in water resources manage-
ment and environmental fields [26]. ANNs receive a
number of inputs in the processing units which are able
to communicate by sending signals to each other
through a large number of weighted connections. In
each network, some basic features are presented such as
a set of inputs, connections within each unit, an output
from each unit, an external input called bias, the rule
which determines the effective input from inputs, and
an activation or transfer function (usually sigmoid)
which computes the correlation between the sum and
the output of the unit [27].
The main idea of neural networks is that parameters

can be adjusted so that the network exhibits some
desired or interesting behavior. Thus, we can train the
network to do a particular job by adjusting the weight or
bias parameters, or perhaps the network itself will adjust
these parameters to achieve some acceptable end [27].
The natural behavior of hydrological processes, and
especially water quality, is appropriate for using the

ANN approach. However, hydrological applications of
ANN are still in their dehiscence stages [19].

Network training
The learning capability of ANNs is one of their interest-
ing features. The purpose is to provide the network with
a set of inputs for it to produce a certain set of outputs
or at least to produce the desirable ones. The ANN pro-
cesses sets of inputs and outputs in the vector phase.
During periods of network learning, the weights grad-
ually converge to desirable values. Actually, prediction
error in learning a set is minimized by proper adjust-
ment of weights. If the network learns properly, the
model can produce outputs for unknown sets of inputs.
There are two types of training used in ANNs: super-
vised and unsupervised [27, 28].

Multilayer perceptron neural network
In recent years, the feed-forward ANN, multilayer
perceptron (MLP), or back-propagation network have

Fig. 5 Ghaleh-shahrokh drought border

Fig. 4 Location of hydrometric stations along the Zayandehrud River
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been widely used. The MLP possesses the transfer
function and different learning rules such as the
delta-rule and back-propagation. The MLP is in-
volved with function approximation and finding rela-
tionships between inputs and outputs (Fig. 2).
Two different algorithms are available that can be used

for training the MLP model: 1) delta rule, and 2) back-
propagation rule. In this study, back-propagation is used
to construct the MLP because it is the prevalent algo-
rithm for training MLPs (for applications of the delta
rule, [28] may be consulted). Back-propagation is used
to extend the delta rule and, when sets of inputs are ap-
plied to the network values of weights, biases propagate
to the output unit and the mean square errors between
outputs of the network and the target is computed.
These values should be set to zero. Then, the weights
are adjusted. Tuning the weights is a stage in which the
computed errors propagate from the output layer back
to the input layer. These steps are performed iteratively

until errors are minimized. The errors are computed by
the following equation:

MSE ¼ 1
N

XN
i¼1

T−Y ið Þ2 ð1Þ

Where, MSE is mean square error, N is the number of
observations, T is the observation value, and Yi is the pre-
diction or output value. Back-propagation learning rule
may proceed in either of two ways: 1) the pattern or case
by case mode; 2) the batch mode. In the former mode, cal-
culations are performed after each case, while in the latter,
updating the calculations and weights is performed after
the whole training pattern is presented [27].

Generalizing multilayer perceptron neural network
After the learning stage is completed, the network enters
the prediction stage in which the input vector which was
not presented in the learning stage is applied to the
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network and the corresponding outputs are pre-
dicted. The ability of a network to predict such un-
known outputs is called ‘interoperability’ or
‘generalization’. One of the obstacles against the
learning stage is over-fitting or over-learning of ANN
on training data by which is meant the error on the
training data is reduced to a minimum, but the error
is still high as a result of explicitly presenting un-
known data as the set of inputs so that the network
is not properly generalized. One solution proposed
for generalizing the network is that the network is
used in appropriate dimensions. Using the network
with greater dimensions may result in over-fitting. A
second solution for improved generalization of the
network is regularization, which will not be further
discussed in the present article.
In early stopping, the data is broken down into

three categories. The first is the training data set that
is used for adjusting weights and for training the net-
work. The second category consists of the validation
set. During the training process, routine training is
supervised. The error of the validation set should de-
crease as with the training set errors. When the

network is on the verge of over-fitting, the validation
error begins to grow and training is stopped. The
third category involves the test set. This set is not
employed during the training and comparing pro-
cesses if diverse models are performed by this set.

Radial basis function neural network
The radial basis function was first developed by Broomhead
and Lowe in 1988 [29]. The ordinary RBF algorithm is con-
sidered as a curve fitting operation to find the best input
and output adaption and an RBF-NN gives an approxima-
tion of any input–output relationships. The constant struc-
ture of RBF consists of an input layer, a hidden layer, and
an output layer. The hidden layer applies a non-linear
transformation from the input space to the hidden layer.
The output layer applies a linear transformation from the
hidden space to the output space. The radial basis is the
hidden functions. Among the several radial basis functions,
the Gaussian is the one commonly used. If a Gaussian
function is used, the output of each hidden layer unit
then corresponds to the distance of the input from
the center. This means that the transfer function of

Table 1 Variations at hydrometric stations for drought conditions

Temp (°C) Q (m3/s) EC(μmhos/cm)

No. Station. Max Min Ave Max Min Ave Max Min Ave

1 Ghaleh-shahrokh 22.5 −21 9.03 99 6.35 29.81 484 224 351.70

2 Regulator dam 28.5 −12 12.06 81.9 0.04 36.23 373 253 310.33

3 Zamankhan-bridge 25.5 −4.75 11.35 69.7 5.92 34.31 432 263 324.17

4 Kaleh-bridge 26.88 −1.13 12.14 49.4 0.43 16.85 655 242 418.31

5 Lenj 31.13 0.38 15.18 30 0.05 11.5 1790 407 835.65

6 Mousian 29.75 −3.75 13.04 25 1.09 9.90 1547 363 789.23

7 Chum-bridge 32.25 −1.03 15.56 17.2 0.41 6.18 1550 420 957.38

8 Varzaneh 32.7 −3.25 15.53 1.99 0.1 0.38 39600 7100 17850.4
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the hidden layer is Gaussian [30]. The Gaussian function
takes the following form:

φ x; μð Þ ¼ e−
x−μk k2
2d2 ð2Þ

Where, μ is the center of the Gaussian function and d
is the distance (radius) from the center of φ(x, μ) which
gives a measure of the spread of the Gaussian curve.
During the training procedure, the center “μ” and the

spread “d” are parameters to be determined. We can de-
duce from the Gaussian radial function that a hidden

unit is more sensitive to data points near the center.
This sensitivity can be adjusted by controlling the spread
d. It must be noted that the neuron’s transfer function
should cover the whole significant zone of the input
space. The structure of RBF-NN is presented in Fig. 3.
Based on the type of neurons chosen from among

those existing in the hidden layer, one of two methods
may be employed for training the RBF-NN. The first is
an exact design while the second is a more efficient
design. In the first method, the numbers of hidden layer
neurons are considered to be equal to the number of

Fig. 10 RBF-NN model for predicting EC

Fig. 9 A four-layer MLP-NN for predicting EC
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inputs. In the second method, one neuron is added each
time to previous neurons individually till the minimum
error is yielded [28]. In this research, we used the more
efficient error for modeling.

Method of presenting input and output for training the
network
It is better to present and apply input and output sets to
the network in a random manner. If the data in the
input file are categorized and sorted or applied to the
network in a specified sequence, the network may forget

what it is to learn. In fact, the network learns relation-
ships between the input and output data but when new
data are presented to the network, the error value may
increase. Random presentation of data is one of the effi-
cient routes to escape local minimization [28].

Network operation
Network operation is defined so as to demonstrate that
the network has a reasonable response to the data which
is not already stored during the training process. It is
computed by three valid statistical evaluation criteria

Fig. 12 MLP error histogram for Varzaneh station

Fig. 11 MLP-NN correlation result for train, validation, and test group and all data for Varzaneh station
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such as correlation coefficient (determination coeffi-
cient), root mean square error, and mean absolute error
as expressed below:

R2 ¼ 1−

XN

i¼1
Oi−Tið Þ2XN

i¼1
Oi−�Oið Þ2

ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1

XN

i¼1
Oi−Tið Þ2

1
N

XN

i¼1
Tið Þ2

vuuut ð4Þ

MAE ¼ 1
N

XN

i¼1
Oi−Tið Þ ð5Þ

Where, Oi and Ti represent the exact or real value of
the output (observation) and the predicted (test) value,
respectively. N is the number of observations and Ōi is
the mean of the exact value.
If RMSE and MAE are close to zero, this will indicate

that the prediction result is more accurate. R2 Anywhere
close to 1 indicates that a better adoption was obtained
through the exact and prediction values.

Water quality and hydrologic data
The data used in this study were obtained from Isfahan
Regional Water Company including discharge,
temperature, and electrical conductivity (EC) at the eight
hydrometric stations along the Zayandehrud River
between September 1997 to August 2012 which included
both drought and wet years (Fig. 4). Drought or low flow
threshold was determined from the discharge data from
each hydrometric station. For example, drought borders
for Ghaleh-shahrokh, Kaleh-bridge, Mousian, and Varzaneh
stations are shown in Figs. 5, 6, 7 and 8.
Based on these Figures, the drought or low flow bor-

ders for the 8 hydrometric stations from upstream to
downstream were 100, 85, 70, 50, 30, 25, 18, and 2 m3/s.
The variations in temperature, discharge, and electrical
conductivity for these eight stations are shown in
Table 1.

Modeling of water quality using neural networks
For modeling and predicting electrical conductivity (EC),
we used MLP-NN and RBF-NN models. Hydrological
parameters were used in the network as important
factors affecting electrical conductivity to predict EC

Fig. 14 RBF error histogram for Varzaneh station

Fig. 13 RBF-NN correlation results for train and test for Varzaneh station
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Table 2 Summary results for MLP-NN for simulating EC

Transfer function Optimized number of neurons Performance Errors (μmhos/cm)

Station Total number
of data

First hidden
layer

Second hidden
layer

Output
layer

First hidden
layer

Second hidden
layer

Train Validation Test MAE Max absolute
error prediction

Min absolute
error predictionRMSE R2 RMSE R2 RMSE R2

Ghaleh-shahrokh 141 Tan-sigmoid Log-sigmoid Purelin 10 4 22.08 0.82 22.15 0.82 28.66 0.75 22.83 65.04 1.23

Regulator dam 145 17 8 16.06 0.62 16.14 0.57 14.43 0.67 11.13 64.29 1.18

Zamankhan-bridge 129 5 4 17.50 0.68 19.02 0.60 20.40 0.69 16.97 58.55 0.60

Kaleh-bridge 106 17 10 30.26 0.91 33.77 0.80 60.12 0.79 47.79 96.31 1.27

Lenj 110 13 13 98.20 0.90 116.33 0.90 242.89 0.83 202.82 420.00 6.82

Mousian 105 7 5 88.07 0.89 93.24 0.88 117.26 0.85 84.15 327.80 7.87

Chum-bridge 105 8 8 103.38 0.88 109.98 0.82 145.46 0.81 110.70 281.10 0.13

Varzaneh 131 8 9 2541.63 0.89 3242.06 0.87 3893.45 0.83 3046.60 9665.00 506.40
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appropriately. Matlab software Ver. R2011b was used to
build both networks with four input vectors. Discharge
at present (t), discharge at a previous period (t-1), mean
temperature at present (t), and electrical conductivity at
a previous period (t-1) were fed as the sets of inputs to
simulate electrical conductivity in the present time (t).
In the MLP-NN model, two hidden layers were used

while the numbers of neurons varied from five to fifty
for each station (Fig. 9). Because there is no general rule
for determining the properties of hidden layers and the
neurons, trial-and-error procedures recommended by
many researchers [2] were used to construct the hidden
layer and the neurons. The number of hidden layer neu-
rons significantly influences the performance of a net-
work: if the number is small, the network may not
achieve the acceptable level of accuracy, but if there are
too many, training may be lengthy and the model may
over-fit the data. Two loops were used to build the first
and the second hidden layers and the efficient results
obtained were stored at each point in time. These results

were procured based on the assumption that the net-
work should not run into over-fitting and that the error
should have decreased by increasing number of neurons.
MLP-NN was trained by the back-propagation rule and
the Levenberg-Marquardt optimization of weights and
bias values. The transfer function for the first hidden
layer was tangent-sigmoid while it was log-sigmoid for
the second. Based on the data sets, 70 % of the data sets
were used for training and 30 % for both testing and
validation of the network.
The RBF-NN has a constant structure. The ability of

the RBF-NN model to achieve the target depends to the
predefined internal parameters such as the number of
neurons and the spread. The number of neurons defines
the contribution of each input parameter to the desired
output while the spread controls the adaptive changes
that the RBF-NN makes to the neurons. During training,
optimization of RBF-NN parameters is an important
stage for appropriate mapping. This optimization is
performed by the efficient design method and the trail-

Table 3 Summary results for RBF-NN for simulating EC

Transfer function Optimized number of
neurons and spread

Performance Errors (μmhos/cm)

Station Total number
of data

First hidden
layer

Output
layer

Hidden
layer

Spread Train Test MAE Max absolute
value of error
prediction

Min absolute
value of error
prediction

RMSE R2 RMSE R2

Ghaleh-shahrokh 141 Gaussian Purelin 47 16.6 21.49 0.83 27.43 0.81 23.20 71.52 0.89

Regulator dam 145 60 21 14.86 0.65 15.82 0.76 10.85 50.85 0.35

Zamankhan-bridge 129 36 37 16.66 0.71 20.89 0.69 17.28 42.8 0.26

Kaleh-bridge 106 43 17 33.82 0.89 28.77 0.88 23.03 105.3 1.69

Lenj 110 44 99 99.35 0.90 125.15 0.80 98.43 423.10 5.22

Mousian 105 22 47.6 94.75 0.87 120.88 0.82 92.98 269.70 3.49

Chum-bridge 105 41 19 122.42 0.82 245.08 0.90 211.13 379.90 2.51

Varzaneh 131 45 955 2988.51 0.81 4267.78 0.77 3466.10 9804 274.1

Fig. 15 Comparison of MLP and RBF capabilities with MAE for EC simulating for all the stations
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and-error process for determination of spread and neu-
rons of the hidden layer (Fig. 10). Based on the data sets,
90 % of the data sets were used for training and 10 % for
testing the network.
The performances of the models are evaluated using

determination coefficient (R2), root mean square error
(RMSE), and mean absolute error (MAE).

Results and discussion
Sixteen architectures (MLP and RBF) were developed
to simulate electrical conductivity in drought or low
flow conditions. All the networks achieved the efficient
MSE (mean square error) during training. Choosing the
proper inputs when creating the models has a great im-
pact on their performance. After training the proposed
model, the next step is to test the model with the test
data sets. In the MLP model, the network was opti-
mized by ten neurons in the first hidden layer and four
neurons in the second one. The values of RMSE and R2

for the training set, the validation set, and the test set
were (2541.63, 0.8918), (3242.06, 0.8714), and (3893.45,
0.8275), respectively, in Varzaneh station (Fig. 11). Also,
the error histogram for this station shows the max-
imum absolute error prediction was 9665 while its

minimum was 104.1 μmhos/cm. For brevity, the MLP-
NNs features and performances for each of the eight
stations are summarized and only the correlation
diagram and the error histogram for Varzaneh station
are presented (Fig. 12).
In the RBF model, the network was optimized by 45

neurons in the hidden layer (or radial function) and 955
as the spread, whose RMSE and R2 for the training set
and the test set were (2988.51, 0.8136) and (4267.78,
0.7693), respectively, in Varzaneh station (Fig. 13).
Also the error histogram is presented for this station

which shows that the maximum absolute error predic-
tion was 9804 and its minimum was 274.1 μmhos/cm.
Similar to MLP-NN, the MLP-NNs features and perfor-
mances for each of the eight stations are summarized and
only the correlation diagram and the error histogram for
Varzaneh station are presented in Fig. 14.
It is clear that, with respect to their training perform-

ance, the models (MLP-NN and RBF-NN) developed
were capable of imitating the electrical conductivity
accurately with relatively low-error for all the samples
provided. The results also demonstrate that MLP-NN
and RBF-NN were able to perceive the input–output
mapping in the historical data and to interpolate the
unseen pattern for better prediction in drought conditions
(Tables 2 and 3).
Based on the same results, if MAE is considered as a

performance criterion, its network efficiency improved
in Ghaleh-shahrokh, Regulator dam, Kaleh-bridge, and
Lenj compared to the MLP-NN. Fig. 15 shows this
comparison in the logarithmic scale represented in ver-
tical axes. In Lenj station, MAE is observed to rise for
both models while the electrical conductivity values in
neighboring stations such as Kaleh-bridge and Mousian
are close to that of Lenj station, indicating that elec-
trical conductivity may depend on another parameter
in the input.

Table 4 Summary of PEER results for MLP-RBF comparison

Station PEMax-MLP PEMax-RBF PEER

Ghaleh-shahrokh 0.2597 0.2294 11.67

Regulator dam 0.1829 0.1426 22.03

Zamankhan-bridge 0.192 0.1676 12.71

Kaleh-bridge 0.2641 0.2432 7.91

Lenj 0.491 0.843 −71.69

Mousian 0.2998 0.4281 −42.80

Chum-bridg 0.4431 0.5503 −24.19

Varzaneh 1.1394 0.899 21.10

Fig. 16 PEER results for all the stations
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For a more detailed analysis of the efficiency of the
proposed model, we used a performance indicator
known as the prediction error enhancement rate (PEER),
proposed by [31], which is expressed as follows:

PEER ¼ −
PEMax−RBF−PEMax−MLPð Þ

PEMax−MLP
� 100 ð6Þ

Where, PEMax-RBF and PEMax-MLP are the maximum
prediction errors for RBF-NN and MLP-NN defined by:

PEMax ¼ max
Yo−Yp

Y o

� �
ð7Þ

Where, Yo represents the observed values and YP des-
ignates the predicted ones. This equation originates from
a simple proportion that is commonly used for compar-
ing two cases.
If PEER is greater than zero, RBF-NN is then more ef-

ficient than MLP-NN. This indicator can analyze and
examine the ability of the proposed model to minimize
the prediction error. Equation 6 is adapted to present
the efficiency of the RBF-NN model compared to MLP-
NN. According to PEER values, RBF-NN shows greater
improvements in Lenj, Mousian, and Chum-bridge sta-
tions over the MLP-NN. These improvements range
from 7.91 to 22.03 %, but only in Lenj station, the MLP-
NN is more efficient by about 70 %. However, both these
models are generally usable since they both have low
errors (Table 4 and Fig. 16).

Conclusion
The low accuracy of classical methods and approaches
such as linear regression for modeling environmental
conditions and water quality, as well as the nonlinear
nature of water quality problems for planning proper
management systems have been discussed in numerous
researches. A proper management plan is a comprehen-
sive plan which has sufficient valence and reliability both
in scientific terms and in empirical or industrial applica-
tions. ANN or the black-box model is a new technique
for modeling water quality problems. It can accurately
model problems involving water quality and hydrological
processes provided that sufficient experimental data are
available. It is also capable of discovering non-linear rela-
tions between hydrological and water quality parameters.
In this study, two different ANN models, namely the

MLP and the RBF, were used to simulate and predict elec-
trical conductivity in drought or low-flow conditions. Both
networks were then compared with respect to their per-
formance. It was found that electrical conductivity is asso-
ciated with major water quality parameters and further
that it is intensely depends on changes in discharge to the
extent that the changes can be used as a proper water
quality indicator. Significant changes in EC indicate

abrupt changes in discharge or introduction of pollutants
into the river. Obviously, river discharge is one of the
parameters affected by hydrological droughts. Water from
the Zayandehrud River is released from a regulating dam;
discharge is, therefore, regulated at the downstream
stations. When upstream discharge is low, a water deficit
or drought conditions accrue, whereby evaporation is
increased and the water stored in the dam reservoir
declines. It is observed that EC increases severely at the
last station near Gavkhuni Wetland where enormous
biological disasters have been observed to occur which
indicate the enormous agricultural activities upstream the
Gavkhuni Wetland.
In this study, drought borders were determined and

employed in the MLP and RBF neural networks. The
results showed that when MAE is used as a criterion for
comparing the networks in terms of their performances,
the RBF-NN was found to outperform MLP-NN. How-
ever, based on the same criterion, both MLP-NN and
RBF-NN were found to be equally reliable. According to
the prediction error enhancement rate used as a criter-
ion, the MLP-NN was found to be more efficient than
the RBF-NN at Lenj, Mousian, and Chum-bridge
stations. Obviously, these two criteria provided better
results for MLP-NN at Lenj station. Nevertheless, both
networks could be used for accurately modeling the situ-
ation at each station. Other decision making methods
are suggested for investigation to validate the results
obtained. Also, these neural network structures can be
used as the basis for predicting and simulating water
quality in diverse hydrological conditions, and for improv-
ing management approaches in river basins.
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