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Abstract

Background: The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions
occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion
systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants,
complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical
reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction
rates and the species concentrations. The assumptions made in the deterministic models are not hold true for
the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical
processes can be modeled at mesoscopic level by application of the stochastic algorithms.

Method: In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to
predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance
of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for
verification of the model.

Results: The proposed model was verified by comparing the results of Gillespie’s algorithms with the deterministic
solution for conversion of glucose into methane through degraders. At higher value of ‘τ‘ (timestep), the
computational time required for reaching the steady state is more since the number of chosen reactions is less. When
the simulation time step is reduced, the results are similar to ODE solver.

Conclusion: It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex
anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.
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Background
Anaerobic Digestion (AD) is the process by which the
complex form of organic matter such as carbohydrates,
fats and proteins are converted into simpler form by the
cells of microorganisms in the absence of oxygen. Energy
production, high organic loading and low sludge produc-
tion are major advantages of AD process. The energy
produced can replace fossil fuel use, and also has posi-
tive effect on reduction of global warming. Modeling is a
powerful tool which can be applied to simulate various
processes occurring in the digester. Models are applied
for parameter estimation also. Using the simulation re-
sults it is easy to predict and avoid digester failure. The
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modeling results give useful guidelines for the design of
the digester also. The reaction system in an anaerobic
digester is complex with many sequential and parallel
steps. The reactions can be Biochemical or Physico –
chemical in nature which involves species of higher and
lower concentrations. A stochastic approach can be ap-
plied to simulate these reactions in exact manner. The
complex organic matter which is called substrate is con-
verted into simpler form through various steps by living
cells called biomass. These cells grow at suitable environ-
mental conditions of pH, temperature etc. They interact
with the environment and substrates in a complicated
way. Generally the biochemical processes include acido-
genesis, acteogenesis, and anaerobic oxidation of Volatile
Fatty acids, methanogenesis and extracellular hydrolysis
step. The reaction kinetics of growth and decay of biomass
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and conversion of substrates from one form to another
are detailed in the following sections.

Modeling of anaerobic digestion
Anaerobic digestion modeling was started in the early
1970’s when efficient operation of anaerobic systems was
needed. The first developed models were simple with
limited number of reaction equations [1,2]. Importance
was given to simulation of final stage of the anaerobic
digestion, methanogenesis [1–3]. Also attention was paid
to the modeling of anaerobic digestion of “synthetic sub-
strates” such as glucose [4]. Later, more complicated
models of anaerobic digestion process of real and com-
plex wastewater describing various bacterial groups, in-
hibition kinetics, pH calculations and gas dynamics were
developed [5,6]. Although there is no common or uni-
fied modeling frame work for the anaerobic digestion
process, ADM1 (Anaerobic Digestion Model 1) has been
formulated by an international anaerobic modeling task
group which was established in Sendai, Japan in 1997,
and formally endorsed by IWA in 1998 [6]. Anaerobic
digestion model no. 1 (ADM1) consists of 19 processes,
24 components and 56 relative stoichiometric and kin-
etic parameters. This paper focuses on simulation of five
processes with 20 kinetic and stoichiometric parameters.
In this work, four anaerobic microbial groups are consid-
ered for degradation: (i) glucose fermenting acidogens,
(ii) propionic acid degrading acetogens, (iii) butyric acid
degrading acetogens, acetoclatic methanogens and (iv)
hydrogenotrohic methanogens. The flowchart of the
degradation pathway of anaerobic processes is given in
Figure 1.
Various models have been developed based on five

major categories: models considering: (a) non-ionised
Volatile Fatty Acids and total VFA inhibition; (b) H2 as
regulator for VFA production; (c) ammonia inhibition.
The growth of methanogenic population is greatly af-
fected by un-dissociated acetic acid, un-ionised VFA and
total VFA which cause a drop in pH. Several models
have been developed taking the substrate (un-dissociated
acetate and VFA) as inhibition factor [7,8]. The factor
which regulates the amount of fatty acids generation is
the liquid phase redox potential which is expressed as a
function of H2 partial pressure. Due to sudden increase
in organic loading, the accumulation of VFA takes place,
since acetogens grow at a slower rate than the acidogens.
This will increase pH which in turn the H2 partial pres-
sure is increased. This will cause further accumulation
of acids and thus methane generation is reduced. Few
models have been developed based on the H2 partial pres-
sure as inhibition factor [9–12] and manure as substrate
and generated ammonia as inhibition factor [13–15]. Am-
monia inhibits the methanogenesis process, thus acetic
acid is accumulated. This in turn inhibits acetogenesis
process and thus the total VFA accumulates. The reduc-
tion in pH causes decrease in ammonia concentration and
the inhibition of methanogenesis process. Thus the am-
monia inhibition is a self-regulatory.
In all the above models, many species are involved in

more than one reaction. The reaction kinetics is solved
by formulated Ordinary Differential Equations (ODE).
To determine the rate of concentration of a particular
species in time, all the reactions in which the species is
involved are to be included during the formulation of
ODEs. The complexity increases with increase in num-
ber of reactions and species. To avoid this, Stochastic
Algorithm has been applied where the state of the sys-
tem is updated based on the current state of the system
and the transition probability.

Kinetics of anaerobic digestion
The complex organic matter which is called substrate is
converted into simpler form through various steps by
living cells called biomass. These cells grow at suitable
environmental conditions of pH, temperature etc. They
interact with the environment and substrates in a com-
plicated way. The reaction kinetics of growth and decay
of biomass and conversion of substrates from one form
to another are detailed in the following sections.

Kinetics of biomass growth and decay
Once the inoculum is introduced into anaerobic digester,
the cells pass through lag phase where they adjust to the
new environment. Once they get accustomed to the new
environment, they start growing in exponential phase
called log phase. During this phase, the specific growth
rate remains constant. The specific growth rate is given
by dx/dt = µx. When the growth limiting substrate is
exhausted, the growth remains stationary and reaches
the maintenance mode in the stationary phase. When
there is no substrate, the cell population slowly starts
decreasing in the death phase. In each growing culture,
there is a maximum rate of growth per unit biomass
with unlimited substrate in the given environment
(μmax).

Kinetic model of biomass growth
A kinetic model represents the cell population kinetics.
The models can be unstructured, structured unsegre-
gated and segregated. In the unstructured model a single
substrate is considered as growth limiting one. Multiple
substrates are considered in structured model. In unseg-
regated model, the average properties of the cell popula-
tion are considered. In segregated model the discrete
and heterogeneity of cell populations are considered.
Also various kinetic models such as Maltha’s Law, Slater
model and Monod model are used in modeling AD pro-
cesses. In Maltha’s law the rate of increase of biomass is



Figure 1 Flowchart of Biochemical pathway in the anaerobic digestion system.
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a function of microbial population only (F(X) = µx). In
this model, lag or death phase is not considered. It is as-
sumed that there is unrestricted growth of biomass. In
Slater model, final population of biomass is also in-
cluded. This is represented by logistic equation of bio-
mass growth which relates the specific growth rate μ,
biomass concentration X, maximum specific growth rate
μmax and final population Xf . µ = µmax(1 ‐X/Xf). This is
an empirical formula which can be applied in batch
studies. Generally, Monod kinetic model is applied in
most of the biological wastewater treatment processes.
In this model, when one of the substrate concentrations
(S) is Limiting, the biomass growth is represented by
µ = µmaxS/(Ks + S). Ks is the value of the limiting nutri-
ent concentration at which the specific growth rate is
half its maximum value.
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Advantage and limitation of Monod equation
In this model, the kinetic parameters (µmax ,Ks) which
describe the microbial processes are able to predict the
conditions of maximum growth and when the activity
will cease. The main disadvantage of this model is that
since the kinetic parameters (µmax ,Ks) vary with sub-
strate, one set of parameters cannot describe biological
process at short and longer retention time. To overcome
this limitation, first – order models are used [16].

Application of Stochastic algorithm for simulation of
kinetic reactions in the anaerobic digestor
In this work, four anaerobic microbial groups are con-
sidered for degradation: (i) glucose fermenting acido-
gens; (ii) propionic acid degrading acetogens; (iii) butyric
acid degrading actetogens, acetoclatic methanogens and
(iv) hydrogenotrohic methanogens.

Step I: Acidogenesis
After hydrolysis of complex substrate into simpler organic
compounds such as glucose, short chain fatty organic
matter takes place, acidogens degrade glucose into acetic,
propionic and butyric acids. Hydrogen is considered as an
inhibitor for acidogens according to Embden- Myerhoof
pathway since the correlation of NAD+/NADH in the cells
of biomass depend on the concentration of hydrogen.

Step II: Acetogenesis
In this slowly growing and pH sensitive acteogens
oxidize propionic and butyric acids to acetate. At high
partial pressure of hydrogen, it acts as an inhibitor in
acetogenesis phase. Also acetate inhibition of the propio-
nic and butyric acid degradation step has been consid-
ered in numerous studies. So this can be represented by
non-competitive type inhibition model.

Step III – Acetoclastic methanogenic stage
In this step, pH –sensitive and slowly growing acetocals-
tic methanogens reduce acetate to methane. Here, free
ammonia is the inhibitor for the growth of methanogens.
The stoichiometric equation and specific growth kinetic
reactions are given below:

Step IV – Hydrogenotrohic methanogenesis
There may be growth limitations due to deficiency of
CO2 in the reaction system due to digestion of propionic
and butyric acids by acetogens. So dual substrate form
of monod equation can be applied to represent the spe-
cific growth rate of Hydrogenotrohic methanogens.

Biochemical reactions and their kinetics in the anaerobic
digestion system
Biochemical reactions and their kinetics in the anaerobic
digestion system were assumed to follow first order
reactions (hydrolysis), monod type kinetic reactions and
inhibition reaction. The complex particulate waste from
industries or household is first disintegrated into carbo-
hydrate, protein and lip (both particulate and soluble
inert material). During hydrolysis by extra cellular en-
zymes (hydrolases), monossaccharides, amino acids and
Long Chain Fatty Acids (LCFA) are formed. All these
bio-chemical extracellular steps were assumed as first
order [6]. The first order kinetic model is an empirical
relation, which assumes that the hydrolysis rate is a lin-
ear function of the available biodegradable substrate at a
certain pH and temperature. The acidogenic bacteria
turn the products of hydrolysis into simple organic com-
pounds such as short chain Volatile Acids (VA), e.g. pro-
pionic, formic, lactic, and butyric and alcohols such as
ethanol, methanol, glycerol and acetone. Then two types
of acetogenic mechanism can occur [5] (a) acetogenic
hydrogenations and (b) acetogenic dehydrogenations. In
acetogenic hydrogenations, the organic acids formed are
subsequently converted by acetogenic bacteria to acetate
as the main product. Acetogenic dehydrogenations in-
clude the anaerobic oxidation of volatile long and short
chain fatty acids. In this reaction, acetate is formed from
the separated carbon atoms. During this process, due to
high hydrogen partial pressure, oxidation process can be
inhibited. So the hydrogen produced by these organisms is
consumed by a hydrogen-utilizing methanogenic group
and acetate by an aceticlastic methanogenic group. Almost
the 64–70% of methane production is from acetate. Meth-
anogenic bacteria are very sensitive to pH, temperature,
loading rate and other compounds. All the substrate up-
take reactions are intracellular reactions and they are
modeled using Monod kinetics reaction (single Monod,
double Monod and also with competitive and non com-
petitive reactions) Methane is considered to be water in-
soluble, whereas the carbondioxide is partially soluble and
partly escapes into gas phase. When temporary accumula-
tion of Volatile fatty acids occurs, the pH of the digester is
reduced. This will increase the concentration of unionized
VFA in the system. This will inhibit methanogenic activity.
Inhibition function includes pH, hydrogen and free ammo-
nia. Hydrogen and free ammonia inhibition can be repre-
sented by non-competitive reaction whereas pH inhibition
can be represented by empirical equations. The inorganic
nitrogen uptake is represented by competitive secondary
Monod-kinetics, where the prevention of growth due to
limitation of nitrogen and competition for uptake of butyr-
ate and valerate occur.

Deterministic and Stochastic approaches for reaction
simulation
In the deterministic approach for reaction simulation,
the time evolution of the system is considered as con-
tinuous which is governed by a set of coupled ODEs.
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But the stochastic approach regards the time evolution
similar to a random walk process which is governed by a
single differential equation which is called the master
equation. In the deterministic approach, given the initial
concentration of various species in a free homogeneous
macroscopic environment, the concentration at all fu-
ture time intervals is determined by averaging random
fluctuations to produce a predictable deterministic be-
haviour [17]. All the elementary reactions (first, second
order) follow the reaction rate law where the rate of the
reaction is always proportional to the concentration of
each reactant involved in the reaction. The ODE solvers
propagate the system’s state using finite time steps. For
non-linear reactions, extremely small time steps need to
be adopted to keep the numerical exactness. In that case
adaptive step size or implicit method is recommendable.
The ODE approach is empirically accurate for reaction
systems where large concentrations occur and may not
be adequate for systems with small concentrations. In
the deterministic approach, the species population is de-
scribed by a continuous state although a chemical reaction
involves random collisions between individual species.
Also a predictable system is assumed for the reaction rate
or velocity and time evolution. These two assumptions are
not appropriate for a system with low concentration of
species where high relative fluctuations due to stochastic
effect occur. Stochasticity in the state change occurs as
Figure 2 Flowchart of Gillespie’s Tau Leap Method [22].
intrinsic and extrinsic stochasticity. The intrinsic stochas-
ticity is inherent to the system and mainly arises due to
low concentration of species and extrinsic stochasticity
arises due to the random variation of environmental
factors.

Concept of master equation
Master equation describes the transition of a system from
one state to another state using probabilistic formulations.
The state of system is determined by incoming and out-
going transitions. Since the state change of a chemical re-
action system occurs in a discrete number, the probability
to find the current state of the system can be described ac-
cording to the Master Equation approach. In the Master
Equation for reactions, all states are represented by a
discrete number of molecules and transition intensities
are given by reactions per second. Various Stochastic
Simulation Algorithms (SSA) such as Gillespie Direct
Method, Tau leap methods, slow reaction method and
adaptive tau leap method to generate the trajectories by
evolving the reaction type and the time of occurrence of
the reaction through the probability distribution [18–22].
It was developed based on the assumption that the reac-
tion system is well mixed and homogeneous. In this work,
an explicit Tau leap method is adopted for reaction simu-
lation. In Gillespie’s Tau Leap Method, leaping occurs over
sub time intervals τ. The number of reactions occurring



Table 1 Stoichiometric constants for substrates and
products in the model

Sugar/Glucose Constant Constant Constant Constant Constant

G 10 0 0 0 0

B 0 1 0 0 0

P 0 0 1 0 0

A 0 0 0 1 0

H 0 0 0 0 1

M 0 0 0 0 0

G# 0 0 0 0 0

B# 0.117 0 0 0 0
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in the subinterval is determined. The number of times
kj (τ; X (t),t) , that the reaction event Rμ occurs in time
interval [t,t + τ ) is given by a Poisson random variable,
P(aj (X (t)),τ ), where j = 1,..M. The flowchart of Gillespie’s
Tau Leap Method is outlined in Figure 2. The key point of
Gillespie’s Tau Leap Method lies in the selection of time
step. ‘τ’ will be approaching to 1/a0(X (t)) when the
number of reactions or the concentration of the react-
ant species is low. In that case it will be equivalent to
Gillespie’s Direct Method where only one reaction is
chosen in a time step. In these cases, the algorithm be-
comes inefficient.
P# 0.243 0 0 0 0

A# 0.369 0.752 0.5472 0 0

H# 0.171 0.188 0.4128 0 0

M# 0 0 0 0.95 0.94

Note: G; B, P, A, H, M are the stoichiometric constants for substrates (based on
‘f’ and ‘Y’ values); G#, B#; P#; A#, H#; M# are the stoichiometric constants for
products (based on ‘f’ and ‘Y’ values). Sugar/Glucose; B. Butyrate; C. Propionate;
D. Acetate; E. Hydrogen; F. Methane; G. Sugar degraders; H. Butyrate degraders;
I. Propionate degraders J. Acetate degraders; K. Hydrogen degraders.
Application of a stochastic algorithm for the simulation of
anaerobic digestion processes
Based on stoichiometric values, each species is appor-
tioned with theoretical numbers of particles based on
the assumed mass. The fluctuations which occur due to
stochastic nature of simulation can become less pro-
nounced either by repeating the simulation with less
number of particles and computing the mean or by as-
suming more number of particles. According to the the-
oretical statistical physics, the fluctuations in the system
are inversely proportional to the square root of the num-
ber of particles involved in the simulation. So in this
work, more number of particles is assigned for a particu-
lar species in which the substrate Glucose is assigned
with theoretical number of particles proportional to the
concentration in the ratio of 1:5. Figure 3 shows Flow-
chart of processes involved with species degraders.
Figure 3 Flowchart of processes involved with species degraders.
The kinetic parameters in this model μmax,glu = 1.25,
μmax,bu = 0.833, μmax,pro = 0.542, μmax,ace = 0.333, μmax,hyd =
0.35, Ks = 500, Kb = 200, Kp = 100, Ka = 150, Kh = 150,
where μmaxS are maximum uptake rate of various species,
K’s are the half saturation value [23]. The yield of product
on the substrate (f) and the yield of biomass on substrate
(Y) of the various reactions involved in biodegradation are
given in the Table 1. Monod reactions are used as rate re-
actions to determine the next state of the system. The



Figure 4 The simulation results obtained from (a) SBTOOLBOX in Matlab and (b) Stochastic Algorithm.
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propensity function which is the rate of each reaction aμ is
determined. Then based on the total reaction rate of the
system, a reaction is chosen by Poisson random variable.
The time step is assumed in such a way that more than
one reaction is chosen in a single simulation step. If higher
value is chosen, more reactions are chosen where there
will be great variation in the propensity function of the
chosen reactions. Based on the chosen reactions in a given
time step and the stoichiometric constants of products
and substrates of the chosen reactions, the number of par-
ticles assigned for the reactant and product species in-
volved in the chosen reactions will be modified. So the
Figure 5 Simulation results with change in the species degraders.
accuracy of the algorithm depends on the selection of the
time step. The simulation results obtained from SBTOOL-
BOX in Matlab and stochastic algorithm s are shown in
Figures 4 and 5.
When simulation time step is more than 1, the num-

ber of selections of the chosen reaction is insignificant
and the formation of methane is less. Update of sugar
takes longer time to reach the steady state. The simula-
tion of formation of acids and formation of methane are
rapid. When the tau value is reduced, the simulation re-
sults approaches the results of simulation using ODE
solver. This is due to the selection of reactions where



Palanichamy and Palani Journal of Environmental Health Science & Engineering 2014, 12:121 Page 8 of 8
http://www.ijehse.com/content/12/1/121
the propensity function remains constant. At the time
step of 0.4, the simulation results get closer to determin-
istic values. Thus the accuracy of simulation depends on
the selection of the optimal value of tau.

Conclusion
When more number of reactions are involved in a bio-
chemical processes, the rate of change of concentration
of species is determined by evolving a rate equation for
each species. As the number of species increases, the
number of rate of reactions also increases to evolve the
change in the concentration of species. But it is a com-
plex process. The difficulty in formulation of Ordinary
Differential Equation (ODE) for reaction simulation can
be overcome using Gillespie’s algorithms where the reac-
tions can be represented in the form of matrix which in-
volves the stoichiometric constants and the reaction rate
constants. Stochastic Algorithm (SA) has been identified
as a better solution where multiscale concentration spe-
cies are involved in reactions such as sorption, precipita-
tion, degradation, sequential and parallel decay reactions
etc. In this paper, the feasibility of applying SA (Gillespie
Tauleap Method) in simulation of various bio chemical
processes occurring during anaerobic degradation of
complex organic matter has been studied.
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