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developing homogenized properties under undamaged and damaging conditions. A
particularly novel development is the introduction of SERVE boundary conditions based
on the statistical distribution of heterogeneities in the domain exterior to the SERVE. A
micromechanical model of the SERVE incorporating explicit damage mechanisms like
interfacial debonding, and fiber and matrix damage is developed for crack propagation.
Finally, a microstructural homogenization-based continuum damage mechanics
(HCDM) model is developed that accounts for the microstructural distributions as well
as the evolution of damage. The HCDM model-based simulations are able to provide
both macroscopic and microscopic information on evolving damage and failure.

Keywords: Statistically equivalent RVE; Statistical distribution-based SERVE boundary
conditions; Cohesive zone models; Homogenization-based continuum damage
mechanics (HCDM)

Background

Multi-scale modeling has become a familiar theme, integral to the modeling of hetero-
geneous materials, such as composites. The ability of powerful computational methods
to resolve material behavior at different scales and communicate across them is foster-
ing unprecedented advances in multi-scale modeling. These models provide in-depth
understanding of material deformation and failure that can revolutionize integrated
structure-material design. It is prudent to use the notion of multiple spatial scales in
the analysis of composite materials and structures due to the inherent existence of var-
ious scales. Conventional methods of analysis have used effective properties obtained
from homogenization of response at microscopic length scales. A number of analytical
models have evolved within the framework of small deformation linear elasticity theory
to predict homogenized macroscale constitutive response of heterogeneous materials,
accounting for the characteristics of microstructural behavior. The underlying principle
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of these models is the Hill-Mandel condition of homogeneity, which states that for large
differences in microscopic and macroscopic length scales, the volume-averaged strain
energy is obtained as the product of the volume-averaged stresses and strains in the
representative volume element (RVE). Cogent reviews of various homogenization mod-
els are presented in [1]. Notable among the various estimates and bounds on the elastic
properties are the variational approach using extremum principles [2,3], self-consistent
model [4,5], etc. These analytical models however do not provide adequate resolution to
capture the fluctuations in microstructural variables that can have significant effects on
properties.

The use of computational micromechanical methods like the finite element method,
boundary element method, spring lattice models, etc. has become increasingly popular
for accurate prediction of stresses, strains, and other evolving variables in compos-
ite materials. Within the framework of computational multi-spatial scale analyses, two
categories of methods have emerged. The first group, known as ‘hierarchical models,
entails bottom-up coupling for transfer of information from lower to higher scales [6-12].
Homogenization theory is based on complete scale separation with implicit assumptions
of uniformity of macroscopic variables. Uncoupling of governing equations at different
scales is often achieved through incorporation of periodicity boundary conditions on the
microscopic RVEs, implying periodic repetition of a local microstructural region. The
models can simultaneously predict evolution of macroscale variables using homogenized
material properties and microscale variables in the periodic microstructural RVE as a
post-processor to the macroscopic analysis module. A subset of the hierarchical mod-
els has been branded as the ‘FE? multi-scale methods’ in [13], where micromechanical
RVE models are solved in every increment to obtain homogenized properties for macro-
scopic analysis. However, this method can be very expensive as it entails solving the
RVE micromechanical problem for every element integration point in the computational
domain. To overcome the limitations of prohibitive computational overhead, macro-
scopic constitutive laws of elastic damage and elastic-plastic damage have been developed
in [11,14] from homogenization of RVE response at microscopic scales. The constitu-
tive models represent the effect of morphological features and evolving microstructural
mechanisms through evolving, anisotropic homogenized parameters. These reduced-
order constitutive models are significantly more efficient than the FE?-type models since
they have limited information on microstructural morphology and do not have to solve
the RVE problem in every step.

The second category of concurrent multi-scale modeling methods has been proposed
for problems of heterogeneous materials involving high solution gradients in [15-22].
Concurrent multi-scale models differentiate between regions that require differential
resolutions and invoke two-way (both bottom-up and top-down) coupling of scales.
They introduce a platform for coherent, coupled analysis through substructuring of the
computational domain into (a) regions of macroscopic analysis using homogenized mate-
rial properties and (b) embedded local regions of detailed micromechanical modeling.
Macroscopic analysis with homogenized constitutive models in regions of low defor-
mation or stress gradients enhances the efficiency of the computational analysis due to
reduced-order constitutive representation. Top-down localization, on the other hand,
requires cascading down and embedding critical regions of localized damage or insta-
bility with explicit representation of the microstructure and micromechanisms. The
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computational model concurrently performs micromechanical analysis in these regions
with direct interfaces to the surrounding homogenized region of macroscopic analysis
[20-22]. In other approaches in [23,24], higher-order gradients have been introduced to
regularize the material model. The present paper will focus on hierarchical models only
and not discuss concurrent multi-scale models further.

Multi-scale modeling of composites, especially for structures and materials in extreme
environments such as failure and fatigue loading conditions, requires detailed scale-
specific models that incorporate the underpinnings of the microstructure on material
behavior. A holistic approach requires both characterization and modeling at each rele-
vant scale and consequently establishes bridges between them. Emergent thrusts in inte-
grated computational materials science and engineering or ICMSE and virtual materials
systems are fostering unprecedented advances, integrating microstructure representa-
tions, constitutive descriptions, computational algorithms, and experimental methods.
The objective of this paper is to provide an ICMSE perspective on different aspects gov-
erning multi-scale analysis of composite materials. These include microstructural char-
acterization, micromechanical analysis of microstructural regions, and bridging length
scales involving bottom-up or hierarchical modeling. The paper begins with a discus-
sion of different methods of identifying RVEs in the material microstructure using both
morphology- and micromechanics-based methods. For microstructures with nonuni-
form distributions, a statistically equivalent RVE or SERVE is identified for developing
homogenized properties under undamaged and damaging conditions. A particularly
novel development is the introduction of SERVE boundary conditions based on the
statistical distribution of heterogeneities in the domain exterior to the SERVE in the
‘A novel boundary condition for defining SERVE based on statistical distribution of
heterogeneities’ section. Section ‘Micromechanical model of SERVE undergoing dam-
age and failure’ develops a micromechanical model of the SERVE incorporating explicit
damage mechanisms like interfacial debonding and fiber and matrix damage. Finally,
a microstructural homogenization-based continuum damage model (HCDM) is devel-
oped in the ‘Homogenization-based continuum damage mechanics model’ section that
accounts for the microstructural distributions as well as the evolution of damage. The
HCDM model corresponds to diffused damage in the macrostructure and is not valid in
regions of severe macroscopic localization. In such cases, a concurrent multi-scale model
as developed by the authors in [21,22] is desirable. The author has developed 3D HCDM
model in [25-27] in a principal damage coordinate system (PDCS), which evolves with
the load history. These are essential steps in developing rigorous multi-scale models of
damage and failure in heterogeneous materials.

Identification of the representative volume element or RVE for homogenization
The microstructural RVE is an important characteristic in the determination of effective
material properties [28-31]. The RVE depends on the material property of interest and
can vary significantly from one class of properties to another, even for the same mate-
rial microstructure. For example, the RVE for strength can be quite different from that
for toughness. Identification of the appropriate RVE that locally represents the effect of
the microstructure in an average sense is an essential part of homogenization. A large
number of studies have been conducted with the RVE represented by a unit cell and con-
sisting of a single heterogeneity in a regular (square, cubic, hexagonal, etc.) matrix . The
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underlying assumptions in these studies are that the microstructure depicts a uniform,
periodically repetitive array of heterogeneities. In practice, however, the occurrence of
perfect uniformity or periodicity is rare in heterogeneous microstructures. Even when
geometric periodicity may exist, periodicity in the evolving variables, e.g. damage, may
not hold. While it may be difficult or even impossible to identify the RVE for nonuniform
microstructures shown in Figure 1la, it is important to identify statistically equivalent
RVEs or SERVEs to evaluate homogenized macroscopic properties. Methods of identi-
fying statistically representative microstructural regions based on purely geometric and
morphological considerations have been discussed in [32-34] using a combination of
statistical and computational analyses.

A SERVE can be identified as the smallest volume element of the microstructure
exhibiting the following characteristics.

1. Effective material properties, e.g., stress-strain behavior in the SERVE should be
equivalent to the properties of the entire microstructure, at least locally.

2. Distribution functions of parameters reflecting the local morphology, like local
volume fraction, neighbor distance, or radial distributions in the SERVE should be
equivalent to those for the overall microstructure.

3. The SERVE should be independent of location in the local microstructure, as well
as of the applied loading.

The second characteristic is driven by the postulate that response functions character-
izing a material behavior should have a strong dependence on morphological parameters
of the microstructure. Assuming that the SERVE corresponds to a converged property or
response function, the set of distribution functions should depend on what set of morpho-
logical parameters, e.g., local/overall volume fraction, nearest neighbor distance, shape,
etc., control that response function. The necessary set should be at least the parameters
that most strongly affect that response function, while the sufficient set should consist of
additional parameters that will have smaller effects on the behavior.

Figure 1 shows a 100 pm x 79.09 pm optical micrograph of a steel fiber-reinforced
epoxy matrix composite. The matrix material is an epoxy with Young’s modulus: E,;, = 4.6
GPa and Poisson ratio: v, = 0.4. The steel fiber material has Young’s modulus: Er = 210
GPa and Poisson ratio: vy = 0.3. All fibers are aligned perpendicular to the plane of
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i
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Figure 1 Micrograph of fiber-reinforced composite microstructure (a) and simulated microstructure
tessellated into Voronoi cells showing RVE regions (b).




Ghosh Integrating Materials and Manufacturing Innovation (2015) 4:9 Page 5 of 28

Figure 2 Microstructural elements of radius: (a) 15 pm containing 10 fibers, (b) 22 um containing 20 fibers,
(c) 25 pm containing 25 fibers, (d) 29 um containing 33 fibers, (e) 35 pm containing 52 fibers, (f) 52 um
containing 102 fibers, and (g) 63 um containing 151 fibers.

the paper and have circular cross sections with a radius of 1.75 pm. Figure 1b shows a
computer-generated image of the optical micrograph that is tessellated into a network
of Voronoi cells [34]. The circular region is used to identify N inclusions belonging to
a SERVE. While satisfying different criteria may lead to nonuniqueness, it is possible to
postulate the SERVE as the microregion that will satisfy all of the above requirements.
Arriving at the optimal SERVE size is important to prevent risking erroneous estima-
tion of effective properties with smaller RVEs or requiring huge computational resources
with larger RVEs. Two metrics are discussed here for identification of the SERVE in
undamaged and damaged composite microstructures.

Convergence of homogenized tangent stiffness tensor

Domains for which the effective homogenized stiffness tensor [Ef;d] converges to that for
the entire microstructure, at least locally, is an important metric in SERVE estimation.
For a given heterogeneous microstructure, the stiffness tensor [Ez%l] may be evaluated by
volume averaging the microscopic stresses [ 6] generated by applying periodic bound-
ary conditions corresponding to a unit macroscopic strain. Figure 2a,b,c,d,e,f,g illustrates
windows of different sizes that are extracted from the microstructure of Figure 1a corre-
sponding to the number N of inclusions in the SERVE. These are created from concentric
circles of radius r in Figure 2b. The smallest window size of approximately 15 pm contains
10 fibers, while the largest 63-pm window contains 150 fibers. Table 1 compares the area
fractions of different windows with that of the micrograph.

Table 1 Size (in um), number of fibers, and area fraction of RVEs

Size 15 22 25 29 35 52 63 Micrograph
# fibers 10 20 25 35 50 100 150 264
AF (%) 315 321 322 315 33.1 323 313 323
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A special method of constructing a periodic computational domain with nonstraight
edges, containing periodically positioned nodes for the nonuniform microstructure, has
been developed in [19,34,35]. Each of the N inclusions in the core region is repeated in
the x and y directions for a few period lengths. The extended domain of multiply repeated
SERVEs is tessellated into a network of Voronoi cells. The boundary of the central SERVE
is generated as the aggregate of the outside edges of all the Voronoi cells associated with
inclusions near the boundary as shown in Figure 2. The corresponding nodes on the
boundary are periodic. The boundary of the domain is subjected to periodic conditions by
constraining points on the boundary to displace periodically. The phase volume fraction
in each of the windows is chosen to match the volume fraction of the overall microstruc-
ture to within a prescribed tolerance as tallied in Table 1. For each window, components
of the effective stiffness tensor are evaluated and convergence is established through a
comparison of the Frobenius norm of the homogenized stiffness tensor, defined as:

3 3 3 3

IET = | 0D D D (ER)? (1)

i=1 j=1 k=1 I=1

The SERVE is identified as the smallest window for which the difference in the norm,
satisfy the criteria:

||EH ”micrograph _ ||EH ”RVE

||EH ”micrograph = TOL (2)

The superscript micrograph corresponds to the entire local micrograph. A tolerance of
TOL = 5% is taken in this study. The SERVE is constructed for a number of locations ran-
domly chosen in the micrograph. The window that satisfies the required characteristics is
considered as the SERVE for the local microstructure. For undamaged microstructures,
convergence of the Frobenius norm ||Ef|| in Equation (2) and the corresponding devia-
tions at three different locations are shown in Figure 3a,b. The windows containing 52 or
more fibers exhibit less than 2% deviation from the stiffness of the entire micrograph. A
region of radius 35 wm, encompassing 52 fibers, is found to exhibit converged stiffness
components and be location independent.

Estimation of the SERVE for microstructures with evolving damage is a more extensive
exercise [33,34]. Geometric parameters play a lesser role since the evolution of stresses
and strains is affected by the distribution of evolving damage as well. Even when the
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Figure 3 Plots showing (a) convergence of ||£7|| with increasing size, (b) deviation of local ||E7|| from the
micrograph.
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microstructure is geometrically uniform, initiation and progression of damage can result
in a SERVE that is considerably larger than a unit cell. Analysis of the SERVE for hetero-
geneous microstructures undergoing interfacial debonding has been discussed in [33,34]
using approaches similar to those used for the undamaged material. Initiation and pro-
gression of damage in the microstructure require the consideration of an evolving SERVE.
Convergence of the degrading homogenized stiffness tensor [E{;(l] is taken as an indica-
tor of the region of influence and hence is a metric for estimating the SERVE. Instead of
the tangent stiffness tensor, [Ef;d] is represented as the linear unloading stiffness tensor
from the point of loading in the macroscopic stress-strain plot.

Periodic windows of increasing sizes ranging from approximately 22 um containing 20
fibers to 63 pm containing 150 fibers are analyzed for three different strain histories, viz.
increasing ey, €y, and €y, respectively. The stiffness tensor in unloading is evaluated at
the terminal values of the macroscopic strain for the entire microstructure as well as for
each increasing window. The SERVE size changes with increasing damage induced strain
as shown in Figure 4. At low strains, the SERVE is of size 35 pm, containing about 52 fibers
for all the three strain conditions. However, the SERVE size increases at a much slower
rate for the shear strain condition than for the normal strains. This is a consequence of
the extent of damage with these strain conditions, which in turn is also a function of the
cohesive law parameters for the interface. The SERVE size depends on the material state
that is governed by damage. For a given strain value, the SERVE size corresponds to that
load path for which the damage state is maximum. It may be able to represent the SERVE
size as a function of the evolving damage, which defines material state. The SERVE size

will converge when damage is contained.

Convergence of statistical functions of microstructural variables

The marked correlation function M(r) has been introduced in [36,37] for providing
multi-variate characterization of the microstructural phase distribution. These functions
correlate any chosen field variable like stress, strain, or a function dependent on the mor-
phology of the microstructure. Specifically, they characterize the region of influence in a
heterogeneous neighborhood with respect to fields of evolving variables. The marked cor-
relation function M(r) is expressed as the ratio of state variable and geometric distribution
functions as:
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Figure 4 SERVE size for normal and shear macroscopic strains from (a) convergence of unloading stiffness,
(b) M(r).
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where the state variable dependent function /(r) is derived from the mark intensity
function H(r) as:

_ 1 dHw
T 2nr dr

1 o4 N Ui
h(r) and H(r):WﬁZZmimj(r) (4)
i j=1

Here, m; represents a ‘mark’ associated with the i-th inclusion. A mark can be any chosen
state variable field that is relevant to the specific properties in question. For observations
within a finite window of area A, the variable r is a measure of the radial distance of
influence and ;(r) corresponds to the mark associated with the j-th inclusion at a radial
distance r. In Equation (4), m is the mean of all marks, N is the total number of inclusions,
and j; is the number of inclusions that have their center within a circle of radius r centered
at the i-th inclusion. The pair distribution function g(r) corresponds to the probability
g(rydr of finding an additional inclusion center between concentric ring of radii r and
r + dr, respectively. It characterizes the occurrence intensity of inter-inclusion distances

and is expressed as:

N
g = idlzy) where K(r) = % G 5)
k=1
I (r) is the number of additional inclusion centers that lie inside a circle of radius r about
an arbitrarily chosen inclusion. K(r) is a second-order intensity function, defined in [36]
as the number of additional inclusions that lie within a distance r of an inclusion center
and divided by the number density N/A of inclusions.

A declining value of M(r) indicates reduced correlation between elements of the
microstructure. It is therefore a good metric for the estimation of SERVE or the region of
influence for a nonuniform microstructure. Steps to evaluate the SERVE size from M(r)
have been described in [32,34]. For a random distribution, the pair distribution function
g(r) approaches unity at large radial distances r. The radius of convergence ry is identified
from the g(r) plot for which g(r) =~ 1 for r > ry. Appropriate microstructural variable
fields associated with each inclusion are assigned as a ‘mark; e.g., principal stresses and
strains, Von Mises stress, etc. M(r) = 1 corresponds to an uncorrelated random distribu-
tion of circular heterogeneities having identical marks. For nonuniform microstructures,
M(r) stabilizes to near-unit values at a radius of convergence r,, such that for r > r,,
M(r) = 1 and the local morphology ceases to have significant influence on the state vari-
ables. The radius r, corresponds to the length-scale of correlation between the physical
behavior and microstructural morphology. It provides an estimate for SERVE size.

Marked correlation function with geometric parameter-based marks

While stress or traction-based marks yield satisfactory estimates of the SERVE, it is of
interest to see if similar results can be generated by using marks that are purely geometric
parameters. This conjecture is based on the premise that the response function should
be governed by morphological aspects of the microstructure. If a local response variable
depends on a certain local morphological characteristic or a combination thereof, then
similar outcomes for physical and geometric marks may indicate that full blown analyses
are not needed to estimate the SERVE. A weighted function of geometric parameters is
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constructed as a mark in [32,38] to represent geometric parameters which contribute to
the initiation of damage. The mark associated with the k-th inclusion is defined as:

my = w1 SK + wySK 4+ wiSk 6)

where Sff are geometric parameters characterizing the local distribution and w; are asso-
ciated weights. In Equation (6), S’l< is a measure of the normalized local area fraction for
the k-th inclusion defined as:

r _ (LAPF @)
1™ Max(LAF)y
1<j<N

N is the total number of inclusions, and (LAFY is the local area fraction for the j-th
inclusion. The area fraction is evaluated as the ratio of the inclusion cross-sectional area
to the area of the associated Voronoi cell. S/2< is a normalized measure of the inverse of
near-neighbor distance for the k-th inclusion, i.e.

X (IND)*
ke 8)
Max(IND)Y
15j=N

where (INDY is the inverse of the near-neighbor distance of the j-th inclusion. Near-
neighbors of an inclusion are those that share common edges of the Voronoi cell. The
near-neighbor distance is the average of the distances between an inclusion and its neigh-
bors. S is a normalized measure of the number of near-neighbors for the k-th inclusion,

given as:
(NN)¥
k= 9
37 Max(NNy ©

1<j=N

where (NNY is number of near-neighbors for the j-th inclusion. The number of near-
neighbors is the number of Voronoi cell edges. Figure 5 compares g(r) for a Poisson
distribution of points (g(r) = 1) with those for the micrograph where the edge effect is
accounted for. At lower values of r, there is a significant deviation of the plots from unit
value due to short-range geometric disorders such as clustering. Convergence is assumed
to occur if the percentage change in incremental area under each g(r) or M(r) curve is
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Figure 5 Plots of g(r) with two methods of edge correction compared with Poisson’s distribution.
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below a tolerance of 5%. The function g(r) converges to unity with increasing values of r
(> 15 pm) containing about 35 fibers.

The maximum traction at the fiber-matrix interface is a good indicator of interfacial
debonding initiation. Hence, this is considered as a candidate mark in M(r). Trac-
tion is evaluated as the resultant of the normal tensile and tangential components, i.e.,

/ T2 + T?. The mark is taken as the average traction at a set of points on the fiber-matrix
interface that experiences the highest tensile normal components. Figure 6 shows a plot
of M(r) vs. r for different fractions of points on the interface under different macro-
scopic strain conditions. The line M(r) = 1 corresponds to a uniform distribution of
fibers with identical marks. In Figure 6a, M(r) is constructed by averaging the tractions
respectively at 1% and 10% of all points at the fiber-matrix interface that experience max-
imum traction. The macroscopic strain field is g5, = 1, with all other components equal
to zero. The two marks result in very similar M(r) distribution, and both converge to
unity approximately at a radius of convergence r, ~ 18 um, containing about 50 fibers.
Figure 6b compares the distribution of M(r) for three different applied uniaxial macro-
scopic strains. The mark in this case is the average traction at 3% of all points on the
interface. For low values of r, the M(r) plots for the three strains do not have the same
distribution. This is attributed to the directional dependency of the mark with loading
directions. With increasing r, the local anisotropy in the mark diminishes and all three
plots converge to depict the same trend for M(r). The radius of convergence for all the
cases are approximately r, ~ 18 um, containing about 50 fibers.

In summary, similar sizes of the SERVE are predicted by these alternate methods
for given response functions. The successful use of the geometry-based indicators for
problems without significant microstructural evolution, point to the fact that the mor-
phological parameters strongly affect the response functions considered in the estimation
of the SERVE. In these cases, the SERVE can be estimated without having to solve the

entire micromechanics problem multiple times.

Marked correlation function with damage variables

M(r) may also be used for estimating the SERVE in the presence of evolving damage, for
which the ‘mark’ is chosen as a characteristic damage variable that evolves with increas-
ing strain. Damage is considered for interfacial debonding only for this evaluation. The
mark assigned is the inverse of the magnitude of the tensile traction that is averaged over
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Figure 6 M(r) for (@) average traction of 1% and 10% of maximum traction and (b) applied unit normal and
shear strains.
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the length of the nondebonded or intact portion of interface. Only points that have ten-
sile normal components at a inclusion-matrix interface are considered for the traction
calculation. These traction values may lie either in the hardening or softening regions of
the interfacial cohesive zone model. In the softening region, the tractions will decrease
with increasing displacement jump and eventually reduce to zero, signaling the onset of
microstructural damage due to interfacial debonding. With the evolution of debonding,
tractions at the intact portion in the interface tend to lie in the softening region of the
cohesive zone model and will have values that are close to zero. Consequently, the aver-
age traction in the intact portion of the interface will give a quantitative measure of the
closeness to debonding and hence is represented by this mark. The marked correlation
function M(r) is evaluated for the micrograph at different strain intervals, with mark cho-
sen as the inverse of the averaged traction over intact interfaces. Plots of M(r) for the
terminal values of applied macroscopic normal and shear strains are depicted in Figure 7.
Convergence of M(r) is assumed if the percentage increase of incremental area under each
M(r) curve is below 5% tolerance. All three M(r) plots converge to unity (M(r) = 1) ata
radius of convergence r;, of approximately 31 um, containing about 145 fibers. The radius
of convergence r, monotonically increases with damage evolution in the microstructure
as shown in Figure 4b. The SERVE size at the terminal strain is approximately 62 um,
which is almost 1.7 times higher that for the undamaged interface approximately 36 pwm.
The rate of increase in SERVE size is found to be similar for the applied normal strains
but is slower for the shear strain. Also, Figure 7 shows that the values of M(r) for the
three loading cases significantly differ until the convergence radius r, is reached. This is
attributed to the dependence of mark values on the direction of applied loading below the

radius ry.

A novel boundary condition for defining SERVE based on statistical
distribution of heterogeneities

Methods for determination of the SERVE in the previous section focused on the evalua-
tion of the volume and material content in the microstructure. No consideration is given

to the appropriateness of the boundary conditions applied to the SERVE for determining
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Figure 7 M(r) for applied normal and shear strains for inverse of averaged traction over intact surface.
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equivalent properties. Conventionally, three types of boundary conditions are applied on
the SERVE. These are:

1. Affine displacement boundary conditions, u? = eng on €2, where 62 is a constant
applied far-field strain and x; are the boundary positions, measured from the
geometrical centroid of the RVE.

2. Uniform traction boundary condition T; = ai?nj on 952, where Ui? is the constant
applied stress, #; is the unit normal to the boundary of the RVE, and T; is the
applied traction on the RVE boundary.

3. Periodic boundary conditions uf’ = eg.xj + uf’ “ on 9%, with a periodic additional
displacement uf ? which are equal on opposite faces of the RVE.

Typically, the uniform traction case gives the upper bound (Reuss bound), and the uni-
form strain condition provides the lower bound (Voigt bounds). These are not accurate
for heterogeneous materials with nonuniform distributions. A drawback of the periodic
boundary condition is that it automatically repeats the microstructure and associated
deformation and damage patterns in the domain exterior to the RVE. This may not be
accurate for nonuniform microstructures in general. Application of the above boundary
conditions can result in an over-estimation of the RVE region due to convergence require-
ments. Accurate boundary conditions play an important role in determining the SERVE
size. In an attempt to redefine the SERVE with respect to both the volume and bound-
ary conditions, this section introduces a novel boundary condition required to meet the
criteria described in the ‘Identification of the representative volume element or RVE for
homogenization’ section. Optimally, the SERVE should (a) encompass the region required
to represent essential deformation mechanisms and (b) represent boundary conditions
that reflect the effect of the region exterior to the SERVE domain.

Various statistical descriptors such as distributions of the volume or area-fraction,
nearest-neighbor-distance, etc. can be used to characterize the microstructural morphol-
ogy of nonuniformly dispersed composites. In [39,40], it has been discussed that the
spatial statistics of a two-phase random medium can be completely described by spec-
ifying only the volume fraction and standard two-point correlation function S (r). For
multi-phase microstructures, the two-point correlation function is defined as the proba-
bility that two points at positions x; and x; and separated by a distance r = [x; — Xp| are
found in the phase i for a given orientation. In general, this function is able to characterize
anisotropy due to its dependence on the orientation as opposed to the radial distribution
function that is considered for isotropic distributions. In this study, it is assumed that the
distribution of heterogeneities is statistically homogeneous and isotropic due to random-
ness of distribution. Hence, it is computed by repeatedly placing line segments of length r
randomly on the image of the microstructure. The two-point correlation for a statistically
homogeneous and isotropic medium is mathematically expressed as:

Sy (r) = / Frry 7 (r—l—y/) as, (10)
Q

where € is the total volume of the domain, /7 = 1Vx € Fyis a phase indicator function,
which is equal to unity inside the fiber I and zero everywhere else in the domain. The
two-point correlation function for the microstructure of Figure 8a is plotted in Figure 8b.
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Figure 8 Microstructure of a nonuniformly dispersed unidirectional fiber-reinforced composite and
two-point correlation of the microstructure. (@) Microstructure of a nonuniformly dispersed unidirectional
fiber-reinforced composite, with 21,000 fibers of radius 2 um. Two regions are depicted, viz. the SERVE
domain containing 31 fibers and an exterior domain; (b) two-point correlation of the microstructure for the
entire domain.

Displacement boundary conditions are imposed on the SERVE as an augmentation of
the affine displacements through the expression u; = u? + u}. Here, the augmented
displacement field #} is derived by accounting for the microstructural distribution of
the domain exterior to the RVE through a Green’s function-based approach. While this
approach of describing the SERVE boundary conditions is applicable to general three-
dimensional problems with inclusions of arbitrary shapes, the present study is restricted
to unidirectional cylindrical fibers. For the sake of simplicity, all the fibers are assumed to
have identical elastic properties, specifically stiffness components Cgkl and same cross-
sectional radius a. The fibers are however dispersed randomly in the matrix as seen from
the microstructure in Figure 8a.

The pair-wise interaction of fibers 1 and 2, whose centroidal separation distance is d1
is shown in Figure 9. The goal is to obtain the augmented displacement field due to the
interacting pair of fibers at an observation point in the matrix denoted by o in Figure 9.
The separation distance d1; is random and may be characterized by statistical descriptors.
The distance between the second fiber and the observation point dy, (obtained from the
law of triangles) is also random as d3 is random. The Green’s function solution to the
interaction of the fibers can be obtained in terms of the eigen-strains e,ﬁ} in the fibers,
which are related to the far-field applied strain '5/(31 as:

A
/Q (Mijkl + Hijkl) leFI LFI (x) dQ = —62 (11)

-1
where the tensor M, = (C;f»qu 1 (x) — C% q> CI% « depends on the fiber and matrix

stiffness tensors Cgkl and Cg;[d, respectively, and

Hij = Siat™! (%) + Gy (1 — (x)) (12)

This tensor is obtained from the Green’s function solution of the interacting fiber-pair in
Figure 9. The tensors S;j; and Gy correspond to the interior- and exterior-Eshelby ten-
sors, respectively. The distance of separation between the fibers (1 and 2) d;9 is random
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Figure 9 Schematic figure of interacting fiber-pairs. First fiber is the reference fiber, and the second fiber,
located at a distance of di, is assumed to be located randomly and characterized by a two-point correlation
function S, (r = d12) = P (x1]x2). Point-o is the observation point at which the augmentation field is
obtained. The distance dy, is related to the randomly varying distance d, from the properties of a triangle.

and characterized by the two-point correlation function. The augmented strain 6;;' in

terms of the two-point correlation function is given as:

-1
€ x) = / [ / (Mijpg + Hijpq) dsz} SpaiaS2 (x1x') €Qydx’ (13)
o\ L/@

The corresponding displacement field ] that augments the affine displacements is

expressed as:

-1
uf (x) = / [ / (Mijpg + Hijpg) dsz} LpgtSa (xl2') e’ (14)
o\ L/

In Equation (14), the third-order tensor L, relates the disturbance displacement to the
eigen-strains e,ﬁ}. The tensor L, is obtained from the Green’s function solution of the
interacting fibers.

To illustrate the results of the augmented SERVE boundary conditions, a systematic
convergence study is conducted by increasing the number of fibers Ny and correspond-
ing SERVE size S. The ratio of the fiber and matrix Young’s moduli for this problem is
set to be Ef/JEM = 25, and the Poisson’s ratio of the fiber and matrix is v/ = 0.25
and vM = 0.4, respectively. Parametric finite element simulations are performed using
the ABAQUS-Standard commercial code. The size of the RVE is systematically increased
from S = 35 um (Ny = 17) to § = 165 um (Ny = 499). The number of fibers Ny and the
size of the RVE S are related to each other through the fiber volume fraction ¢ and fiber
radius a since S? = 71Nfa2 /®. The SERVEs are subjected to both the affine- and the statis-
tical distribution augmented displacement boundary conditions, respectively. The results
of the convergence study are illustrated in Figure 10. The figure plots the normalized
homogenized stiffness component as a function of the SERVE size S and number of fibers
Nr. The homogenized moduli are normalized with those of the pure matrix (Ny = 0).
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Figure 10 Normalized homogenized stiffness components as functions of SERVE size S and number of fibers

Ny

The homogenized modulus converges to a fixed value for S > 84 um with Ny > 112 for
the affine displacement as shown in dashed lines of the figure. However, with the statis-
tical Green’s function-based-augmented displacement boundary conditions, the SERVE
size converges at S = 40 um with Ny = 31. This elucidates the strong effect of the realis-
tic boundary conditions on the SERVE. This could potentially be a new way of defining a
SERVE and will be tested in future work.

Micromechanical model of SERVE undergoing damage and failure
Micromechanical analyses of the identified composite microstructural SERVE are nec-
essary ingredients for the development of a homogenization-based continuum damage
mechanics or HCDM model. This section briefly discusses the computational models
that describe the deformation and damage response of fiber-reinforced matrix composites
exhibiting fiber and matrix cracking as well as interfacial debonding.

Constitutive model for fiber and matrix in the composite microstructure

The mechanical behavior of the fiber and matrix is characterized by high stiffness and
strength and low failure strain. The failure process is short, and the stress drops abruptly
after the inception of brittle fracture. The brittle fiber and matrix are assumed to be
isotropic, elastic undergoing small deformation. The stress-strain relation is given as:

0ij = Cijuien (15)

in which Cjj is the fourth-order isotropic secant stiffness tensor, expressed as:
2
Cijxt = 2G8dj + (K — SG‘Sij‘Skl) (16)

where G = E/[2(1 + v)] and K = E/[3(1 — 2v)] are the shear and bulk moduli, respec-
tively, depending only on the stiffness E and Poisson’s ratio v. Fiber and matrix damage is
modeled using a continuum damage mechanics (CDM) model proposed in [25,41-43], in
which the elastic stiffness reduces with increasing deformation-induced damage. Elastic
energy equivalence assumes that the elastic complimentary energy in a damaged material

Page 15 of 28
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with the actual stress is equal to that in a hypothetical material with a fictitious effective
stress. This establishes a relation between the damaged and undamaged elastic stiffnesses
for an isotropic material as:

E=(1-D)*E° (17)

where D is a scalar damage variable, and E and E° are elastic modulus in the damaged
and undamaged state, respectively. A strain-rate and temperature-dependent expression
for stiffness E° is obtained from [44] as:

é T
ED ol = Eret (1 +Cln ) + () (18)
&N To
where Eloocal is local initial stiffness which is a function of the equivalent strain-rate ¢ and

temperature 7. Er is stiffness at a reference strain-rate €y, which is taken as £y = 1 s~ 1.
The function ¥ is chosen such that ¢ (%) = 0 for Ty=22°C. For the brittle materials, the
damage variable is assumed to evolve following a damage evolution law [45] as:

b { (é/eo)s*fe when & > ¢p and & > 0 19)

0 when &€ <egpore <0

ep is threshold effective strain for damage nucleation, exponent S* is a shape factor of the
damage function, and ¢ = ,/ %sijs,-j is the equivalent strain. The first in Equation (19) indi-
cates that the damage increases when the equivalent strain is at or beyond the damage
surface and the rate of equivalent strain is positive. Thus, the elastic modulus degrades
during loading. Unloading is characterized by the second in Equation (19), when the
equivalent strain is inside the damage surface and the strain-rate is nonpositive. In this
case, there is no change in damage or elastic modulus. For complete damage, the stress
reduces to zero, indicating loss of load carrying capacity. The damage variable in the
constitutive law makes the finite element solutions mesh-dependent. To avert this short-
coming, a nonlocal damage formulation is incorporated in this model following [46],
where a nonlocal damage parameter is expressed as:

D,(x) = V,l(x) /V a(s—x)D(s)dV (s) (20)
where
2
Vi (%) :/ a(s—x)dV(s) , a@) =exp [— (K}xl) } 1)
|4 c

Kk is a constant parameter and [ is a characteristic length that is of the same order of
magnitude as the maximum size of inhomogeneities [46]. In these simulations, a value
I, = 8 um is taken.

Cohesive zone model for interfacial debonding

A 3D micromechanical model for composite microstructures undergoing fiber-matrix
interfacial debonding has been developed in [47]. In this model, the fiber-matrix interface
behavior in the normal and tangential directions is described by a nonlinear 3D cohesive
zone model with bilinear traction-displacement relations. The interface is represented
by a set of cohesive springs of infinitesimal length that are attached to the fiber and the
matrix at opposite ends. With increasing displacement the traction across the interface
reaches a maximum value, then decreases with further displacement increase, and finally
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vanishes indicating failure of the spring. Ortiz and co-workers [48,49] have developed
irreversible cohesive laws for the unloading path after the interfacial softening.
In the present cohesive zone model, the relation between traction T (=

NVEES thl + thz) and the effective opening displacement §(= |luy — ugl|) is given in

terms of a free energy potential as

3 (5,11, 512,
T =124 12+ 13 = 200w 020 o ) (22)

where (T}, T11, Ty2) are normal and tangential components of the interfacial traction and
q are internal variables that account for the inelastic process of decohesion. The effective
opening displacement jump, § , in 3D is defined as

5= 52+ 202 3)

Here, 8, is the displacement jump in normal direction, and §;(= ,/8,:21 + 8?2) is the net
displacement jump in tangential direction across the interface.  is a factor that controls
the contribution of the tangential component to the effective displacement jump. The
scalar form of the T — § relation in the bilinear model is obtained from Equation (22) as

opax§ if § <8, (hardening region)
T = %(8 —68.) if 8, <8 <38, (softening region) (24)
0 if § > 8, (complete debonding)
Consequently, the normal and tangential tractions are derived from the relations:
0 | 20 if 5 <6,
Ty = %%&q ifs,<8<8 (i=1,2) (25)
"lo if §> 6,
and
gp | BP0 if § <5
Ti=g5-1 5ciha 8 <88 (=12 (26)
0 if § >4,

For a positive normal displacement §,, the traction at the interface increases linearly to a
maximum value of max o,y corresponding to §.. After that, the traction starts decreas-
ing with increasing separation and finally reaches zero at a value of §.. The unloading
behavior in the hardening region follows the same slope as that of the loading path. In
the softening region, unloading is assumed to follow a different linear path back from the
current position to the origin with a reduced stiffness. This is expressed as

Omax Smax — Je
Smax 8¢ — e

Reloading follows the unloading slope till it meets the point of unloading in the soften-

T =

8 8¢ < Smax < e and § < Smax (27)

ing plot and then continues along the softening plot. This demonstrates the irreversible
nature of the damage process. The normal component of the traction is transferred
through the normal springs, while the shear component of the traction is transferred
through the tangential springs. Both the normal and the tangential tractions vanish when
interface debonds completely, i.e., § > §.. Also, the magnitudes of the tangential traction-
displacement relation are independent of the sign, and hence, the behavior is the same for
both positive and negative tangential separations §;1 and 8. If the normal displacement is
negative, i.e., during compression, stiff penalty springs with high stiffness are introduced
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Figure 11 Normal (a) and tangential (b) traction-displacement behavior for a bilinear cohesive zone model.

between the node-pairs at the interface to prevent penetration. Figure 11a,b shows the
normal traction-separation response for §; = 0 and the tangential traction-separation
response for §, = 0, respectively.

Micromechanical analysis of a SERVE undergoing interfacial debonding and fiber/matrix
damage

Micromechanical analyses of multi-fiber RVEs are conducted under uniaxial tension to
study fiber and matrix failure and interface debonding at different strain-rates. Interaction
of the two damage modes leads to crack propagation in the RVE. All simulations are con-
ducted using the trilinear eight-noded brick element with reduced integration (C3D8R)
in ABAQUS-Explicit. The nonlocal continuum damage model is implemented in the user
subroutine VUMAT, while the bilinear cohesive model is implemented in the VUEL user
subroutine. The material and damage properties, as well as cohesive zone parameters
used in this analysis, are listed in Table 2. The material properties include Young’s modu-
lus, Poisson’s ratio and density. The calibration and validation of these parameters will be
reported in another paper by the author’s group shortly.

To examine the convergence characteristics of the finite element mesh for problems
involving damage, a RVE corresponding to a hexagonal array of fibers is analyzed using
four different meshes. The size of the RVE is 2.0 mm x 2.0 mm x 1.0 mm with a fiber
volume fraction of 10%. The coarsest mesh is composed of 9,568 brick elements, while
the finest mesh is composed of 220,160 elements. A uniaxial tensile strain-rate 10? s~ is
applied to the RVE. Figure 12a shows the contour of damage variable D in the microstruc-
ture at 0.05 s. The local strain-rates range between 10 s"'and 107 s~! and are much
higher than the overall loading rate. Figure 12b plots the ratio of the damage bandwidth
hp in Figure 12a to the dimension of the RVE Lryg with increasing mesh size. The figure

Table 2 Fiber and matrix properties and interface (cohesive zone) material properties

Medium E° v P P e s* Omax de Omax/8c
(GPa) (kg/m?) (MPa) (ps) (N/m)
Fiber (f) 64 0.26 2,230 00164 0.001 7
Matrix (m) 25 0.40 1,170 1.50 0.001 7

Interface (CZM) 40 5 20,000
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Figure 12 Contour plot of damage in the RVE. (a) Contour plot of damage in the RVE showing the width of
the damage band, and (b) plot showing mesh sensitivity of nonlocal CDM model.

shows the average value of Lﬁ% along with the variation bars of the damage band thick-
ness. Results in Figure 12b suggest that the solution tends to converge with the higher
mesh densities.

Figure 13 shows the progression of damage for a RVE model with 172 fibers, with a
uniform fiber radius of 2 um and fiber volume fraction of 21.6%. The figures are plotted
at different times during the tensile loading process in the horizontal direction. Damage
nucleates with interfacial debonding and subsequently grows as matrix damage ahead of
the interfacial cohesive zone crack tip, where stresses are large. In the progressive matrix
crack growth, the crack tends to grow to the nearest debonded interface tip or the near-
est matrix crack. Figure 13d shows that parallel cracks do not tend to coalesce, whereas
nonparallel cracks are likely to merge together into one long but zigzag crack.

.

Figure 13 Damage evolution in a RVE with 172 randomly located fibers. At (a) t = 0.01 ps, (b) t =0.011 s,
(c) t=0.012 ps,and (d) t =0.015 ps.
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Homogenization-based continuum damage mechanics model

For predicting damage in composites at the macroscales, Ghosh and coworkers have
developed anisotropic HCDM models in [25-27]. This model can avoid the need to
perform micromechanical analysis at each load increment and is computationally very
efficient. The general form of CDM models [41] introduces a fictitious stress f]ij acting on
an effective resisting area (A), which is caused by reduction of the original resisting area
A due to material degradation from the presence of microcracks and stress concentration
in the vicinity of cracks. In [11,42], the effective stress by i is related to the actual Cauchy

stress X;; through a fourth-order damage effect tensor M as

2 = Mj(D) Xy (28)
where M;j; is a function of a damage tensor D (= Djje; ®ej®ei®ey). D can be a zeroth-,
second-, or fourth-order tensor, depending on the model employed. The hypothesis of
equivalent elastic energy is used to evaluate M;j; and establish a relation between the
damaged and undamaged stiffnesses [50,51]. The hypothesis, detailed in [52,53], specifi-
cally assumes that the elastic complimentary energy W in a damaged material with the
actual stress is equal to that in a hypothetical undamaged material with the fictitious
effective stress, i.e.,

1 _ - 1 L

We(Z,D) = - (Cyu(D) ' 2T = We(2,0) = (Ch) ™ 25%n (29)
where ¥ = Xje; @ ej, Eg.kl is the elastic stiffness tensor in the undamaged state, and
Ejj(D) is the stiffness in a damaged state. From Equations (28) and (29), the relation
between the damaged and undamaged stiffnesses is established as

Cijiw = (Mpqtj)_lczqrs(Mrskl)_T (30)

where —T corresponds to the transpose of the inverse of the fourth-order M tensor.
With the choice of an appropriate order of the damage tensor and the assumption of
a function for My, Equation (30) can be used to formulate a damage evolution model
using micromechanics and homogenization. The HCDM model assumes a diffused dam-
age state and correspondingly a positive semi-definite stiffness matrix, even though the
microstructural SERVE from which it is developed has regions of softening and damage
localization.

The HCDM model proposed in [25-27] introduces a damage evolution surface to delin-
eate the interface between damaged and undamaged domains in the strain (e;)-space as

1
F= Epijkleijekl —k(@Wy) =0 (31)

where W is the dissipation of the strain energy density due to stiffness degradation

expressed as:
1
Wd=/§eijekldcijkl (82)

Assuming associativity rule in the stiffness space, the evolution of the fourth-order secant

stiffness is obtained as

Cijit = A = APy (33)

9 (zeiex)
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Pjjyy is a fourth-order symmetric negative definite tensor that corresponds to the direction
of the rate of stiffness degradation tensor Cijkl- Pjjy, is expressed as a function of strain ej;,
« is a scaling parameter, and « is a function of W,.

HCDM model in the principal damage coordinate system
For a second-order damage tensor Dj;, the damage effect tensor M, in Equation (28) has
been defined in [54] as:

M = (8 — D) 8 (34)

It has been shown in [54] that D;; is symmetric and it can describe the damage states
which have at least orthotropic symmetry. An implicit method of rendering the stress
tensor symmetric has been suggested in [55], which corresponds to a representation of
the stress tensor in a fixed global coordinate system as

 Zix(y — D)+ (u — D) Ey
U/
2

(35)

The corresponding inverse of the damage effect tensor [M(D,',')]_1 is represented in a

matrix form as:

1-Dy; 0 0 0 —D3 —D1z
0 1-— D22 0 —D23 0 —D12
0 1—Ds3 —Do3 —Ds3 0
AN [t
(MDY= 1 o —iDyy 1Dy 1-1(Dn+Dsy)  —Di ~Dis
—1Di3 0 —3D13 —1D1, 1— 2Dy +Ds3) —Da3
—3D1 —iDpp 0 —3D13 —3Da3 1— (D11 + D)

This can be substituted in Equation (30) to update the damaged stiffness Cjj; from the
initial undamaged stiffness Cijkl'

Numerical examples in [11] have shown that material symmetry is considerably affected
by damage evolution in composite microstructures. Different load paths will yield differ-
ent damage profiles in the microstructure, and this will alter the initial material symmetry
in Cz(')jkl in different ways. In a fixed coordinate system, an RVE exhibiting orthotropy in
ngjkl can exhibit general anisotropy with evolving damage under multi-axial loading. In
the fixed coordinate system, the anisotropic Cyj; will couple normal and shear strain com-
ponents in the elastic energy expression. However, when the strains are represented in
a coordinate system that corresponds to the principal damage axes, the coupling terms
in the stiffness Cyj; reduce to near vanishing values and the initial symmetry properties
are retained. Hence, the homogenized stiffness matrix has been represented in the PDCS
in [25-27]. Determination of the continuously evolving principal damage coordinate sys-
tem requires the determination of the second-order damage tensor D;; and subsequent
evaluation of its eigen-vectors at each step of the incremental loading process. A transfor-
mation matrix [ Q] is formed from the eigen-vectors of D;j, which leads to the rotation
of the global coordinate system to the principal damage coordinate system.

An issue with the HCDM formulation in [25-27] is that the coefficients Pjj; have been
derived in terms of the applied strain to the RVE. This makes them dependent on the
external load, which leads to a load-dependent (rather than material state-dependent)
damage relation. To overcome this, a new formulation is proposed in this work.
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Damage evolution laws in the PDCS
The macroscopic damage evolution surface is rewritten in the PDCS as:
/ 1 / U ’
F = 2YPy Yy —1=0 (36)

where YL; is thermodynamic force conjugate of the damage tensor D;j given as:

1 aoC
/T pqrs
Yij - 2qu aD;; €rs (37)

The prime in the superscript denotes quantities expressed in the PDCS using the transfor-
mation laws. The fourth-order tensor Pz/‘jkl evolves with initiation and anisotropic growth
of the damage. Assuming associativity in the damage space, the damage evolution rate is
given in [56] as:
!
D;‘/ = )‘32 =A z/'jlelil (38)
The Clausius-Duhem inequality and the Kuhn Tucker condition for the irreversible
nature of the damage are respectively defined as:

Dj;Y}; >0 (39)

F <0,A>0iF =0 (40)

The proposed HCDM model requires the calibration of P, from the micromechanical
analysis of RVE. The fourth-order tensor Pjj; in the HCDM model is a function of the
strain energy dissipation due to damage W; that is calculated in the PDCS as

1
o= / €€ldCl (41)

Evaluation of P,fjk, from micromechanical analysis of the RVE

In the incremental finite element formulation for damage evolution, the backward Euler
method is used to integrate the rate of damage evolution in Equation (38). For a strain
increment for step 7 to n + 1, Pyyy is given by

/ /
(Dij)nJrl B (Dij>n

(42)
Antl — An

( §/k1>W+1 (Yit) 1 =

Substituting this equation in Equation (36), the parameter X,; is evaluated from the
relation:

1 / / /
}LVH_I =t 5 ((Dij>n+1 B (Dij>n> (Ylj>n+1 (43)

The coefficients (Pijkl)n 4 are subsequently determined using Equation (42) from the
homogenized response of the micromechanical analysis. The components Pjj; obtained
from micromechanical analysis can be represented as a function of the evolving vari-
able W using radial basis functions (RBFs). They can be approximated by the linear
combination of radially symmetric RBFs [57] as:

M
Wi — (W)a
Pij(Wa) = Z(cziﬂd)a¢ (lldb(d)ll)

a=1

(44)
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where M is the number of kernel nodes, (@)« are the tensor weighting coefficients and
¢ is a Gaussian radial basis function given by

¢ (r) = exp(—r?) (45)

and (W), and b, are the centroid and smoothing factor or width of the a-th kernel
node, respectively. In Equation (44), || --- || denotes the Euclidean distance and (W),
are the reference points chosen from the micromechanical data. The weighting coeffi-
cients (@)« are evaluated from micromechanical analysis using the procedure outlined
in [57]. The proposed HCDM model is implemented in ABAQUS using the user subrou-
tine UMAT as discussed in [25-27]. The comparison of Pjj; (W) from micromechanical
results and the calibrated expression using RBFs is shown in Figure 14. The HMM model
is obtained by volume averaging the micromechanical stresses and strains in the RVE,
subjected to periodic boundary conditions with an imposed macroscopic strain. The
HCDM model parameter is able to capture the variations in the micromechanical analysis
with excellent agreement.

Macro-micro analysis of a composite structure with the HCDM model

This section demonstrates the strength of the HCDM model as an analysis tool for com-
posite applications by establishing a connection between macroscopic damage evolution
and explicit microscopic failure mechanisms. Structural simulations of damage evolu-
tion are conducted by the code ABAQUS with the HCDM model incorporated in the
user subroutine UMAT. Without any loss of generality, fiber-matrix interface debond-
ing is taken as the microstructural damage mechanism in this study. The macroscopic
finite element model implementing the HCDM constitutive relations consists of eight-
noded quadrilateral elements. Four three-dimensional fiber-matrix composite RVEs with

different morphological arrangements are considered for this validation study. These are:

(a) Unidirectional 3D uniform composite microstructure with fibers arranged in a
rectangular array. The RVE is a unit cell containing a single cylindrical fiber of
volume fraction 20%.
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Figure 14 Comparing RBF-based functional representation of Py (W) with from the homogenized
micromechanics (HMM) data.
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(b) Unidirectional 3D uniform composite microstructure with fibers arranged in a
rectangular array. The RVE is a unit cell containing a single fiber of elliptical cross
section. Volume fraction is 20%, and the aspect ratio of the elliptical cross section is
5=2

(c) Unidirectional 3D composite microstructure with hexagonal arrangement of fibers.
The RVE contains cylindrical fibers with a fiber volume fraction is 20%.

(d) Cross-ply 3D composite microstructure with its RVE consisting of two cylindrical
fibers oriented at 90° with respect to each other. The fiber volume fraction in the
RVE is 20%.

The simulations involve a deformable composite projectile impactor colliding with a rigid
surface. The impactors, consisting of one of the four microstructural architectures, is
macroscopically cylindrical in shape with radius of 3.2 mm and length of 32.4 mm. It
moves with an initial velocity of 10 m/s. The density of epoxy matrix is assumed to be 750
kg/m? while that of steel fiber is 7,800 kg/m? so that, for fiber volume fraction of 20%, the
density of the aggregate is 2,160 kg/m3. The rigid surface and the projectile are modeled
using continuum elements, and contact between projectile and rigid surface is assumed
to be frictionless.

The total energy dissipated due to evolving damage W is plotted as a function of time
in Figure 15 for the different composite microstructures. The composite impactor with
RVE (a) undergoes maximum amount of damage while that with the cross-ply RVE (d)
undergoes only nominal damage. For the composite with elliptical fiber reinforced RVE
(b), the damage initiates earlier than that for RVEs (a) and (c). However, it accumulates
at a lower rate, resulting in significantly lower value of W, at the end of the simulation.
Figure 16a,b,c,d) show contour plots of energy dissipated W, due to evolving damage at
5.0 us for the different microstructures. The damage initiates near the periphery of the
impactor head and then propagates towards the center of the head cross-section. Differ-
ent loading states affect the evolution of damage in each microstructural configuration in
different ways resulting in different damaged behaviors at various locations in the struc-
ture. However, the distribution of W, is more uniform in composite with RVE (a), and

Time (sec) x107°

Figure 15 Total energy dissipated (W) due to evolving damage in the composite impactor for four different
microstructures.
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(© (d)

Figure 16 Contour plots of dissipated energy (Wy) due to damage with RVEs (a), (b), (c), and (d) at time =
5.0 ps.

hence, the total W, is more than for the other RVEs. The homogenization method allows
for the assessment of stress-strain and damage evolution in the microstructural RVE, sub-
ject to a given macroscopic strain history. Figure 17a,b,c,d shows the stress o1; contour
plots in the microstructural RVEs at a point on the face of the impactor.

Conclusions

This paper provides an ICMSE perspective on some of the aspects, governing multi-
scale modeling of composite materials. While a rigorous ICMSE framework encompasses
several ingredients, only a partial list is dealt with in this paper. The major items dis-
cussed include microstructure characterization and statistically equivalent representative
volume elements or SERVE identification, micromechanical analyses of the SERVE, and
development of homogenized models by hierarchical modeling.

Alternative methods of identifying SERVEs using both morphology- and
micromechanics-based methods are proposed for undamaged and damaging conditions.
Similar sizes of the SERVE are predicted by these alternate methods, suggesting that the
different indicators are able to predict similar influence of microstructural elements on
one another. An important contribution to the identification of the SERVE is the devel-
opment of boundary conditions based on the statistical distribution of heterogeneities in
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Figure 17 Contour plots of microscopic stress (o71) at the head of composite impactor for RVE's (a), (b), (c),
and (d).

the domain exterior to the SERVE. In this formulation, the two-point correlation func-
tion is combined with the Green’s function approach to derive accurate displacement
boundary conditions on the SERVE. The SERVE continuously evolves in size with the
evolution of microscopic damage. It is expected that the imposition of accurate boundary
conditions will reduce the size of the SERVE that is conventionally needed with periodic,
uniform traction, or displacement boundary conditions.

A micromechanical analysis model of the composite microstructural SERVE, undergo-
ing damage evolution in the form of fiber and matrix cracking and interfacial debonding,
is developed. Interfacial debonding is modeled using a bilinear cohesive zone model, while
nonlocal continuum damage mechanics models are used to represent fiber and matrix
damage. Three-dimensional microstructures are simulated for crack propagation with
this model.

Finally, an accurate and computationally efficient 3D HCDM is developed for com-
posites undergoing interfacial debonding. The HCDM model represents orthotropic
behavior in the PDCS and uses a fourth-order damage tensor which characterizes the
stiffness as an internal variable. The model is found to accurately predict damage behavior
for a wide range of proportional and nonproportional loading. The HCDM model-based
simulations are able to provide both macroscopic and microscopic information on evolv-

ing damage and failure. The capability of macroscopic damage predictions in structures

Page 26 of 28
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with explicit reference to the microstructural composition is largely lacking in the litera-
ture. The overall model framework presented in this study can be used in material design

to enhance structural performance and life.
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