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Abstract

The effect of the curing process on the mechanical response of fiber-reinforced
polymer matrix composites is studied using a computational model. Computations are
performed using the finite element (FE) method at the microscale where
representative volume elements (RVEs) are analyzed with periodic boundary conditions
(PBCs). The commercially available finite element (FE) package ABAQUS is used as the
solver, supplemented by user-written subroutines. The transition from a continuum to
damage/failure is effected by using the Bazant-Oh crack band model, which preserves
mesh objectivity. Results are presented for a hexagonally packed RVE whose matrix
portion is first subjected to curing and subsequently to mechanical loading. The effect
of the fiber packing randomness on the microstructure is analyzed by considering
multi-fiber RVEs where fiber volume fraction is held constant but with random packing
of fibers. The possibility of failure is accommodated throughout the analysis—failure
can take place during the curing process prior to the application of in-service
mechanical loads. The analysis shows the differences in both the cured RVE strength
and stiffness, when cure-induced damage has and has not been taken into account.

Keywords: Curing; Stress evolution; Periodic boundary condition; Crack band model

Background

Fiber-reinforced polymer matrix composites (FRPCs) are high-strength and lightweight
advanced materials widely used in the aerospace and automotive industries. Since FRPCs
are manufactured by curing the matrix that surrounds the interspersed fibers, good
understanding of the matrix state during the curing process is necessary to have sufficient
control over the quality of the cured product. The mechanical properties of the matrix
during curing can be altered by the presence of fibers and also by details of the curing
cycle. The curing matrix undergoes shrinkage due to chemical processes, which gives
rise to self-equilibrating internal stresses. Plepys and Farris [1] and Plepys et al. [2] have
used finite element calculations using incremental elasticity to show tensile residual stress
buildup of up to 28 MPa post cure in a three-dimensionally constrained Epon 828 epoxy
resin. Merzlyakov et al. [3] reported the development of tensile stresses in a constrained
thermosetting resin system undergoing cure and also quantified the variation of these
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tensile stresses during subsequent thermal cycling. Depending on the constituent chem-
istry of the matrix, the thermal cycle prescribed, and the fracture and strength properties
of a curing matrix, a fiber-reinforced composite can and may undergo damage and crack-
ing in the matrix during the cure cycle. Chekanov et al. [4] have reported various types of
defects that may form in a constrained epoxy resin system undergoing curing. Rabearison
et al. [5] studied the curing of a thick epoxy tube using a finite element model and con-
cluded that high stress gradients developed during differential curing can cause cracking.
Therefore, the state of the matrix within a cured FRPC structure exhibits in situ matrix
properties, which are effective properties of the matrix that take into account imperfec-
tions caused in the matrix due to the cure process, including the presence of residual
stresses. That is, the in situ matrix properties, where the matrix is treated as a ‘new’ mate-
rial with a reference configuration that corresponds to the post-cured state, deviate from
idealized or ‘virgin’ matrix properties of the bulk matrix. The in situ matrix properties
can be extracted from an inverse analysis [6] through the uniaxial tensile response of a
+45° laminate, and this is convenient in engineering analysis of cured composites. Song
and Waas [7] have shown that the use of bulk matrix properties in numerical predictions
of compression response of a 2D triaxially braided composite RVE can lead to erroneous
results - the computed compressive strength being noticeably higher than the experimen-
tally measured strength. They observed that the tow kinking failure mode, which controls
the compression strength was found to be sensitive to the nonlinear shear response of
the matrix. Cure shrinkage in the matrix surrounded by randomly dispersed fibers can
also influence the final shape of the structure [8]. Therefore, it is necessary to have good
knowledge of the influence of the cure cycle on the subsequent mechanical response of
the laminate. For a particular fiber-matrix laminate system, the optimal cure cycle can be
identified such that the cured product has the highest strength and stiffness. Efforts to
optimize various aspects of the cure cycle for mitigating the residual stresses generated
during cure can be found in the studies of Li et al. [9], Gopal et al. [10], and White and
Hahn [11].

In the present investigation, the effects of the cure cycle on possible damage accumu-
lation during cure and subsequent in-service performance at the microstructural level
are studied. A hexagonally packed representative volume element (RVE) having a total
of two fibers (one full center fiber and quarter fibers at four corners) with different vol-
ume fractions, and a randomly packed RVE having multiple fibers are studied. First, the
influence of fiber volume fraction on the strength of the cured RVE using the hexagonally
packed RVE with two fibers is studied. Next, the effect of the randomness of the packing
for RVEs having fixed volume fraction is investigated. For illustrating the findings of this
study, the strength investigated is the transverse tensile strength (S;E), which is obtained
by mechanically loading each of the virtually cured RVEs along the transverse direction
under tension. Then, the initial slope and peak stress value of the nominal stress-strain
response are the transverse stiffness Epp and transverse tensile strength 52+2’ respec-
tively. For low to moderate fiber volume fractions, the transverse stiffness is controlled
by matrix stiffness (see [12]). The transverse tensile strength associated with transverse
matrix cracking is controlled by a combination of factors such as matrix tensile strength,
matrix fracture toughness, fiber packing, and adhesion strength between fibers and the
matrix. Hence, it is expected that both Eyy and S;‘Z are influenced by the details of the cure
process.
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Methods

Cure process

The curing process of a thermoset polymer can be divided into two parts: The first part
consists of the chemical reaction, heat generation, and conduction. The second is the
generation of self-equilibrating stresses and development of the structural integrity via
the evolution of matrix stiffness. The stress generation has been modeled by Mei [13],
Mei et al. [14], and Heinrich et al. [15]. The degree of cure (¢) of the matrix is defined
as ¢ = H(t)/H;, where H(t) is the heat generated up to time ¢, and H; is the total heat

d
of reaction at the end of the cure cycle. Mathematically, the rate of cure (df) can be

expressed as,

d¢

I =f(T,¢) 1
where f(T,¢) > 0 is a function. The evolution of temperature (T) and degree of cure
(¢) for the matrix material system is determined through a coupled system that considers
the heat equation and an empirical curing law or can be supplied from the output of a
simulation that takes into account a cure kinetics model. Kamal [16] has proposed a semi-
empirical expression for the function f (7, ¢) in terms of Arrhenius terms that depend on

temperature

f(T,¢) = [Al exp (AT];;I) +Asexp (ﬁj) ¢>’”} (1-¢)" )
where T is temperature, R is the gas constant, and AE; and AE; are activation ener-
gies. The frequency-like constants A;, Ay and exponents m and #, in theory, have to be
determined by fitting the above equation to the experimental data. However, due to the
complexity of the function f (7T, ¢), a general closed formed solution to Equation 1 is elu-
sive, and often times, this differential equation has to be solved using some numerical
method. Assuming the form for f(T, ¢) in Equation 2 by settingm = Ay = AEy = 0,n =
1 and under isothermal conditions, an explicit relation between the degree of cure and
time can be found as a solution to the differential equation 1, which is

¢(t) =1 — exp(—At) ®3)

—AE
where the Arrhenius parameter . = A; exp <TRl) Cure data as a function of time

for Epon 862/Epikure 9553 resin under isothermal conditions are chosen for the present
work and are available in [15]. The constants obtained by curve fitting with experimental
data at various temperatures are as follows: A} = 3.62 x 101 s~ and AE; = 8.854x 10% 7.

During curing, the matrix heats up due to an exothermic chemical reaction and due to
conduction from the heating source at the boundary. This process can be modeled using
the equation

T _ 0 (T 4o 22 W
c—=—|«(T,¢)— —
Pt T oax ax ) TP o

where p is the mass density, ¢, is the specific heat, and « is the thermal conductivity. The
evolution of self-equilibrating stresses o;;(¢£) during curing is included in the analysis by
using a model proposed by Heinrich et al. [15]:
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where K, u, o, and ¢, are the per-network bulk modulus, shear modulus, coefficient of
thermal expansion, and cure shrinkage, respectively. The first term having the integral is
the contribution to stress evolution due to the curing matrix, whereas the second term
captures the contribution of the uncured liquid resin. The constants K(0) and «(0) cor-
respond to the bulk modulus and coefficient of thermal expansion of the liquid resin,
respectively. The coefficient of thermal expansion «(¢) of the curing matrix is assumed
to have a constant value of 61 x 107® m/mK. As shown by Heinrich et al. [15], the per-
network properties can be obtained from experimentally measured values of the plane
wave modulus (Mexp) and shear modulus (itexp) for the curing matrix as

AM s
M(@) = =22 4 Koxp (0)
(6)
(¢ = Mo
we) =

The moduli values Mexp and ptexp are measured as a function of time by concurrent
Raman and Brillouin light scattering for the pure resin, that is, for a resin curing in the
absence of fibers. These moduli are assumed to correspond to the virgin matrix as a func-
tion of degree of cure. The effect of the presence of fibers around the matrix on matrix
degradation during cure will be demonstrated later in this paper. Once M(¢) and ©(¢)
are known, the per-network bulk modulus K(¢) can be obtained from the isotropic mate-

4
rial relation K = M — — . The per-network shrinkage strain £,(®) up to a certain degree
of cure ¢ =  is given by

! de (®) de(®) [®

A gravimetric test method (see [17]) can be used to obtain shrinkage of all networks

e(®). A 2% per-network cure shrinkage has been chosen for the present investigation.

Damage during cure

During curing, the matrix gradually solidifies (stiffness increases) and simultaneously
contracts (cure shrinkage) due to network formation. Residual stresses develop in the
matrix owing to cure shrinkage and thermal strains. Depending on the magnitude of ten-

d
sile stresses developed, the degree of cure (¢), and the rate of cure d—f , the material

may crack locally during curing. A crack band model is used to simulate the possibility
of tensile cracking during the curing of the matrix. The critical tensile stress for crack-
ing typically increases with the degree of cure. If certain matrix regions crack locally, it
would result in a reduction in the matrix stiffness in that local region along with some
energy dissipated due to cracking. Such a reduction in local matrix stiffness can control
the mechanical properties of the cured RVE. Two assumptions are enforced because the
degree of cure and the coefficient of thermal expansion of a partially cured local volume
of material with microcracks are unknown and physically this local volume does not rep-

resent a continuum in the strictest sense. First, if a certain local volume of material cracks,
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it is assumed that no further curing can take place in that local volume. Second, it is
assumed that if cracking occurs locally, the local cracked volume cannot expand or con-
tract under temperature variations. In the context of the finite element framework that is
used to numerically simulate cure-induced damage, the local volume is a single finite ele-
ment. Therefore and because the crack band method is used, mesh objectivity is included
in the formulation.

At the end of step 11, the curing process is complete. In step III, the cured RVE (contain-
ing cracks or not, as the case maybe) is subjected to transverse tension loading along the
2-direction. The objective here is to compute the strength (S;“z) and stiffness (Eyy) of the
virtually cured RVE. Based on the temperature and cure parameters, computation of the
stress evolution during cure (step II) and strength calculation based on mechanical load-
ing (step III) is done in a unified step in the commercial software ABAQUS/Standard [18].
In this study, it is assumed that cracking in the curing matrix can occur only for ¢ > 0.2
and only under tensile stresses.

The crack band model of Bazant and Oh [19] is used to model failure in the matrix.
This model assumes that once the critical fracture stress o, has been reached, microc-
racks are formed and the additional opening due to cracking is smeared over a band of
material. Here the width of that band is taken to be that which lies within an element and
perpendicualr to the crack plane. The maximum principal stress criterion is used to deter-
mine the failure initiation. In the post-peak regime, the traction-separation law controls
the behavior of the damaging material as shown in Figure 1 and the stiffness of the mate-
rial (matrix) is reduced using the secant value. In the present investigation, o, is assumed
to be independent of ¢. However, in reality, it is expected that the strength would vary
with ¢. Under mode I cracking, the energy dissipated during the fracturing process is the
critical mode I energy release rate (Gic) given by

3 &f
Gic = / 011(8)d3 = h/ Ull(gll)dg (8)
0 0

where stress 011 and €11 are the maximum principal stress and strain values, respectively,
and the maximum separation 8y = hey where ¢r corresponds to the critical failure strain
of the material (accompanied by complete loss of stiffness). Here, / is the characteristic
element length that preserves mesh objectivity (see [20]), defined by prescribing a normal-

. Gic
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Figure 1 Crack band law in terms of maximum principal stress o1 and maximum principal strain 1.
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equals the area under the 017 — €11 law shown in Figure 1. The value of Gjc is chosen to
be 0.6 N/mm in all the computations. For a given epoxy system, the values of Gic and o,
have to be obtained from an experiment, each as a function of the degree of cure ¢.

From the crack band model formulation, the stiffness reduction factor D with (0 < D <
1) for a material with initial stiffness E = E(¢) which is now in the softening region of the
traction-separation law is computed as

e
D= T (f - ) ©)
E(ef —ecr) \ €11
where ¢1] is the current maximum principal strain value. Thus, D = 1 corresponds to no
damage, 0 < D < 1 corresponds to damage but no two-piece failure, while D = 0 would

indicate complete failure. This D parameter will be used to quantify the extent of stiffness
reduction after cure has been completed (i.e., at the end of step II).

Boundary conditions
During curing and mechanical loading, the RVE is subjected to periodic boundary con-
ditions, in concert with the assumption that the RVE is a small volume within an infinite
medium. The use of periodic boundary conditions for fiber-reinforced RVEs can be found
in the studies of Gonzalez and Llorca [21] and Xia et al. [22], among others. During the
cure process (step II), the RVE boundaries are allowed to contract or expand. The RVE
can contract or expand depending on temperature change and can contract due to cure
shrinkage.

Consider an arbitrary cuboid RVE in the undeformed configuration having lengths Lj,
Ly, and L3 along the x1, x5, and x3 directions with one corner point placed at the origin
(0,0,0). Then, the equations corresponding to the 3D periodic boundary conditions are

ur(Ly, x2,x3) — u1(0,%9,x3) = €11l
uz (L1, %9, %3) — u2(0,%2,x3) = 2e€12L4
us(Ly, x2,%3) — u3(0,x2,x3) = 2e€13L4
uy (%1, Lo, x3) — u1(x1,0,x3) = 2e€21Ls
uz(x1, Lo, x3) — up(x1,0,x3) = €22l (10)
uz(x1, Lo, x3) — u3(x1,0,x3) = 2e€23L
uy(x1,%2,L3) — u1(x1,%2,0) = 2e31L3
us(x1, %2, L3) — ua(x1,%2,0) = 2e32L3
uz(x1,%2,L3) — uz(x1,%2,0) = e33l3

u1, up, and us are the displacements of the RVE boundary along the x1, x7, and x3
directions, respectively, and ¢;; are the tensorial strains.

Analysis procedure
In summary, the analysis procedure is divided into three steps as shown in Figure 2.

1. Step I: A thermochemical analysis is performed using the cure parameters
described earlier. Temperature cycle, the degree of cure, and the cure rate in the
matrix are provided. Since the RVE dimensions are on the micron scale, there is
little to no variation in the temperature field across the RVE. The temperature
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Figure 2 Schematic showing major steps in the analysis. Curing under the prescribed temperature field
which includes step | and step Il (left). Mechanical loading in the transverse direction to assess the
mechanical properties of the virtually cured RVE in step Ill (right).

d
profile, the degree of cure (¢), and the rate of cure <d(f) used in the present study

are shown in Figure 3.
2. Step II: The stress evolution calculations are preformed as described in Equation 5.
Shrinkage during cure is modeled using Equation 7. At the end of this step, we have

a virtually cured solid. Possibility of damage during curing is taken into account
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Figure 3 Temperature profile (top), degree of cure ¢ (middle), and rate of cure ‘Z—f (bottom) as functions of
time.
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using a crack band model. Periodic boundary conditions are enforced throughout
this step.

3. Step III: The virtually cured RVE is subjected to transverse tensile loading (with
periodic boundary conditions in place) to back out the stiffness and strength.
Again, the crack band model is used to simulate tensile failure, and periodic

boundary conditions are enforced during this step.

Results and discussion

Hexagonally packed fiber RVEs

Three 3D hexagonally packed RVEs with fiber volume fractions (Vf) of 0.5, 0.6, and
0.7 are studied. These RVEs are first subjected to the curing cycle (steps I and II) and
then to tensile loading (step III) in the transverse direction. The latter step leads to the
determination of the transverse stiffness Ey; and tensile strength S, of the virtually
cured RVEs. The analysis is done using the finite element software ABAQUS/Standard.
The stress evolution expression along with the crack band model is implemented using
ABAQUS/Standard’s user subroutine UMAT. In each of the RVEs shown in Figure 4, the
thickness ¢ along the fiber direction is chosen to be 0.30 pm and carbon fibers are 6 um in
diameter. Both the fiber and the matrix are modeled as isotropic solids. Young’s modulus
and Poisson’s ratio of the fibers are taken to be 200 MPa and 0.3, respectively.

For each of the RVEs shown in Figure 4, three critical fracture strength values (o)
of 20, 30, and 45 MPa are chosen which are independent of the degree of cure ¢, while
the critical mode I energy release rate Gic is chosen to be 0.6 N/mm. The strength and
toughness are assumed here to be independent of the degree of cure (¢). The objective
of this portion of the study is to understand how the strength and stiffness of the cured
product change with changes in fiber volume fraction and changes in the imposed crit-
ical fracture strength during cure. For a given RVE in step II, the matrix tensile stresses
can exceed o, and microcracks appear leading to a reduction in stiffness. To assess the
amount of cure-induced damage, we can keep track of the stiffness reduction factor D
at various times during the curing process. Figure 5 shows the average D value for each
of the RVEs undergoing cure. Recall that D = 1 corresponds to no loss of instantaneous
stiffness, whereas D = 0 corresponds to the complete loss of stiffness. Here, for each of
the RVEs, the D values drop first for the case with o, = 20 MPa followed by the case
with o = 30 MPa and lastly by the case with o, = 45 MPa. This is expected as damage
would occur first in the RVE that has the lowest critical strength. Consequently, the RVEs

2
V,=05 V,=06 V,=07

Figure 4 Hexagonally packed fiber-matrix RVEs with fiber volume fractions of 0.5, 0.6, and 0.7. Notice that the
dimensions of the fiber are held fixed across these three RVEs.
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Figure 5 Plots of ‘average’ stiffness reduction factor D for virtually cured hexagonally packed RVEs during the
cure cycle.

with oo, = 20 MPa are also the first to stop curing (locally, at those locations where crack-
ing has occured), on account of microcrack formation. The simulations with o, values of
30 and 45 MPa first exhibit microcracks during the cooling phase (5,000 s < t < 6,000 s)
of the cure cycle where additional shrinkage occurs due to cooling. It is interesting to note
that although microcracks appear last for the case with o, = 45 MPa, the drop in D is
more drastic when compared to drops corresponding to the other two cases. Hence, at
the end of the cure cycle, for each RVE, the extent of damage varies inversely with the crit-
ical fracture strength o, of the curing matrix. The spatial variation of D at the end of cure
is shown in Figure 6. Even though the RVE is symmetric about a vertical and horizontal
line passing through its center, there is nonhomogeneity in the contour of D across the
matrix. The nonhomogeneity in D arises because the stress distribution in the RVE does
not strictly follow the symmetry present in the hexagonal packing during cure on account
of small numerical differences. Hence, once cracking starts at locations where stresses are
highest, this breaks the symmetry in stress distribution, thus leading to subsequent non-
homogeneity in D as the curing progresses. In these curing simulations, two-piece failure
(corresponding to D = 0) was not observed in the cured matrix.

The virtually cured RVEs are now loaded in tension along the transverse direction in
step III. As in the previous step, periodic boundary conditions are enforced. The nominal
stress-strain (022 — €22) response is shown in Figure 7. Each of the cured RVEs exhibits a
fairly linear response during the initial stages of loading (up to nominal strain), followed

Page 9 of 18
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0, = 20 MPa o, = 30 MPa o, = 45 MPa

0000000000
ORMNWANGOSIOWOD
<
Il

Figure 6 Stiffness reduction factor D for the hexagonally packed RVEs at the end of cure.

by a nonlinear softening response before attaining the peak. Past the peak, a rapid drop
in stress is observed. The peak stress values correspond to the transverse strength S, of
the virtually cured RVEs. In the case where cure-induced damage is ignored, and when
the RVEs are loaded under tension in the transverse direction, the resulting stress-strain
response is shown in Figure 8. These RVEs also exhibit a fairly linear response during
the initial stages of loading. However, the extent of nonlinearity present before the peak
is much lesser than the case when cure-induced damage is accounted for (see Figure 7).
The RVEs with no cure-induced damage exhibit higher global stiffness compared to those
when cure-induced damage is taken into account. This is as expected. In the post-peak
region, the crack paths for simulations with oo, = 20 MPa for virtually cured RVEs and for
RVEs where cure-induced damage has not been taken into account are shown in Figure 9
and in Figure 10, respectively. Figure 11 shows the variation of the initial stiffness (Eyy)
of RVEs under mechanical loading. For a given RVE with volume fraction held fixed, the
lowest stiffness is exhibited by the RVE having the highest o, value of 45 MPa in step
II. Recall that from Figure 5, this case with o, = 45 MPa had the lowest value of D at
the end of the cure cycle. Thus, the stiffness reduction factor D is seen to have a positive
correlation with global transverse stiffness Eo» under mechanical loading. Figure 12 shows
the comparison of transverse tensile strength S;'z values of the virtually cured RVEs and
for those RVEs where cure-induced damaged has not been taken into account. It can be
seen that for all the volume fractions and all o, values considered, the RVEs that have
cure-induced damage have noticeably lower strength values.
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Figure 7 Nominal stress-strain (02, — &27) response of the hexagonally packed RVEs during step Il under
transverse tension.

Randomly packed fiber RVEs

Although the RVEs discussed thus far are idealized hexagonally packed geometries, they
do not represent a RVE of a realistic FRPC sample. In realistic FRPCs, the fibers are ran-
domly distributed which give rise to several matrix-rich pockets. It would be instructive
to understand the severity of the cure-induced damage on the mechanical response, as a
function of the randomness in fiber position in an RVE. Eight renditions of square FRPC
RVEs with randomly distributed fibers are analyzed in this section. The distribution of
fibers within the RVEs was done manually, in that the fibers were arbitrarily placed within
the square RVE boundary. The fiber volume fraction (V%) in all these renditions is cho-
sen to be 0.55. These RVEs are shown in Figure 13. Few strategies to generate random
RVEs may be found in the studies of Melro et al. [23], Yang et al. [24], and Vaughan and
McCarthy [25]. Recently, using a heuristic random microstructure algorithm, Romanov
et al. [26] have generated RVEs that are statistically well correlated with real FRPC RVEs.

50 T T T

—V,=0.5,5_=45MPa
45} —V,=06,0, =45MPa
V.=0.7,6_=45MPa
f or I

-===V,=0.5,6_=30MPa

f or
----V. =06, c_=30MPa

f or H

f

f

f

f

V=07, O, = 30 MPa
-V;=05,6 =20 MPay
........ V.=0.6, O, = 20 MPa
V=070, = 20 MPal|

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Strain

Figure 8 Nominal stress-strain (02, — €22) response of the hexagonally packed RVEs under transverse
tension loading when no damage during cure is assumed.




D’Mello et al. Integrating Materials and Manufacturing Innovation (2015) 4:7 Page 12 0of 18

V=05 V=06 V;=07

Figure 9 Crack paths under transverse tension loading in hexagonally packed RVEs with o, = 20 MPa.

The cure cycle, fiber, and matrix properties are similar to those used in the aforemen-
tioned study with hexagonally packed RVEs. A preliminary analysis on the mesh size has
been conducted on a random RVE to establish that important features such as the stiff-
ness reduction factor D at the end of step II and crack path at the end of step III are both
mesh insensitive for the range of element sizes analyzed in this study. Figure 14 shows
three different levels of refinement for a random packed case study. Results in terms of
the factor D and crack path are shown in the top and bottom images of Figure 15, respec-
tively. It can be seen that the spatial distribution of D and the two-piece failure paths are
fairly consistent between the three meshes considered, thus establishing mesh objectivity.

Next, the eight random fiber RVEs shown in Figure 13 are cured with the crack band
model (with critical fracture stress o, = 30 MPa during cure) prescribed to capture any
local matrix damage during cure. Periodic boundary conditions are enforced. The stiff-
ness reduction factor D for these renditions is shown in Figure 16. Each of the RVEs
exhibits nonhomogeneity in the contour for D. Note that on account of inherent random-
ness in fiber packing, there is no symmetry in the RVE at the start of cure. Matrix region
areas that are surrounded by closely packed fibers are seen to exhibit higher stresses.
This introduces stress gradients in different parts of the RVE during cure. Then, dam-
age initiates at locations where the tensile stresses attain the critical fracture strength
ocr. Therefore, different regions in the virtually cured matrix end up having nonhomoge-
neous stiffness values owing to different regions damaging differently during cure. These
RVEs are next subjected to transverse tension loading along the 2-direction. The nominal
stress-strain response is shown in Figure 17. It can be seen that the response is fairly linear
during initial stages of loading (for nominal strain 0 < ¢ < 0.0025). Beyond ¢ > 0.0025,

V,=07

V,=0.5 V;=06

Figure 10 Crack paths under transverse tension loading in hexagonally packed RVEs with o, = 20 MPa,
ignoring cure-induced damage.
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Figure 11 Transverse stiffness £, in hexagonally packed RVEs compared to the case with no cure-induced
damage.

there is nonlinear response followed by a peak value between strains of about ¢ ~ 0.008.
Past the peak, the response is like that of a brittle solid, i.e., there is a drastic drop in stress
due to two-piece matrix tensile failure. The two-piece crack paths for each of the random
RVEs are shown in Figure 18. In some of the RVEs, the crack path is more tortuous than
others. It is interesting to look at RVE #5, where there is a prominent and continuous
matrix-rich region transverse to the loading direction. The two-piece crack path in this
RVE at the end of step III is seen to propagate along a zone that has fibers that are more
closely packed, which is away from the matrix-rich region. Similar observation holds for
RVEs #1, #7, and #9 which have prominent but isolated matrix-rich regions. The matrix
which is in a region where fibers are closely packed encounters higher stresses during
curing as well as during mechanical loading and is more susceptible to cracking. Thus,
cracks tend to initiate and propagate from such sites. The global stress-strain response
of the random RVEs when cure-induced damage is not considered is shown in Figure 19.
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Figure 12 Transverse tensile strength Szrz in hexagonally packed RVEs: with and without cure-induced
damage.
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Figure 13 Eight renditions of random 20-fiber RVEs with volume fraction V¢ = 0.55.

Here, the initial region is fairly linear (for nominal strain 0 < ¢ < 0.002). However, the
stiffness values in the initial region are identical compared to the RVEs with cure-induced
damage, where there is a larger spread of the initial stiffness value owing to nonuniform
stiffness distribution in the damaged matrix. There is some nonlinearity in the response
which is much lesser than that seen in the RVEs when cure-induced damage was con-
sidered. A peak is attained beyond which the stress value plateaus momentarily followed
by a drastic drop in stress. Finally, the strength values of the two cases (with and without
cure-induced damage) are shown in Figure 20. For each of the RVEs with no cure-induced
damage, the transverse tensile strengths are higher, i.e., mean 52+2 = 31.2 MPa compared
to mean S;rz = 25.75 MPa for RVEs with cure-induced damage. Moreover, the scatter
in strength values in the RVEs with cure-induced damage is much larger than when no
cure-induced damage is taken into account.

In the foregoing sections, we have established that damage in the matrix during cure
results in a lower transverse strength value in the virtually cured hexagonally packed RVEs
as well as virtually cured randomly packed RVEs. Thus, a comparison of the transverse
tensile responses of these two types of RVEs is in order. In hexagonally packed RVEs hav-
ing a fixed value of critical tensile fracture stress o, the transverse strength S;rz did not
seem to vary with volume fractions ranging between 0.5 and 0.7 (see Figure 12). How-
ever, in randomly packed RVESs, the S5, values exhibited significant scatter (see Figure 20).
When compared to the case with no damage during cure, the mean transverse tensile
strength reduction for hexagonally packed RVEs (15% reduction) and that for randomly
packed RVEs (17% reduction) are similar. The worst strength reduction in randomly
packed RVE is 25% for RVE #8. This shows that fiber packing within an RVE has an
effect on the strength of the cured RVE with volume fraction held fixed. The effect of

Figure 14 Three mesh sizes chosen for the mesh convergence study.
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Figure 15 Stiffness reduction factor D at the end of cure (top) and crack path (bottom) for three mesh sizes.

ocooooooooor

Figure 16 Stiffness reduction factor D in the random fiber RVEs at the end of cure.
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Figure 17 Nominal stress-strain (02, — €27) response of virtually cured random fiber RVEs having
cure-induced damage.

microstructural randomness on mechanical response is detailed in the monograph by
Ostoja-Starzewski [27].

Conclusions

The influence of cure on the mechanical response of virtually cured fiber-reinforced poly-
mer matrix RVEs has been studied using a previously reported network model proposed
by Heinrich et al. [15] in conjunction with the Bazant-Oh crack band model. Transverse
tensile strength (SELZ) and transverse stiffness (Ez2) of these virtually cured RVEs were
compared with those when no cure-induced damage was taken into account. These two
quantities were calculated from the nominal stress-strain response of the virtually cured
RVEs subjected to tensile loading along the transverse direction. Damage during cure is
seen to reduce both stiffness and strength of the cured RVEs. Moreover, it is seen that
even though fiber volume fraction is held fixed, the transverse strength of the virtually

S
A

Figure 18 Two-piece crack paths in the randomly packed RVEs under transverse tension loading.
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Figure 19 Nominal stress-strain (672 — €22) response of virtually cured random fiber RVEs with no
cure-induced damage.

cured RVEs depend on the fiber packing. Also, the scatter in transverse strength values
for RVEs with cure-induced damage is appreciably higher than in the case where cure-
induced damage has been neglected. Since fiber packing is seen to influence strength of
the cured RVE of constant fiber volume fraction, the study of correlating strength values
with some metric associated with fiber packing is delegated to a future study. Using the
approach described in this paper, several cure cycles can be considered and eventually
tailored to arrive at an optimal cure cycle to reduce damage in the microstructure dur-
ing the curing process, leading to superior mechanical strength and stiffness of the cured

product.
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Figure 20 Transverse tensile strength of each random fiber RVE plotted against RVE number.
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