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Abstract

The integration or mixing of immigrants with non-immigrants is an important issue
in many countries. There are various forms of mixing. We consider here cross-
parenting, the bearing of children with one immigrant parent and one non-
immigrant. Our objective is to model cross-parenting as a demographic process and
investigate the rate at which such mixing could occur.
We identify three populations within an overall total: non-immigrant, immigrant, and
mixed. A model is constructed to track the three as they change and interact
through cross-parenting. The populations evolve by simulation in accordance with a
common stable projection matrix. However, as cross-parenting between immigrants
and non-immigrants occurs, the progeny are transferred to the mixed population;
the immigrant and non-immigrant populations are thus depleted by the transfers
and the mixed population augmented in each generation. The transfers are
governed by underlying preferences, but the preference pattern must be modified
to recognize constraints imposed by differences in population size. A restricted least-
squares procedure effects the modification so that the actual pattern is as close as
possible to the preferred one. Simulations are carried out with alternative preferential
patterns and rates of immigration. Of particular interest is the proportion of mixed
population in the total in each generation and the final steady state.
The paper develops a new framework and model to show the rate at which
population mixing could occur under alternative assumptions about the immigration
rate and preferences for cross-parenting.
JEL Classification: J10, J15

Keywords: Immigration, Population mixing, Cross-parenting, Demographic modeling,
Parenting preferences
1 Introduction
There are many ways in which the two populations can mix when a home country

receives immigrants. A rough (and perhaps overlapping) categorization might be as fol-

lows: economic mixing (working or doing business with each other); social mixing (be-

longing to the same common-interest groups, including religious institutions, schools,

clubs, and informal friendship affiliations); geographic mixing (through neighborhood

proximity and contacts); and demographic mixing (mating and the bearing of children).

Our concern in this paper is demographic mixing and, more specifically, the bearing of

children with mothers and fathers from different populations. Population mixing for

us will be the result of cross-parenting, as we shall call it. (We use cross-parenting in
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preference to cross-breeding, the term common in biology, as it has a greater connota-

tion of voluntary choice. Note too that the term population mixing in our context dif-

fers from its definition in epidemiology where it refers to contacts among people as a

result of spatial movement; see Law et al. 2008.)

In the analysis that follows, we will define three populations, a non-immigrant population,

an immigrant population (original immigrants and their descendants), and a mixed popula-

tion, and we will employ a simplified or “stylized” demographic projection model to trace the

evolution of each population from one generation to the next under alternative assumptions

about the propensity to cross-parent. Although implicit rather than explicit in the model, im-

migrants could have the same characteristics as non-immigrants or they could differ in vari-

ous ways—ethnicity, language, education, and others—and such differences could have an

important bearing on the mixing pattern. While not directly related to immigration (except

historically), we note that many studies of population mixing in the USA have focused on ra-

cial intermarriage. Fryer (2007), for example, contrasts the “extraordinary convergence” in re-

lation to black-white economic and political empowerment with much less convergence “in

the most intimate spheres of life – religion, residential location, marriage, and cohabitation”

and observes that marriage across racial lines is a “rare event” (pp. 71, 72). Torch and Rich

(2016) report that the proportion of black-white marriages and cohabitations among couples

increased fivefold from 1980 to 2010 but still accounted for only 1.5% of the total (p. 1).

The integration of immigrants with non-immigrants is a concern for many countries (im-

migrants account for more than 20% of the population in some of the major recipients),

and inter-mating and cross-parenting are important indicators. Adserà and Ferrer (2015)

provide a summary of the literature relating to intermarriage of immigrants and non-

immigrants. They note that “the capacity to form and maintain exogamous unions (between

native and foreign born) can be interpreted as the quintessence of successful integration” (p.

324). Referring to the work of Duncan and Trejo (2007), they observe too that “selectivity

into intermarriage influences ethnic identification” and, hence, the measurement of integra-

tion for those with “immigrant ancestry” (p. 324). Substituting “cross-parenting” for “inter-

marriage,” these observations relate directly to our focus in the present paper.

The paper, based on a stylized model, is theoretical and exploratory. Our intention is to

show how quickly, in generational time, one could expect integration to take place under

alternative assumptions about the propensity for immigrants and non-immigrants to mix,

where cross-parenting is the mixing instrument. We develop the model, calibrate it using

life table data, and carry out a series of experiments starting with a stable population and

introducing immigration at different rates. Alternative underlying mixing preferences are

assumed in the experiments, and a procedure is developed for adapting the preferences to

render them consistent with restrictions imposed by the available populations of child-

bearing age. The preferences range from no mixing at all (no cross-parenting) to free, un-

restricted mixing. The non-immigrant, immigrant, and mixed components of the overall

population are projected as a tri-population system. Of special interest is the proportion

of mixed in the total as it changes from one generation to the next and approaches a

steady-state limit as the number of generations increases without bound.

2 A framework for the model
We start with a hypothetical country (region) with overall population N. The popula-

tion is distributed among two sexes and five age groups: “children” (0–19), “young
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adults” (20–39), “middle aged” (40–59), “old” (60–79), and “very old” (80–99), with no

survivors at 100. The age-sex distribution is captured by a 10-element vector n = [nx],

with x = 1 to 5 representing the female age groups, x = 6 to 10 the male age groups. All

children have young adult parents—mothers in group n2, fathers in n7. The fertility rate

for young adult females is thus equivalent to the conventional total fertility rate. In

addition, restricting fathers to the same age range allows the calculation of a male fer-

tility rate. (The model is a one-sex model in the classical sense of female lineage, and

the male fertility rate is an easily calculated concomitant of the female rate.)

In the absence of migration, in or out, the population is augmented by births, de-

pleted by deaths, has a 10 × 10 projection (Leslie) matrix Q, and a stable age distribu-

tion. The female fertility rate is set at the natural replacement level, survival rates are

unchanging, and nt + 1 =Qnt = nt for all t where the time interval is 20 years, the same

as the age intervals. For convenience, we shall refer to this interval as a generation. (To

keep notation as simple as possible, we add a time subscript when necessary but avoid

doing so otherwise.)

Now introduce immigration (still with no emigration, which we shall take to be zero)

and assume that immigrants have the same stable age-sex distribution, proportionately,

as the original non-immigrants and the same projection matrix Q. In our simulations

below, immigration may be one-time or repeated, but to develop the framework, as-

sume for the present that it is a one-time event with immigrants arriving at t = 0. The

question of interest is how rapidly will the populations of immigrants and non-

immigrants mix where mixing in our context means cross-parenting—initially, the

bearing of children with one immigrant parent and one non-immigrant parent, al-

though the descendants of such a union will also be regarded as mixed. (It is perhaps

well to recognize, before proceeding, that realistically in virtually any place in the world,

all of the population will be descended from immigrants if one goes back far enough in

time. In what follows, we will simply identify t = 0 as a point at which new entrants will

be classified as immigrants and the existing population as non-immigrants.)

We identify then three separate populations within the overall population N, each

evolving in its own way: (1) the original non-immigrant population and its non-mixed

descendants H; (2) the population of immigrants and their non-mixed descendants M;

and (3) a mixed population U, including all children of mixed lineage—children of

mixed parents, grandchildren of mixed parents, and, in general, all persons with lineage

traceable back to a mixed union. (Mnemonically, H is for “home,” M for “migrant,” U

for “union.” Where the meaning is clear, we shall sometimes use the word “immigrants”

to refer to members of the M population, thus including both those who immigrated

originally and their descendants.) These three populations have age-sex vectors h, m,

and u corresponding in structure to n (and aggregating to n). They also have the same

projection matrix Q. While initially immigrants and non-immigrants have the same

proportionate age-sex distribution, they may differ in other characteristics. The non-

immigrant population will be augmented in each generation by births and depleted by

deaths, but those births to non-immigrant mothers mated with immigrant or mixed fa-

thers will be transferred (reclassified) to the mixed population. Similarly, the immigrant

population will be augmented by births and depleted by deaths, but all births to immi-

grant mothers mated to non-immigrant or mixed fathers will be transferred to the

mixed population. The mixed population will be augmented by births, depleted by
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deaths, and augmented also by the cross-parenting transfers from the other popula-

tions. If cross-parenting continues freely and indefinitely—if individuals choose to mate

randomly and bear children without preference as to population membership—the

non-immigrant and immigrant populations will vanish in the limit; all residents of the

country will eventually be of mixed lineage. The proportion of mixed population in the

total population of the country serves as an indicator at any given time of the degree of

mixing that has occurred. (Note that the overall population N continues to have the

same stable age-sex distribution; that is not affected by transfers among its component

populations.)

The foregoing assumes one-time immigration. If immigration is repeated—at a con-

stant rate proportional to the total population, let us say—the framework is the same as

before except that the immigrant population will now be augmented by new immi-

grants each generation. The non-immigrant population will still vanish, in the limit,

under random parenting, but the immigrant population will be continuously replen-

ished, and the mixed proportion in the overall population will always be less than one.

The accounting relations for the process with repeated immigration can be stated in-

formally as follows. The change in the non-immigrant population from one generation

to the next can be represented as

ΔH ¼ Births � Deaths � CPT H ;M → Uð Þ � CPT H ;U → Uð Þ

CPT stands for a cross-parenting transfer of newborn children, and the arrow indi-

cates that the direction of transfer is to U, the mixed population. The transfers result

from a non-immigrant/immigrant (mother/father) pairing (H,M) in the first case and a

non-immigrant/mixed population pairing (H,U) in the second. (The first letter is always

the population of the mother.) Using similar notation, the changes in the immigrant

and mixed populations can be represented as

ΔM ¼ Births � Deaths � CPT M;H → Uð Þ � CPT M;U → Uð Þ þ New Immigrants

ΔU ¼ Births � Deaths þ CPT U ← H ;Mð Þ þ CPT U ← H ;Uð Þ
þ CPT U ← M;Hð Þ þ CPT U←M;Uð Þ

3 Preferential distribution patterns
Free and random mating/parenting yields one particular type of interpopulation distri-

bution of children, but there are others. We shall call these distributions preferential in

the first instance. Preferential distributions reflect personal preferences and mutual

mating/parenting agreements and possibly also societal discrimination of one kind or

another. Actual or realized distributions may differ from preferential ones by incorpor-

ating supply constraints imposed by the differing sizes of the populations and the lim-

ited availability of mating partners; preferential distribution patterns thus represent

distributions as they would occur in the absence of such constraints. (Imagine for the

moment a hypothetical situation in which there is a given number of young adult fe-

males but an unlimited number of males in each population, so that any proportionate

distribution of mothers according to the population of fathers is possible and reflective

only of preferences.) We shall deal with supply constraints shortly but first consider a

3 × 3 preferential distribution matrix P = [pij]. The rows of the matrix represent mothers
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in each of the three populations (H,M,U); the columns represent fathers from those

populations. An element i, j represents the proportion of children who are born to

mothers from population i and have fathers from population j, with the elements in

each row summing to 1. This matrix can be configured in various ways to represent

alternative preferential patterns. Here are some.

1. Indifference: There is no preference in any of the three populations: the matrix is

3 × 3; pij = 1/3 for all i, j (this is what we called free and random parenting above).

2. Isolation: There is no cross-parenting and hence no mixed population; non-

immigrants parent with non-immigrants, immigrants parent with immigrants, and

the matrix is reduced to 2 × 2: p11 = p22 = 1; p12 = p21 = 0. Isolation could be a matter

of mutual preference or a consequence of societal discrimination (the two may be

essentially equivalent).

3. Partial discrimination: Non-immigrants have a preference for parenting with non-

immigrants, but the preference is not exclusive—they will parent also with mixed

population members, with lower probability, and with immigrants, with still lower

probability; immigrants have a similar probability pattern, but in reverse; mixed popu-

lation members are indifferent: p11 > p13 > p12; p22 > p23 > p21; p31 = p32 = p33 = 1/3.

4. Adaptation: The pattern is isolation at some initial time but moves toward indifference

from one generation to the next—say linearly, for example—as society adapts and the

integration of immigrants and non-immigrants comes to be fully accepted.

4 The male fertility rate and associated implications
The one-sex fertility structure of the model and the requirement that all parents must

be young adults allows us to calculate an implicit male fertility rate. The female fertility

rate F is the ratio of live births to the number of young adult women, the same for all

populations. Similarly, a male fertility rate G can be defined as the ratio of live births to

young adult males, the number of live births being the same in both cases. With overall

population vector n, the male fertility rate would be G = (n2/n7)F, where n2 and n7 are

the numbers of young adult females and males, respectively. Assuming G to be the

same for all populations (as is F), the overall number of births will be distributed ac-

cording to the population of the fathers in proportion to the numbers of young adult

males. Furthermore, the Q matrix incorporates a fixed sex ratio at birth and an adjust-

ment to allow for infant and early-childhood mortality in calculating the numbers of

surviving male and female children in a population (see the Appendix). The calcula-

tions are common to all three populations, and so, the distributions of male children

and female children by population of father will be the same and proportional to the

numbers of young adult males, as are births. They will be proportional also to the num-

bers of young adult females, for the same reasons, and thus, any conflict between the

two proportionality distributions must be resolved. Females from one population who

would otherwise parent with males from another cannot do so if the latter population

has an insufficient number of young adult males.

5 From preferences to realized proportions
A preferential distribution provides a starting point, but the relative availability of

young adults in the three populations will dictate the feasibility of any cross-parenting
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pattern. To modify a preferential pattern to accommodate supply restrictions but re-

main as close as possible to the original preferential distribution, we make use of a

method known variously by the names biproportional adjustment, iterative proportional

fitting, and others. The method was first given formal mathematical treatment by Dem-

ing and Stephan (1940), based on a restricted least-squares criterion, in the context of

the adjustment of sample estimates to fixed census marginal totals in the construction

of contingency tables. It was subsequently taken up in the construction of economic

input-output tables (Bacharach 1965; 1970), where it has had extensive application over

the years under the name RAS Method. (See Lahr and de Mesnard 2004, for a history

of RAS applications.) Note that under the isolation preferential pattern there are no

supply constraints—the “demand” for and supply of young adult males are automatic-

ally in balance in each population, so the procedure we are about to describe is

required only for other patterns.

We wish to construct a 3 × 3 matrix B = [bij], i, j =H,M,U, showing the realized distri-

butions of children by mothers’ population (rows) and fathers’ population (columns).

(B is 2 × 2 if there is no adult mixed population, as is the case temporarily when immi-

gration is first introduced and before any cross-parenting can occur.) Having con-

structed B, we then want to convert it into a matrix A that is similar in structure to P

but shows the actual (realized) proportionate distribution of births among fathers’ pop-

ulations for each population of mothers (row totals are thus equal to 1). The overall

number of children, all populations combined, is given by calculation based on the Q

matrix (all populations have the same Q matrix). The row totals of the B matrix (bi •)

are calculated by distributing the overall number of children in proportion to the num-

bers of young adult females in the three populations and the column totals (b• j) by dis-

tributing the same overall number of children in proportion to the numbers of young

adult males. Given some initial matrix B* = [b�ij], which in general will not satisfy the re-

quirements that elements must sum to both row and column totals, the biproportional

adjustment algorithm proceeds iteratively to find 3 × 3 (or 2 × 2) diagonal matrices D

and C such that B =D(B*)C satisfies those requirements; it thus calculates B as a trans-

formation of the initial matrix B* by forcing row and column adding-up consistency.

As a final step, the A matrix is calculated by expressing each element of B as a propor-

tion of its row total; P and A are thus comparable, P showing preferences, A showing

realizations. The sex ratio of children is constant for each population, under the as-

sumptions of the model, and thus, the proportionate distributions provided by the A

matrix are the same for male and female children.

The derivation of the B matrix is as follows. The row and column totals are calculated

as above. The row totals are then distributed among the elements of each row in propor-

tion to the corresponding elements of the P matrix, thus providing the initial matrix B*,

the starting point for the procedure. The elements of B* sum to the correct row totals, by

construction, but not (in general) to the column totals. They are then adjusted pro rata to

force them to sum to the column totals, but now, they no longer sum to the row totals.

They are forced again pro rata to sum to the row totals, and so, it proceeds, iteratively,

until convergence is obtained and the adding-up restrictions are satisfied. Following Dem-

ing and Stephan (1940), this simple procedure can be shown to be equivalent to minimiz-

ing the sum of squares of the differences between the B* and B elements,
X

b�ij−bij
� �2

.
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(Deming and Stephan used a weighted average for illustration; we use an unweighted

average, or a weighted average with weights equal to 1, if one prefers to say it that way.)

The minimization is subject to the conditions that the rows of B must add to bi • and the

columns to b• j. The A matrix derived from B, and representing realized distributions, is

thus as close as possible to the P matrix, representing preferential distributions, based on

the least-squares criterion. (The final adjustment factors that convert B* to B in the itera-

tive sequence are the diagonal elements of the D and C matrices—row adjustment factors

for D, column adjustment factors for C.) The transformation of B* to B (more fully, P to

B* to B to A) using the biproportional adjustment algorithm is unique, and convergence is

fast and guaranteed under simple conditions that are satisfied by the model.

The application of the biproportional adjustment algorithm here is similar to its ap-

plication in the construction of an economic input-output matrix, as noted above: mar-

ginal input and output (row and column) totals are known precisely, but interindustry

product flows—the elements of the matrix—are not. They are represented initially by

estimates that are then adjusted iteratively to enforce the adding-up restrictions. The

present application involves only small matrices; input-output applications are generally

on a much larger scale but the basic ideas are the same.

We provide below examples of the P matrices for selected preferential patterns and

the corresponding derived A matrices for two of our immigration simulation applica-

tions. First though we lay out the formal specifications of the model on which the ap-

plications are based.

6 The model
The complete model can be derived as follows. In the absence of transfers of children,

the non-immigrant population would be projected one generation ahead as ht + 1 =Qht.

To introduce transfers, we define a 10 × 10 matrix R = [rij] where r12 and r62 are equal

to q12 and q62 (the mortality-adjusted sex-specific fertility elements of Q—see the Ap-

pendix) and all other elements are zero. RHt is then a vector with the projected num-

bers of female and male children as the first and sixth elements, zeros elsewhere.

Assuming A is a 3 × 3 matrix, the proportion of children transferred out of the non-

immigrant population is ahm + ahu = 1 – ahh, the same for both sexes, the transfer coeffi-

cients being the elements of A representing particular cross-parenting proportions. In

practice, the biproportional procedure is applied anew at each generation in a simula-

tion, and thus, A will vary. Time subscripts are therefore attached to the elements of A

in the equations below in addition to the row and column subscripts. Putting all of this

together, the full projection equation for the non-immigrant population can be written

compactly in the form

htþ1 ¼ Q− 1−ahhtð ÞRð Þht ð1Þ

The projection for the immigrant population can be dealt with in the same way, with
child transfer proportion amn + amu = 1 – amm, but now new immigrants must be added.

Assume that new immigrants enter the country each generation as a fixed proportion

ϕ of the population calculated as it would be without the new immigrants. They enter

the country with the same age-sex distribution as the overall population; the vector of

new immigrants is therefore ϕQ(ht +mt + ut) = ϕQnt, and the projection equation for

the immigrant population can be written as
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mtþ1 ¼ Q− 1−ammtð ÞRð Þmt þ φQnt ð2Þ

(A small point: The immigration vector at generation t includes children who are im-
migrating with their parents. Alternatively, the children of immigrant parents could be

born immediately after the parents enter the country—in the same generational inter-

val, that is; that would make no difference. In either case, the children would represent

an addition to M, the immigrant population. ϕ would simply be defined to include both

pre-entry and immediate post-entry births to immigrant parents.)

The projection equation for the mixed population, the recipient of child transfers, is

then

utþ1 ¼ Qut þ 1−ahhtð ÞRht þ 1−ammtð ÞRmt ð3Þ

Equations (1), (2), and (3) constitute the integrated tri-population system that we use
to explore, by simulation, the rate of population mixing. Given an initial population h−

1, immigration commencing at t = 0 at an assumed rate ϕ, and a preferential cross-

parenting pattern represented by P, A can be calculated, the system can be moved for-

ward one generation at a time, and the proportionate distribution among the three

populations noted. Of particular interest is the time path of the ratio of mixed to total

population under alternative assumptions.

7 Examples of P and A matrices
For illustration, Tables 1 and 2 show examples of the P matrices for three preferential

patterns, indifference, isolation, and a particular version of partial discrimination, along

with the corresponding derived A matrices. One-time immigration is assumed in

Table 1, repeated immigration in Table 2, with the immigration rate ϕ in both cases set

at 0.20 (one of the immigration rates considered in simulations in the next section).

The row elements of each matrix sum to 1 (rounding aside). For a P matrix, each row

represents the proportionate interpopulation distribution among fathers of the total

number of births to mothers in a given population, ignoring supply restrictions on the
Table 1 Examples of P and A matrices for three alternative preference patterns: one-time immigration

P matrix A matrix

H M U H M U

Indifference

H 0.333 0.333 0.333 0.579 0.005 0.417

M 0.333 0.333 0.333 0.579 0.005 0.417

U 0.333 0.333 0.333 0.579 0.005 0.417

Isolation

H 1.000 0.000 – 1.000 0.000 –

M 0.000 1.000 – 0.000 1.000 –

U – – – – – –

Partial disc.

H 0.571 0.143 0.286 0.762 0.033 0.205

M 0.143 0.571 0.286 0.361 0.252 0.387

U 0.333 0.333 0.333 0.584 0.102 0.314

Row entries are for mothers’ population and column entries for fathers’ population. The A matrices are for one-time
immigration calculated after three generations (t = 3) with ϕ = 0.20



Table 2 Examples of P and A matrices for three alternative preference patterns: repeated immigration

P matrix A matrix

H M U H M U

Indifference

H 0.333 0.333 0.333 0.335 0.215 0.450

M 0.333 0.333 0.333 0.335 0.215 0.450

U 0.333 0.333 0.333 0.335 0.215 0.450

Isolation

H 1.000 0.000 – 1.000 0.000 –

M 0.000 1.000 – 0.000 1.000 –

U – – – – – –

Partial disc.

H 0.571 0.143 0.286 0.666 0.129 0.205

M 0.143 0.571 0.286 0.188 0.582 0.230

U 0.333 0.333 0.333 0.418 0.325 0.257

Row entries are for mothers’ population and column entries for fathers’ population. The A matrices are for repeated
immigration calculated after three generations (t = 3) with ϕ = 0.20
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number of potential fathers (young adult males); for the A matrices, a row represents

the same thing but with the supply restrictions imposed. The P matrices remain the

same from one generation to the next in the three examples shown in the table, but the

A matrices may change as the populations change. Under isolation, the restrictions are

automatically and continuously satisfied so A and P are always the same; for the other

cases, the table shows the A matrices after three generations (t = 3).

8 Calibration of the model
The model requires calibration for simulation application. The P matrix is chosen by

assumption, and the A matrix is then derived, as above. ϕ is also chosen by assumption.

However, Q must be specified realistically, and for that purpose, we use a projection

matrix based on Canadian life tables centered on the year 2001 (Statistics Canada

2006). Any realistic projection matrix would serve our purposes, but this is one used in

previous studies (Denton and Spencer 2014, 2015a, 2015b), and we find it convenient

to use it here. The matrix is 10 × 10, representing females and males in the five broad

age groups. It incorporates survival rates for those groups, a female fertility rate set at

the natural replacement level consistent with the life tables (approximately 2.0745) and

adjusted for infant and early-childhood mortality, and a male/female sex ratio at birth

of 1.05. The Q matrix and associated stable population age-sex distribution are pro-

vided in the Appendix, with discussion.

9 Simulations with one-time immigration
We begin the simulations with ones that assume one-time immigration, as presented in

Tables 3 and 4. The reported simulations span a period of eight generations (t =

0,1,…,7). The tables show the evolving percentage distribution of the population among

its three components under alternative assumptions: alternative preferential patterns

for a given immigration rate in Table 3; alternative immigration rates for a given prefer-

ential pattern in Table 4. (We refer to immigration rate even though it is applied only

once here; proportion might be better but using the term rate allows a smoother



Table 3 Component populations as percent of total: four alternative preference patterns with one-
time immigration (ϕ = 0.20)

Generation (t)

0 1 2 3 4 5 6 7

Indifference

H/N 83.3 79.9 73.5 62.9 48.7 33.6 20.1 10.0

M/N 16.7 13.2 9.2 5.1 1.7 0.3 0.0 0.0

U/N 0.0 7.0 17.3 32.0 49.5 66.1 79.9 90.0

Isolation

H/N 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3

M/N 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7

U/N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Partial disc.

H/N 83.3 81.6 78.1 71.9 63.0 52.0 39.9 27.7

M/N 16.7 15.0 12.4 8.9 5.3 2.6 1.1 0.3

U/N 0.0 3.4 9.5 19.1 31.7 45.3 59.1 72.0

Adaptation

H/N 83.3 82.2 79.1 72.3 61.7 47.8 32.7 19.3

M/N 16.7 15.6 12.8 9.0 5.0 2.1 0.5 0.1

U/N 0.0 2.2 8.1 18.8 33.3 50.1 66.8 80.6

All immigration takes place at t = 0. See text and Table 1 or 2 for specifications of P matrices for indifference, isolation,
and partial discrimination. The matrix for adaptation changes linearly from isolation at t = 0 to indifference at t = 3 and
remains fixed thereafter
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transition in language from one-time to repeated immigration in the next section.) The

immigration rates considered are 10, 20, and 30% (ϕ = 0.10, 0.20, and 0.30). These rates

may appear large, but they have to be interpreted relative to the generational time

interval of the model, 20 years. Viewed on a per annum basis within that interval, they

are much smaller, of course, and probably not unrealistic in a more familiar context of
Table 4 Component populations as percent of total: indifference preference pattern with one-time
immigration (ϕ = 0.10, 0.20, 0.30)

Generation (t)

0 1 2 3 4 5 6 7

ϕ = 0.10

H/N 90.9 88.8 84.9 77.8 67.3 53.9 38.8 24.5

M/N 9.1 7.0 4.8 2.6 0.8 0.1 0.0 0.0

U/N 0.0 4.1 10.3 19.6 32.0 46.1 61.2 75.5

ϕ = 0.20

H/N 83.3 79.9 73.5 62.9 48.7 33.6 20.1 10.0

M/N 16.7 13.2 9.2 5.1 1.7 0.3 0.0 0.0

U/N 0.0 7.0 17.3 32.0 49.5 66.1 79.9 90.0

ϕ = 0.30

H/N 76.9 72.5 64.7 52.4 37.3 23.1 12.1 5.0

M/N 23.1 18.6 13.2 7.6 2.8 0.6 0.1 0.0

U/N 0.0 8.9 22.1 40.0 59.9 76.3 87.8 95.0

All immigration takes place at t = 0. See text and Table 1 or 2 for the specification of the P matrix for the
indifference pattern
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popular discussions of immigration or immigration policy. Looking at them that way,

the rates are approximately 0.48, 0.92, and 1.32% per annum. (These observations apply

to one-time immigration here but more especially to the repeated immigration simula-

tions in the next section.)

The immigration rate is set at ϕ = 0.20 in Table 3, and simulation results for four

preferential patterns are presented: indifference, isolation, partial discrimination, and

adaptation. The P matrices for indifference, isolation, and partial discrimination are as

shown in Tables 1 and 2 and discussed above. The matrix for adaptation (also discussed

above) assumes isolation at the beginning (t = 0) but moves linearly, from one gener-

ation to the next, until it achieves the indifference form after three generations (t = 3),

the form it retains thereafter.

Under isolation, there is no mixed population and no cross-parenting of immigrants

and non-immigrants; the H/N and M/N proportions are unchanging over the eight

generations (and beyond). Under the other preferential patterns, the mixed population

proportion is small at first in each case but steadily increasing as cross-parenting shifts

the distribution and the H/N and M/N proportions decline; it is clear from Table 3

(and simple reasoning) that the ultimate percentage distribution as the number of gen-

erations increases without bound would be U/N = 100, H/N =M/N = 0 for all patterns

except isolation. The most rapid shift in distribution occurs under indifference, as one

would expect: the mixed population is almost a third of the total after three generations

(U/N is 32.0%) and just under half after four generations (U/N is 49.5%). The slowest

shift occurs under partial discrimination, as we have defined that pattern. One might

think of indifference as providing a benchmark with which the results of other patterns

can be compared.

The rate of immigration obviously has a major role in determining the generational

pace of population mixing. Table 4 shows the shifts in population distribution for the

indifference pattern under the three alternative immigration rates that we have chosen

to experiment with. The differences in shift patterns are in general as one would ex-

pect: increasing the immigration rate from 0.20 to 0.30 produces more rapid shifting

(U/N is 40.0% after three generations) and a faster approach to the limiting distribu-

tion; reducing the rate to 0.10 has the opposite and much slower effect (U/N is 19.6%

after three generations).
10 Simulations with repeated immigration
The second set of simulations assumes that immigration occurs at the rate ϕ in every

generation. The results for these simulations are reported in Tables 5 and 6. Following

the same plan as before, Table 5 shows results for alternative preferential patterns with

a fixed immigration rate, Table 6 shows results for alternative immigration rates with a

fixed preferential pattern.

One general feature of the simulations in Table 5 (with ϕ set at 0.20) is that the

proportion of immigrants in the population increases over the eight-generation

span. The pace at which it increases tapers off though. M/N increases from the be-

ginning, but the increases get smaller from one generation to the next, and for the

adaptation preferential pattern, they are replaced by decreases, starting at t = 5, as

the effects of indifference begin to offset the earlier effects of isolation in the



Table 5 Component populations as percent of total: alternative preference patterns with repeated
immigration (ϕ = 0.20)

Generation (t)

0 1 2 3 4 5 6 7

Indifference

H/N 83.3 66.5 49.4 32.6 18.3 8.6 3.2 0.8

M/N 16.7 27.7 34.6 38.3 39.8 40.6 41.0 41.2

U/N 0.0 5.8 16.0 29.2 41.9 50.9 55.9 58.0

Isolation

H/N 83.3 69.4 57.9 48.2 40.2 33.5 27.9 23.3

M/N 16.7 30.6 42.1 51.8 59.8 66.5 72.1 76.7

U/N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Partial disc.

H/N 83.3 68.0 53.7 40.1 27.7 17.2 9.4 4.4

M/N 16.7 29.1 38.3 44.4 48.0 49.9 50.5 50.5

U/N 0.0 2.9 8.0 15.5 24.3 32.9 40.0 45.1

Adaptation

H/N 83.3 68.5 53.9 38.1 23.5 12.2 5.0 1.5

M/N 16.7 29.6 38.3 42.3 43.6 43.4 42.7 42.2

U/N 0.0 1.9 7.7 19.6 32.9 44.4 52.3 56.2

Immigration commences at t = 0. See text and Table 1 or 2 for specifications of P matrices for indifference, isolation, and
partial discrimination. The matrix for adaptation changes linearly from isolation at t = 0 to indifference at t = 3 and
remains fixed thereafter
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adaptation process. The mixed proportion U/N rises in all cases except isolation,

where of course it remains at zero.

Each preferential pattern results in an ultimate stable state for the proportionate

population distribution as the number of generations increases without bound. The

(proportionately) stable state for isolation is obviously M/N = 100%, H/N = 0. (The H
Table 6 Component populations as percent of total: indifference preference pattern with repeated
immigration (ϕ = 0.10, 0.20, 0.30)

Generation (t)

0 1 2 3 4 5 6 7

ϕ = 0.10

H/N 90.9 80.8 68.8 54.3 38.3 23.5 12.1 5.0

M/N 9.1 15.5 19.6 21.8 22.5 22.7 22.8 22.9

U/N 0.0 3.8 11.6 23.9 39.2 53.8 65.0 72.1

ϕ = 0.20

H/N 83.3 66.5 49.4 32.6 18.3 8.6 3.2 0.8

M/N 16.7 27.7 34.6 38.3 39.8 40.6 41.0 41.2

U/N 0.0 5.8 16.0 29.2 41.9 50.9 55.9 58.0

ϕ = 0.30

H/N 76.9 55.8 36.7 21.0 10.0 3.8 1.1 0.2

M/N 23.1 37.4 46.2 50.9 53.2 54.6 55.5 56.1

U/N 0.0 6.8 17.1 28.2 36.8 41.6 43.5 43.7

Immigration commences at t = 0. See text and Table 1 or 2 for the specification of the P matrix for the indifference pattern



Denton and Spencer IZA Journal of Development and Migration  (2017) 7:13 Page 13 of 15
population itself is unchanging; it simply becomes a smaller and smaller proportion of

the total as the immigrant population grows.) We have calculated the stable states for

the other preferential patterns (with ϕ = 0.20) by running the model for 20 generations

(more than enough to achieve stability, for practical purposes). H/N is 0 in all cases.

For indifference and adaptation, M/N = 41.6% and U/N = 58.4; for partial discrim-

ination, M/N = 47.9% and U/N = 52.1. That the results for adaptation and indiffer-

ence are the same is simply a consequence of the fact that once isolation is

replaced by indifference in the adaptation process, the effects of isolation wear off

and eventually the evolution of the population follows the same course as it

would under pure indifference.

Taking a shorter-run view, and focusing on the mixed proportion, U/N is 29.2% after

three generations under indifference and 41.9 after four. As with one-time immigration,

the percentages are smaller for the other patterns—15.5 and 24.3 under partial discrim-

ination, 19.6 and 32.9 under adaptation.

The rate of immigration plays an important role in determining the population

distribution, as one would imagine, and as illustrated in Table 6 for the indiffer-

ence pattern. However the actual results are somewhat different from what one

might have expected. Lowering the rate reduces the mixed proportion somewhat in

the earlier generations but increases it in the later ones and especially in the final

stable state. Setting ϕ to 0.10 rather than 0.20 reduces the U/N percentage from

29.2 to 23.9 after three generations but increases it from 58.0 to 77.1 in the stable

state. Setting ϕ to 0.30 increases U/N in the first two generations, but by the third,

it lowers it slightly, to 28.2% and thereafter lowers it more sharply; in the stable

state, the percentage falls to 43.7. The reason for the differences between early ef-

fects and later ones is that it takes time for repeated immigration to build up the

immigrant population, starting from a base of zero, and then time for the mixing

process to take advantage of the presence of more immigrants. On the one hand,

as the immigrant population continues to grow, it forms an increasing share of the

total population; how fast depends on the rate of new immigrant entrants. On the

other hand, a larger immigrant population means more opportunities for mixed

parenting, thus tending to raise the proportion of the mixed population and so re-

duce the proportion of immigrant population. These two offsetting effects eventu-

ally strike a balance and produce a stable state.
11 Conclusions
We have used a much simplified demographic model to provide the results re-

ported in this paper—a stylized model, as we have called it. There are many

ways in which the model could be modified. The number of age groups could

be increased and the time interval for a generation reduced; immigrants could

be assigned fertility and mortality rates different from those of the non-

immigrant population and, perhaps, changing over time as the two populations

mix; fertility rates could be set above or below the natural replacement level;

heterogeneity of immigrants could be introduced and different populations cre-

ated to accommodate immigrants of different types; and different preferential

parenting patterns could be specified and their effects explored. A reader can no
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doubt think of other possible modifications. These modifications would come at

a cost of course in terms of complicating the model. Our aim in the present

paper has been simply to provide an approximate overall view of how immigrant

and non-immigrant populations might interact in the bearing of children under

alternative mixing preferences and how the overall population composition of a

country might change accordingly. To that end, we have kept the model as

simple as possible.
Appendix: the Q matrix and the stable population distribution
The Q matrix is shown in Table 7. Age group survival rates, elements (2,1), (3,2), etc.,

are derived from Canadian life tables, as noted in the text; infant/early-childhood sur-

vival rates—Sf0 for females and Sm0 for males—are derived also from those tables. The

(female) fertility rate F is the natural replacement rate consistent with the survival rates

and the assumed male/female ratio at birth. The latter ratio is set at 1.05 and the fe-

male and male proportions, Cf and Cm, are calculated accordingly. (As noted by

Hesketh and Xing (2006), p. 13, 271, “In the absence of manipulation, the sex ratio

at birth is remarkably consistent across human populations, with 105 – 107 male

births for every 100 female births.” Our choice of 1.05 is approximately the long-

standing Canadian ratio.)

The application of Q to an initial stable population vector nt maintains the

stability in perpetuity: nt + k = Qknt = nt for all k ≥ 0. To obtain F experimentally

and the corresponding stable age-sex distribution, we projected a starting popu-

lation vector repeatedly with alternative values of F for 100 generations until

numerically satisfactory stability was achieved. (The starting population vector

was calculated by combining the male and female life table populations.) The

resulting stable vector is shown in Table 8, in approximate percentage

distribution form.
Table 7 The calibrated Q matrix for a stable population

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8 Col.9 Col.10

Row1 0 Sf0CfF 0 0 0 0 0 0 0 0

Row2 0.9942 0 0 0 0 0 0 0 0 0

Row3 0 0.9769 0 0 0 0 0 0 0 0

Row4 0 0 0.8635 0 0 0 0 0 0 0

Row5 0 0 0 0.3798 0 0 0 0 0 0

Row6 0 Sm0CmF 0 0 0 0 0 0 0 0

Row7 0 0 0 0 0 0.9875 0 0 0 0

Row8 0 0 0 0 0 0 0.9617 0 0 0

Row9 0 0 0 0 0 0 0 0.7850 0 0

Row10 0 0 0 0 0 0 0 0 0.2575 0

Sf0 = 0.9940, Sm0 = 0.9924; Cf = 0.4878, Cm = 0.5122; F = 2.0745



Table 8 The initial stable population vector (n): elements as percentages of total

Age group Females Males

Element % of total population Element % of total population

Children n1 12.2 n6 12.8

Young adults n2 12.1 n7 12.6

Middle aged n3 11.9 n8 12.2

Old n4 10.2 n9 9.5

Very old n5 3.9 n10 2.5
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