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Abstract 

Acute lymphoblastic leukemia (ALL) and its treatment continue to pose substantial risks. To understand ALL more 
deeply, the metabolome in fasting plasma of 27 ALL patients before and after high-dose methotrexate therapies 
(consolidation therapy) including methotrexate and 6-mercaptopurine (6-MP) was investigated. Plasma metabolites 
were analyzed using liquid chromatography–tandem mass spectrometry (LC–MS). Orthogonal projections to latent 
structures discriminant analysis and significance analysis of microarrays were used to evaluate the metabolic changes. 
Pathway enrichment and co-expression network analyses were performed to identify clusters of molecules, and 2826 
metabolites were identified. Among them, 38 metabolites were identified by univariate analysis, and 7 metabolites 
that were altered by conditioning therapy were identified by multivariate analysis. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database was used for pathway enrichment analysis. Among the enriched KEGG pathways, 
the 3 significantly altered metabolic pathways were pyrimidine metabolism; phenylalanine, tyrosine, and tryptophan 
biosynthesis; and phenylalanine metabolism. In addition, L-phenylalanine was significantly correlated with blood urea 
nitrogen (BUN), and palmitoylcarnitine was correlated with aspartate aminotransferase (AST). In summary, consolida-
tion therapy significantly affected pyrimidine- and phenylalanine-associated metabolic pathways in pediatric ALL 
patients. These findings may provide an insight into the role of metabolic profiling in consolidation treatment and as 
a potential for pediatric ALL patients.
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Introduction
Acute lymphoblastic leukemia (ALL) is a common malig-
nant tumor in children globally, and its incidence is 
increasing annually [1]. Although advancements in treat-
ment have led to a cure rate of up to 80% [2], patients 
remain at risk of adverse events, leading to morbidity or 
death from ALL and its treatments. Reducing these risks 

may improve outcomes [3]. Studies have addressed the 
mitigation of adverse events resulting from complex ALL 
therapies [4, 5] in an attempt to reduce mortality from 
adverse events.

There are three major phases of ALL therapy: induc-
tion, consolidation, and maintenance. The purpose of 
consolidation is to further intensify the elimination of 
leukemia cells after the eradication of leukemia cells by 
induction therapy. The main categories of drugs given 
during consolidation include 6-mercaptopurine (6-MP) 
and methotrexate (MTX), which are called high-dose 
methotrexate (HDMTX) treatment/therapy [6]. However, 
both drugs have toxicity. MTX is a versatile antineoplas-
tic and immunosuppressive agent that exerts anticancer 
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effects by inhibiting folate metabolism and nucleotide 
biosynthesis [7]. MTX is associated with severe toxicity, 
for example, acute kidney injury [8] and/or oral mucosi-
tis [9], which can prolong chemotherapy and increase the 
risk of ALL relapse. In the study, the MTX dosage in con-
solidation therapy, which depends on the risk grouping, 
ranges from 3 to 5 g/m2 according to ALL protocol [10]. 
6-MP cytotoxicity causes hematotoxicity, hepatotoxicity, 
and nephrotoxicity mediated by thioguanine nucleotide 
metabolites [11]. However, little is known about their 
effects on host metabolism.

Metabolomics, which studies the metabolic profiles 
of diseases, as well as tissues, cells, urine, and blood, is 
a powerful tool for discovering diagnostic metabolites 
and biomarkers and for examining adverse reactions to 
anticancer drugs [12]. Saito et  al. [13] analyzed plasma 
metabolites and complex lipids from 50 ALL patients 
during initial and post-induction therapy, using high-res-
olution tandem mass spectrometry (MS/MS) and differ-
ential mobility MS/MS. They identified more than 1200 
metabolites and complex lipids on global metabolomics 
and lipidomics platforms, and the results suggested that 
docosahexaenoic acid–containing (22:6) triacylglycer-
ols were decreased in the post-induction therapy. Yang 
et al. [14] investigated the plasma metabolites in 19 adult 
B-cell ALL patients along with 19 healthy donors using 
nuclear magnetic resonance–based metabolomics, and 
they identified a total of 35 differential metabolites that 
were enriched in glycolysis, gluconeogenesis, amino acid 
metabolism, fatty acid metabolism, and choline phospho-
lipid metabolism. In addition, the optimal combination 
of choline, tyrosine, and unsaturated lipids was poten-
tially used for the prognosis and prognostic prediction of 
adult B-cell ALL. Brown et al. [15] used gas chromatogra-
phy–MS and liquid chromatography (LC)–MS for global 
metabolic profiling of cerebrospinal fluid samples from 
pediatric ALL patients, and it was found that glutamater-
gic pathways or oxidative stress might be responsible for 
ALL-associated fatigue. To gain greater insights into the 
metabolic changes that occur during HDMTX therapy, 
we investigated plasma metabolites using reversed-phase 
LC–MS-based metabolomics and identified 7 differential 
metabolites following HDMTX treatment. The correla-
tions between major metabolites and clinical markers of 
blood, liver, and kidney function and MTX concentration 
were addressed. L-Phenylalanine was significantly corre-
lated with BUN, and palmitoylcarnitine was significantly 
correlated with AST. Finally, pathway analysis showed 
that HDMTX treatment predominantly affected pyrimi-
dine metabolism; phenylalanine, tyrosine, and trypto-
phan biosynthesis; and phenylalanine metabolism, which 
might provide insight into the role of metabolic profiling 

in consolidation treatment and as a potential for pediat-
ric ALL patients.

Materials and methods
Blood collection and sample preparation
A total of 27 patients (all the patients treated with the 
same protocol from January 2021 to May 2021) were 
enrolled and treated using the CCCG-ALL2020 proto-
col (a modification of the CCCG-ALL2015 protocol) [16] 
at Shandong University Qilu Hospital, China. The study 
was approved by the Ethics Committee of Shandong 
University Qilu Hospital. Written informed consent was 
obtained from each participant’s parent or legal guardian, 
prior to enrollment and treatment.

Fifty-four fasting blood samples were obtained before 
HDMTX therapy (day 1, used as the control samples) 
and after HDMTX therapy (day 3). Metabolite levels 
reflect the prandial state, and eating may affect metabolic 
levels and activation of metabolic pathways in the body 
[17]. The use of fasting samples therefore strengthened 
the protocol. Samples were collected in EDTA tubes. For 
sample processing, blood was centrifuged at 1700 ×g for 
7 min at room temperature. The plasma was isolated, ali-
quoted, and frozen at −80 °C.

Metabolite extraction and quality control (QC) preparation
Plasma samples were thawed and vortexed for 30 s. Each 
sample (200 μL) was extracted using MeOH to acetoni-
trile (1:1, v/v), vortexed for 30 s, and then sonicated for 
10 min. Proteins were precipitated after the samples 
were incubated at −20 °C for 1 h, followed by centrifu-
gation at 20,000 ×g for 15 min at 4 °C. The supernatant 
was removed and dried using a vacuum concentrator. 
The extracts were dissolved in acetonitrile to H2O (1:1, 
v/v), then vortexed for 30 s, and sonicated for 10 min. 
The extracts were then centrifuged for 15 min at 20,000 
rpm and 4 °C, and the insoluble debris was removed. The 
supernatants were transferred to HPLC vials and stored 
at −80 °C. Ten microliters of each sample was pooled to 
prepare the QC samples. The same extraction procedure 
was performed for QC sample preparation as described 
previously [15].

LC–MS/MS and total ion current chromatography
Samples were separated on an amide column, using 
mobile phase A which consists of water mixed with 25 
mM ammonium acetate and 25 mM ammonium hydrox-
ide and mobile phase B acetonitrile. The injection vol-
ume was 4 μL, and the flow rate was 0.4 mL/min. The 
generic HPLC gradient is detailed in Supplementary 
Table 1. Mass spectrometry analysis was conducted using 
Q-Exactive MS/MS in both ESI-positive and ESI-neg-
ative ion modes. The probe-tuning parameters were as 
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follows: auxiliary gas heater temperature, 400 °C; sheath 
gas, 40; auxiliary gas, 13; spray voltage, 3.5 kV for posi-
tive and negative modes; capillary temperature, 350 °C; 
and S-lens, 55. The method was applied as follows: the 
full scan range was set as 60 to 900 m/z. The resolu-
tion for MS1 and ddMS2 was set as 70,000 and 17,500, 
respectively. The maximum injection time for MS1 and 
ddMS2 was 100 ms and 45 ms, respectively. The auto-
matic gain control for MS1 and ddMS2 was set as 3e6 
and 2e5, respectively. The isolation window was 1.6 m/z. 
The normalized collision energies were set as 10/17/25 
V and 30/40/50 V. The full scan method was applied as 
follows: full scan range, 60–900 m/z; resolution, 140,000; 
the maximum injection time, 100 ms; and automatic gain 
control, 3e6 ions.

Data processing
Thermo Compound Discover 2.1 was used to process 
the raw data, following untargeted metabolomic analy-
sis [18]. Compounds were identified using the mzCloud 
database (ddMS2). A similarity search was performed 
on all compounds identified in the ddMS2 data, using 
mzCloud. Thermo Compound Discoverer data quantifi-
cation and annotation were performed using the package 
ropls in R software (R version 3.6.1).

Signal intensities were corrected for signal drift and 
batch effects by fitting a locally quadratic (Loess) regres-
sion model to the median intensity of the pooled QC 
samples. The alpha parameter (indicating span), which 
controlled smoothing, was set as 2 to avoid overfitting. 
The median area of all pooled QC samples was the same 
after correction.

Metabolites with a coefficient of variation >25 % in 
the QC samples were then filtered out because of their 
unstable quantifiability. The filtered compound areas 
were calibrated using the median, log transformed, and 
Pareto-scaled (Eqs. 1, 2, and 3).

An orthogonal partial least squares discriminant 
analysis (OPLS-DA) model and a significance analysis 
of microarrays (SAM) model were used to compare the 
abundances of each metabolite. A cluster heat map was 
obtained by calculating the Pearson distance and gener-
ated using hclust in R.

(1)Ni, j =
Xi, j

median(Xi)
median(X)

(2)T i, j = log Ni, j

(3)Si, j =
Ti, j −mean(Tj)

√

sd(Tj)

Pathway enrichment and correlation network analyses
The online software MetaboAnalyst 5.0 (https://​www.​
metab​oanal​yst.​ca/) was used to perform pathway enrich-
ment analysis and correlation network analysis with 
Fisher’s exact test, in which metabolic pathways with P 
< 0.05 were considered significantly altered. We used the 
debiased sparse partial correlation algorithm, based on 
the desparsified graphical lasso modeling procedure, to 
construct the metabolite correlation network. The nodes 
of the network are the input metabolites, and the edges 
represent the correlations.

Correlation analysis between metabolites and clinical 
markers
We selected clinical indicators including white blood 
cells, red blood cells, neutrophils, platelet counts, hemo-
globin, MTX plasma concentration, alanine transaminase 
(ALT), aspartate aminotransferase (AST), serum cre-
atinine, and blood urea nitrogen (BUN). The Spearman 
correlation was used to analyze the correlation between 
metabolites and clinical markers. P value < 0.05 was con-
sidered statistically significant.

Results
Figure  1 presents the study schema with plasma collec-
tion time points and a comprehensive untargeted metab-
olomics analysis. The baseline patient characteristics are 
shown in Table 1.

Metabolite detection
The 54 samples were randomized, and untargeted metab-
olomics was conducted using LC–MS/MS. After qual-
ity control, data filtering, and normalization (n = 27), 
2826 metabolites were identified. An OPLS-DA model 
was established to screen the metabolites between the 
HDMTX group and pre-HDMTX group. Figure 2A dis-
plays an apparent difference between the two groups. In 
the OPLS-DA model, the permutation testing confirmed 
that the model was significant at the 0.01 level, which 
indicated that the model was reliable (Fig. 2B). The scat-
ter plot (Fig. 2C) illustrated the significance and impact 
of the metabolic alterations following HDMTX therapy 
by OPLS-DA analysis and SAM analysis, and metabo-
lites found using the SAM method were well overlapped 
with those identified in the OPLS-DA model. The high-
lighted feature points were considered significant com-
pounds. Among them, SAM identified 38 metabolites, 
and the results of cluster analyses of differential metabo-
lites between the two groups displayed differences in the 
expression of metabolites (Fig. 2D).

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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Multivariate analysis of metabolomic alterations
The samples before and after HDMTX treatment were 
compared, and OPLS-DA analysis revealed 7 differen-
tial metabolites, which were illustrated via hierarchi-
cal clustering (Fig.  3A). Levels of l-phenylalanine and 
kanosamine were elevated following HDMTX treatment 
(Fig. 3B, F). In contrast, levels of l-(+)-citrulline (Fig. 3C), 
uracil (Fig.  3D), palmitoylcarnitine (Fig.  3E), uridine 
(Fig.  3G), and dl-a-aminocaprylic acid (Fig.  3H) were 
lower following HDMTX treatment.

Metabolic pathway analysis
We then examined the global pathways and regulatory 
relationships by constructing a regularized partial cor-
relation network of the metabolites from OPLS-DA and 
SAM analysis to investigate the relationship between 
the 7 differential metabolites and other altered metabo-
lites, which might find important compounds related 
to these differential 7 metabolites (Fig.  4A). Among 
them, uridine had the highest interaction density with 

sulfamethoxazole, and palmitoylcarnitine had a higher 
interaction density with kanosamine. L-Phenylalanine 
was negatively correlated with N,N-dimethylglycine and 
negatively correlated with choline. L-(+)-Citrulline also 
had a high interaction density with decanoylcarnitine 
(Fig. 4A).

Subsequently, 7 differential metabolites were subjected 
to KEGG for pathway enrichment analysis. Among the 
enriched KEGG pathways, MetaboAnalystR revealed 
that 3 primary metabolic pathways including pyrimidine 
metabolism; phenylalanine, tyrosine, and tryptophan 
biosynthesis; and phenylalanine metabolism were signifi-
cantly affected by HDMTX treatment (P < 0.05; Fig. 4C 
and Table  2). Finally, a detailed metabolic pathway is 
shown in Fig. 5.

Correlations between differential metabolites and clinical 
indicators
We investigated the correlations between the levels of the 
7 differential metabolites and clinical indicators, includ-
ing white blood cells, red blood cells, neutrophils, platelet 
counts, hemoglobin, MTX plasma concentration, ALT, 
AST, serum creatinine, and BUN. The collection time 
points of all clinical indicators are the same as the sample 
collection time points. L-Phenylalanine and BUN levels 
were significantly correlated with each other (P  = 0 .007; 
Fig.  6A), like palmitoylcarnitine and AST (P  = 0 .037; 
Fig. 6B).

Discussion
We aimed to elucidate the metabolic changes after 
HDMTX treatment, an important ALL chemothera-
peutic, via an integrated LC–MS detection. Seven sig-
nificantly altered metabolites were identified. Pathway 
analysis showed that HDMTX treatment mainly affected 
the pyrimidine metabolism; phenylalanine, tyrosine, and 

Fig. 1  Schema of the consolidation medication, plasma collection timing, and untargeted metabolomic profiling of pediatric acute lymphoblastic 
leukemia (ALL) patients. Plasma was collected from each patient before and after consolidation therapy (on day 1 and day 3, respectively). HDMTX, 
high-dose methotrexate; 6-MP, 6-mercaptopurine; CF, calcium folinate

Table 1  Baseline patient characteristics and MTX- and 
6-MP-associated gene polymorphisms

a Risk group was assigned based on age, leukocyte count, immunophenotype, 
central nervous system status, karyotype analysis, molecular status, and end-
induction minimal residual disease (MRD) levels
b MRD46 (day 46) was determined on day 21 (±2) after cyclophosphamide, 
cytarabine, and 6-MP chemotherapy

Characteristics

Sex: F/M, N 15/12

Age rage in months, median (IQR) 13–152, 69 (44–132)

Risk group, N (%)a Standard: 12 (44.4)
Intermediate: 15 (55.6)

MRD46, N (%)b < 0.01%: 23 (85.2)
≥ 0.01% < 0.1%: 3 (11.1)
> 0.1%: 1 (3.7)
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tryptophan biosynthesis; and phenylalanine metabolism 
pathways.

Metabolomic changes, reflecting genomic, transcrip-
tomic, and proteomic variability, occur continuously [19]. 
Further, metabolic states are altered in diseases such as 
cancer and diseases of the liver, kidney, cardiovascular 
system, and nervous system [20, 21]. Metabolomics has 
been used to screen for potential diagnostic biomarkers 
at initial diagnosis and during early induction therapy in 
ALL. Schraw et  al. [22] used LC–MS to profile end-of-
induction-therapy plasma, marrow, and cerebrospinal 
fluid from children with B-ALL and find strong correla-
tions between the biomarkers of clinically relevant phe-
notypes. In the study, we identified metabolite changes 

under HD-MTX therapy, described the metabolic signal-
ing pathways involved, and expected to identify predic-
tive metabolic markers for clinical side effects.

L-Phenylalanine is one of the 20 proteinogenic amino 
acids [23]. In humans, it is an essential amino acid and a 
precursor of tyrosine. At sufficiently high levels, pheny-
lalanine acts as a neurotoxin [24] and metabotoxin [25]. 
Peng et al. [26] hypothesized that higher baseline pheny-
lalanine levels indicate a greater risk of CNS leukemia. 
In all enrolled patients, there were no encephalatrophy, 
epilepsy, and clinical features of other encephalopathy 
when the central nervous system was evaluated. It has 
been reported that an L-phenylalanine polymer, Meta-
bolic Reprogramming Immunosurveillance Activation 

Fig. 2  Untargeted metabolomic cluster analysis identified significant plasma metabolite responses to high-dose methotrexate (HDMTX) therapy 
in pediatric acute lymphoblastic leukemia (ALL) patients. A Score plot showing sample values without outliers. After being fitted to an OPLS-DA 
model, features in the raw dataset are collapsed into 1 predictive component and i ≥ 1 orthogonal components. Observations (samples) are 
represented by scores, which are linear combinations of the original variables with weights defined by the loadings. For each 2 components 
(generally predictive (p1) and orthogonal (o1)), a score plot can be generated by putting them in X and Y axes. B Permutation test results, revealing 
greater prediction performance. In the OPLS-DA model, the higher the Q2Y, the better the prediction performance. The P value is equal to the 
proportion of Q2Yperm above Q2Y. C S-plot of the predictive (p1) and orthogonal (o1) components, with significant feature points highlighted by 
OPLS-DA (MV) and SAM (UV). D Heat map of average metabolite signal intensity for the differential metabolites selected by SAM analysis
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Fig. 3  Metabolomic responses to high-dose methotrexate (HDMTX) therapy in pediatric acute lymphoblastic leukemia (ALL) patients. A Heat map 
showing the 7 differential metabolites identified. Blue-to-red color gradient: lower to higher metabolite levels (the color represents the average 
normalized intensity of each metabolite). B–H Scatter plots of changes in the significantly differential metabolites before (control) and after HDMTX 
treatment

Fig. 4  Metabolic pathways affected by high-dose methotrexate (HDMTX) in pediatric acute lymphoblastic leukemia (ALL) patients. A Regularized 
partial correlation network of the differential metabolites, following HDMTX therapy. Each node represents a compound, and each edge represents 
the strength of partial correlation between two compounds after conditioning on all other compounds in the dataset. The edge weights represent 
the partial correlation coefficients. B Bubble chart based on the KEGG pathway analysis of the significantly differential metabolites: (a) pyrimidine 
metabolism; (b) phenylalanine, tyrosine, and tryptophan biosynthesis; and (c) phenylalanine metabolism
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Nanomedicine (MRIAN), can degrade into L-phenyla-
lanine, which inhibits PKM2 activity and reduces ROS 
levels in myeloid-derived suppressor cells in T-cell 
acute lymphoblastic leukemia. These reactions lead to 
the disturbance of immunosuppressive function and 
are increased in the differentiation toward normal mye-
loid cells [27]. Song and colleagues demonstrated that 
there were 33 significantly altered metabolites between 
ALL patients with and without central nervous system 
involvement (CNSI), and the CNSI evaluation score 
was used to predict the risk of CNSI based on three 
independent risk factors (8-hydroxyguanosine, L-phe-
nylalanine, and hypoxanthine), which could predict the 
diagnosis of ALL with CNSI [28]. Our finding revealed 
that L-phenylalanine was significantly elevated following 
HDMTX treatment and was enriched in phenylalanine, 
tyrosine, and tryptophan biosynthesis and phenylalanine 
metabolism. Besides, it was found that L-phenylalanine 
was positively correlated with BUN. The results might 
facilitate further investigation of whether renal dysfunc-
tion is associated with higher levels of L-phenylalanine in 
pediatric ALL.

Previous study has suggested that specific changes in 
polyamine, purine, and pyrimidine metabolism have 
been observed in patients with NPM1 mutations, which 
are a potential marker associated with favorable progno-
sis [29]. Moreover, pyrimidine metabolism is a network 
that can sense and modulate the amounts of deoxynu-
cleotide, while resistance to decitabine and 5-azacytidine 
originates from adaptive responses of the pyrimidine 
metabolism network in myeloid malignancies [30]. The 
significant increases in levels of uracil and uridine in 
this study implied the disrupted pyrimidine metabolism 
after HDMTX treatment, which might provide a novel 
target for therapeutic response and prognosis predic-
tion for ALL patients. Interestingly, it was also found 
that pyrimidine metabolism; phenylalanine, tyrosine, and 
tryptophan biosynthesis; and phenylalanine metabolism 

pathways were indirectly associated with the tricarbo-
xylic acid (TCA) cycle. The TCA cycle is a key energy 
metabolic pathway, and the abnormal TCA cycle is impli-
cated in cancer initiation. TCA cycle intermediates affect 
the processes of cancer development and progression 
via regulating cellular activities, such as metabolism and 
signaling [31]. Regulatory mechanisms of the TCA cycle 
and these 3 pathways remain to be further investigated.

Serum levels of DL-a-aminocaprylic acid, uracil, 
uridine, L-(+)-citrulline, and palmitoylcarnitine were 
significantly reduced following HDMTX treatment. 
The adverse reactions of HDMTX treatment included 
acute hepatic function damage where aspartate ami-
notransferase (AST) and alanine transaminase were 
mainly used as clinical indexes, acute renal dysfunction 
where BUN and creatinine were mainly used as clinical 
test indexes, and myelosuppression where white blood 
cells, red blood cells, and platelets were decreased. Pal-
mitoylcarnitine levels were positively correlated with 
those of AST, which binds to mitochondria. Mitochon-
drial collapse during cellular necrosis dramatically 
increases serum AST [32]. DL-a-Aminocaprylic acid, a 
secondary metabolite that is metabolically non-essen-
tial, may serve as a defense or signaling molecule [33]. 
Uracil serves as an allosteric regulator and a coenzyme 
for many important biochemical reactions, helping to 
synthesize many enzymes necessary for cell function, 
by binding with riboses and phosphates [34]. Uridine, 
synthesized from uracil, participates in galactose gly-
colysis. Palmitoylcarnitine, a long-chain acyl fatty acid 
ester of carnitine, facilitates long-chain fatty acid trans-
fer from the cytoplasm into mitochondria during fatty 
acid oxidation [34]. Generally, acylcarnitines transport 
acyl groups, organic acids, and fatty acids from the 
cytoplasm to mitochondria to be broken down to pro-
duce energy.

Given the clinical complexity of ALL and the limita-
tions associated with logistic regression, these find-
ings remain to be further verified. Studies with a larger 
sample size are required to detect significantly affected 
metabolic pathways. The plasma metabolome reflects 
extracellular metabolic changes in multiple organ sys-
tems, representing a potential limitation of our study. 
Independent-cohort validation is required to confirm 
these findings.

Conclusion
Plasma metabolomic profiling provides a snapshot of 
metabolic changes [35], which are a good choice for the 
investigation on diseases and responses to treatment 
[36]. We identified 3 metabolic pathways that were sig-
nificantly altered by HDMTX. Among the differential 
metabolites identified, L-phenylalanine, uridine, and 

Table 2  Significantly affected pathways by HDMTX treatment

Metabolic pathways with P < 0.05 were considered significantly altered

Pathways P −Log(p) FDR Impact

Pyrimidine metabolism 0.0087 2.0600 0.65 0.09

Phenylalanine, tyrosine, and trypto-
phan biosynthesis

0.0154 1.8100 0.65 0.50

Phenylalanine metabolism 0.0382 1.4200 1.00 0.36

Arginine biosynthesis 0.0531 1.2800 1.00 0.23

Pantothenate and CoA biosynthesis 0.0714 1.1500 1.00 0.00

Beta-alanine metabolism 0.0787 1.1000 1.00 0.00

Fatty acid degradation 0.1420 0.8480 1.00 0.00

Aminoacyl-tRNA biosynthesis 0.1720 0.7640 1.00 0.00
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Fig. 5  An integrated metabolic pathway after HDMTX treatment. Red metabolites represent upregulated metabolites, and green ones represent 
downregulated metabolites

Fig. 6  Correlations between metabolites and clinical markers, following high-dose methotrexate (HDMTX) treatment in pediatric acute 
lymphoblastic leukemia (ALL) patients. A L-Phenylalanine is correlated strongly with serum urea nitrogen. B Palmitoylcarnitine is correlated strongly 
with aspartate aminotransferase
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uracil were distinctly enriched in pyrimidine metabo-
lism; phenylalanine, tyrosine, and tryptophan biosyn-
thesis; and phenylalanine metabolism after HDMTX 
therapy. Notably, HDMTX therapy affected L-phenylala-
nine, which was significantly correlated with BUN, and 
palmitoylcarnitine, which was significantly correlated 
with AST. Our findings indicated potential treatment 
mechanisms and biomarkers for HDMTX in pediatric 
ALL, thereby potentially improving therapeutic strate-
gies for ALL.
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