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Abstract 

Background:  Metabolomics is a potential means for biofluid-based lung cancer detection. We conducted a non-tar-
geted, data-driven assessment of plasma from early-stage non-small cell lung cancer (ES-NSCLC) cases versus cancer-
free controls (CFC) to explore and identify the classes of metabolites for further targeted metabolomics biomarker 
development.

Methods:  Plasma from 250 ES-NSCLC cases and 250 CFCs underwent ultra-high-performance liquid chromatogra-
phy/quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) in positive and negative electrospray ionization 
(ESI) modes. Molecular feature extraction, formula generation, and find-by-ion tools annotated metabolic entities. 
Analysis was restricted to endogenous metabolites present in ≥ 80% of samples. Unsupervised hierarchical cluster 
analysis identified clusters of metabolites. The metabolites with the strongest correlation with the principal compo-
nent of each cluster were included in logistic regression modeling to assess discriminatory performance with and 
without adjustment for clinical covariates.

Results:  A total of 1900 UHPLC-QTOF-MS assessments identified 1667 and 2032 endogenous metabolites in the 
ESI-positive and ESI-negative modes, respectively. After data filtration, 676 metabolites remained, and 12 clusters of 
metabolites were identified from each ESI mode. Multivariable logistic regression using the representative metabolite 
from each cluster revealed effective classification of cases from controls with overall diagnostic accuracy of 91% (ESI 
positive) and 94% (ESI negative). Metabolites of interest identified for further targeted analysis include the follow-
ing: 1b, 3a, 12a-trihydroxy-5b-cholanoic acid, pyridoxamine 5′-phosphate, sphinganine 1-phosphate, gamma-CEHC, 
20-carboxy-leukotriene B4, isodesmosine, and 18-hydroxycortisol.
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Background
Lung cancer is the leading cause of cancer-related mor-
tality worldwide with an estimated 1.59 million persons 
succumbing to lung cancer annually [1]. Presently, most 
lung cancers are detected at either locally advanced or 
metastatic stages for which chances of cure are limited. 
Earlier detection of lung cancer represents a strategy to 
reduce mortality by allowing more patient opportuni-
ties for curative therapies including surgery or stereo-
tactic ablative radiotherapy before disease progression 
to incurable disease. As proof of this principle, several 
randomized trials [2] have demonstrated that early detec-
tion of lung cancer using low-dose CT screening scans 
reduces lung cancer mortality. Although CT screening is 
being adopted in various jurisdictions, concerns remain 
regarding financial burden [3], high false-positive rate 
which can trigger unnecessary ancillary test procedures 
[4, 5], and risks of radiation-induced malignancy [6, 7]. 
Thus, there remains a bona fide need for the develop-
ment of a cost-effective, noninvasive, accurate test for 
early NSCLC detection.

Metabolomics is an omics field which consists of 
measuring endogenous and exogenous low-molecular-
weight metabolites in an organism at a specified time 
under specific environmental conditions [8]. Alterations 
in the metabolomic phenotype of cancer cells were first 
reported in 1956 by Warburg et al. who observed a higher 
rate of glycolysis and lactic acid production [9]. Tech-
nological advancements over the subsequent decades 
have led to the use of metabolomics methods includ-
ing gas chromatography (GC), mass spectrometry (MS), 
liquid chromatography (LC), and 1H-nuclear magnetic 
resonance (1H-NMR) as means for the diagnosis and 
prediction of outcomes in oncology. Metabolomic pro-
filing has been used to assess the impact of malignancy 
on the metabolome using tumor tissue [10], urine [11], 
blood [12, 13], stool [14], or other biofluids [15]. To date, 
several groups [12, 13, 16–22] have investigated metab-
olomics profiles of NSCLC cases versus controls using 
combinations of different analytic platforms, biofluids, 
patient populations, and statistical modeling approaches.

With variations in methodologies employed in these 
studies, there is minimal overlap of metabolomic pro-
files that distinguish non-small cell lung cancer (NSCLC) 
cases from controls. In addition to the differences in 

analytical approaches, the lack of assessment for the 
impact of potential confounding clinical variables such 
as age, sex, or smoking status may have contributed to 
this lack of similarity. Furthermore, these studies utilized 
relatively modest numbers of NSCLC cases for analysis 
and profile training, and few have focused primarily on 
the detection of early-stage NSCLC cases (ES-NSCLC), 
the group for which early detection is most relevant and 
technically challenging.

This metabolomics biomarker discovery study assessed 
the differences in global metabolomics profiles of plasma 
from a large group of clinical ES-NSCLC patients versus 
cancer-free controls to reduce the risk of model overfit-
ting. We aimed to determine which classes of metabolites 
appear promising for future use in targeted metabolomics 
studies to further refine metabolomics profiles associated 
with ES-NSCLC. Our secondary aim was to assess the 
impact of clinical covariates, namely age, smoking his-
tory, and sex, on the classification performance of metab-
olomic entities for differentiating ES-NSCLC cases from 
cancer-free controls.

Methods
Patient population
From 2004 to 2014, 250 patients with clinical early-
stage lung cancer (based on preoperative CT imaging 
scans) had blood samples collected by venipuncture 
prior to surgical resection. Final pathological staging was 
assigned following pathological analysis of pulmonary 
resection specimens using AJCC 6th edition. Blood sam-
ples were centrifuged into component blood products, 
and plasma aliquots were frozen at −80 °C and stored at 
the Manitoba Tumour Bank (MTB), a provincial biore-
pository certified by the Canadian Tissue Repository 
Network. Surgery for NSCLC cases consisted of wedge 
resection, segmentectomy, or lobectomy with lymph 
node sampling or lymph node dissection as clinically 
indicated. During the same time period, plasma samples 
from cancer-free controls were collected by venipunc-
ture and stored using identical laboratory procedures in 
the same biorepository. Cancer-free controls consisted 
of two groups: (1) patients with suspected lung cancer 
(based on preoperative imaging) who underwent surgi-
cal resection with final pathology showing only benign 
pulmonary disease such as tuberculosis, granulomatous 

Conclusions:  Plasma-based metabolomic detection of early-stage NSCLC appears feasible. Further metabolomics 
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disease, or pulmonary fibrosis and no evidence of malig-
nancy and (2) family members of cancer patients with 
no prior personal history of malignancy (with exception 
of completely excised non-melanomatous skin cancers). 
Controls were excluded if cancer was diagnosed within 
2 years following the date of the blood collection. Fast-
ing was not mandatory prior to blood collection, and so 
fasting and non-fasting specimens were included in the 
analysis.

Metabolomics analysis
All analytical work was carried out in duplicate by 
blinded laboratory personnel who are unaware of the 
case/control status of plasma samples so to reduce unin-
tentional bias. The laboratory workflow and procedures 
employed have been previously published [23, 24] and 
are summarized briefly below.

Plasma extraction
Frozen aliquots of plasma were thawed to 20 °C, and four 
100-μL aliquots were extracted per sample. For each ali-
quot, 200 μL of acetonitrile was added and vortexed for 
30 s and centrifuged at 10,000g for 10 min at 4 °C, and 
then, 250 μL of supernatant was pipetted into an Eppen-
dorf tube and dried under a gentle stream of N2 and 
stored at −80 °C. The dried samples were reconstituted 
in 100 μL of 4:1 acetonitrile and deionized H2O prior to 
analysis.

Ultra‑high‑performance liquid chromatography/quadrupole 
time‑of‑flight mass spectrometry (UHPLC‑QTOF‑MS) analysis
A 1260 Rapid Resolution system (Agilent Technologies, 
Santa Clara, USA) containing a binary pump and degas-
ser, well-plate autosampler, and thermostatted column 
compartment (maintained at 55 °C) was used for analy-
ses. Chromatographic separations were performed in 
duplicate on an Agilent ZORBAX SB-Poroshell column 
2.1 mm × 50 mm, 2.7 μm. MS analysis was performed on 
an Agilent 6538 QTOF mass spectrometer equipped with 
dual electrospray ionization (ESI) source in positive and 
negative modes.

Identification of metabolic entities
Agilent Profinder software, version B.08 (Agilent Tech-
nologies, Santa Clara, USA) including molecular feature 
extraction (MFE), formula generation, and find-by-ion 
tools, was used to prepare raw data and identify individ-
ual metabolic entities. Log2 normalization of the concen-
trations of individual metabolites was performed using 
the Mass Profiler Professional software, version 12.6 
(Agilent Technologies, Santa Clara, USA), and exported 
as raw data files for model building.

Quality control
Five quality control mixtures were made by pooling 
100 μL of plasma (randomly chosen from 10 samples 
in each group) and were analyzed in a random manner 
amongst all other samples.

Statistical analysis
Patient characteristics recorded at the time of sample 
collection were tabulated by case versus control status 
and compared using the Welch two-sample t-test or 
Pearson’s chi-squared test.

Data filtration and data cleaning
Data analysis was restricted to known endogenous 
human metabolites identified by the Metlin and Human 
Metabolome databases. Candidate endogenous metab-
olites not detected in 80% or more of all samples were 
judged to be unlikely to possess useful classification 
values and were dropped from further analysis. Miss-
ing values of individual metabolites were replaced with 
one-half of the smallest positive measured quantity for 
each metabolite. All data analysis was conducted using 
the R statistical software package.

Cluster analysis
Given the highly dimensional nature of metabolomics 
data and the apparent risk of numerous collinear enti-
ties to mask overall global alterations present in the 
data, an unsupervised hierarchical cluster analysis was 
used to abridge the data into groups of 12 subsets of 
similar metabolites based on their distance in multi-
vector space (1-correlation) using the complete link-
age method of the Log2 normalized concentrations for 
each metabolite, and samples were clustered using the 
Mahalanobis distance using complete linkage method. 
For the cluster analyses, the averaged value of the Log2 
normalized concentrations of metabolites arising from 
duplicated UHPLC-QTOF-MS assessments was used, 
and separate cluster analyses were done for the ESI 
positive and negative ionization modes. Hierarchical 
cluster analysis dendrogram heat maps were generated 
to display clusters of similar metabolites with individ-
ual metabolites on the x-axis and individual samples 
on the y-axis. A principal component analysis (PCA) of 
the cohort was performed to visually and qualitatively 
assess the separation of cases from controls in multi-
vector space by ESI mode using 12 cluster-represent-
ative metabolic entities per ESI mode. For this PCA, 
the metabolite within each cluster with the strongest 
correlation to the first principle component was desig-
nated a “cluster-representative metabolite,” which was 
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tabulated by ESI mode to provide qualitative examples 
of entities within each cluster.

Logistical regression modeling
To assess the classification potential of metabolomic 
entities in determining case versus control status, the 
12 cluster-representative metabolites identified from 
ESI-positive and ESI-negative cluster analyses were uti-
lized as explanatory variables in a multivariable logis-
tic regression model for the endpoint of NSCLC case 
status, with a separate logistic regression model for the 
ESI-positive and ESI-negative modes. With the aim of 
exploring the impact of potential clinical confounding 
variables (known lung cancer risk factors) on model fit, 
two additional multivariable logistic regression models 
were built which included clinical explanatory variables 
(age, sex, and smoking history) in addition to the 12 
cluster-representative metabolites for each ESI mode. 
Forest plots were generated to visualize the relative 
strength of association and distribution of odds ratios 
associated with each cluster-representative metabolite 
with and without adjustment for clinical explanatory 
variables. Volcano plots were generated of cluster-rep-
resentative metabolites from each ESI mode to visualize 
the negative log p-values (−log10 (corrected p-value)) 
from Welch’s t-test (unadjusted p-values) versus the 
Log2 fold change in the mean concentration between 
cases and controls for each metabolite.

Classification performance
Classification performance of cluster-representative 
metabolites was assessed by multiplying regression 
coefficients for every 12 representative metabolites 
by the Log2 normalized concentrations of the same 
metabolites for each patient and comparing logistic 
regression predicted case versus control status versus 
known case versus control identity. Sensitivity, speci-
ficity, and overall classification accuracy by ESI mode 
both with and without the inclusion of clinical covari-
ates were calculated, and receiver operator characteris-
tic (ROC) curves were generated plotting sensitivity as 
a function of (1-specificity). The workflow used for this 
study is summarized in supplemental Table A1.

Ethical considerations
This study was conducted with written approval from 
the University of Manitoba Health Research Eth-
ics Board (HS19421) and the St. Boniface Hospital 
Research Review Committee (RRC/2016/1553).

Results
Patient characteristics
Data from 500 patients consisting of 2000 individual 
UHPLC-QTOF-MS assessments were available (two 
ESI-positive and two ESI-negative analyses from each 
study participant), which was merged with the database 
containing patient clinical covariates obtained from the 
Manitoba Tumour Bank. Four patients were excluded 
from the analysis due to the lack of consent to disclo-
sure of clinical variables annotated to their samples; 11 
patients were excluded from the analysis as they were 
identified as having provided more than one sample 
to the Manitoba Tumour Bank during the study period 
(duplicate patients). Loss of metabolomic data fidelity 
was detected in 10 patients and were excluded from the 
analysis.

Thus, data from 475 unique patients consisting of 241 
lung cancer cases, and 234 cancer-free controls from 
which 1900 individual UHPLC-QTOF-MS assessments 
were conducted, were included in the final analysis. From 
these, a total of 2032 metabolic entities were detected in 
the ESI-positive mode, 1667 were detected in the ESI-
negative mode, and 1529 entities were detected in both 
ESI modes. After filtering low prevalence entities, 676 
metabolites remained of which 353 were detected in the 
ESI-positive mode and 323 from the ESI-negative mode 
which were used for further classification assessments.

The baseline clinical characteristics of the 475 included 
patients are shown in Table  1. Amongst the NSCLC 
cases, 177 (73%) had adenocarcinoma, and 64 (27%) had 
squamous cell carcinoma. For NSCLC cases, the final 
postoperative pathological staging (AJCC 6th ed.) was as 
follows: stage 1 (60%), stage 2 (21%), stage 3 (17%), and 
stage 4 (2%). NSCLC cases had a median age of 69 (range 
49–88) versus 55 (range 20–89) for cancer-free controls 
(p < 0.001). Males comprised 46% of cases versus 29% of 
cancer-free controls, and the median body mass index 
was similar between cases (27.2, range 14.8 to 49.5) and 
controls (27.0, range 16.4 to 49.6). NSCLC cases had 
higher proportions with significant comorbidities includ-
ing diabetes, cardiovascular disease, dyslipidemia, and 
hypertension. NSCLC cases had significant smoking his-
tory such that 27% were current smokers, 65% were pre-
vious smokers, and 8% were never smokers. By contrast, 
cancer-free controls had lower levels of smoking expo-
sure such that 6% were current smokers, 22% were previ-
ous smokers, and 48% were never smokers.

Cluster analysis
Metabolic entities were clustered based on their corre-
lations to one another by their distance in vector space 
(1-correlation) using the complete linkage method, and 
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samples were clustered based on Mahalanobis distance 
using the complete linkage in order to generate the clus-
ter analysis and heat map visualization for ESI-positive 
(Fig. 1A) and ESI-negative (Fig. 1B) metabolites.

Cluster‑representative metabolites
The representative metabolite from each of the 12 iden-
tified clusters of metabolic entities is shown in Table  2. 
The complete list of metabolites found in each cluster 
is tabulated in a downloadable file (supplemental file 
1). Amongst the ESI-positive entities, lipid metabolism 
(including phosphosphingolipids, glycerolipids), fatty 
acid metabolism, and steroids predominated as cluster-
representative metabolites. Amongst ESI-negative enti-
ties, there was a greater variety of classes of metabolites 
which were observed as cluster-representative metabo-
lites including the following: organic acids (ketoacids, 
carboxylic acids), steroids, fatty acyls, and hydroxyindol.

Principal component analysis
Principal component analysis of the cohort using the 12 
cluster-representative metabolites from the ESI-positive 

and ESI-negative modes demonstrated useful separation 
of the cohort by the first two principal components in 
each ESI mode (Fig. 2).

Assessment of volcano plots
Assessment of the volcano plots (Fig.  A1) reveals that 
most of the cluster-representative metabolites identified 
from cluster analyses are not outliers. A number of clus-
ter-representative metabolites, however, were situated at 
or below the threshold of 0.5, indicative of smaller mean 
differential concentrations of the metabolites between 
cases and controls.

Logistic regression modeling
Multivariable logistic regression analysis for the endpoint 
of NSCLC case status using the 12 cluster-representative 
metabolites revealed that a number of cluster-represent-
ative metabolites functioned as statistically significant 
predictors of NSCLC case status, while others did not 
(summarized as forest plots in Fig. 3A, B).

The ESI-positive class representative metabolites 
significantly associated with NSCLC case status in 

Table 1  Baseline characteristics of the cohort

Variable NSCLC cases (n = 241) Cancer-free controls (n = 234) p-value

Age
  Mean (range) 69 (49–88) 55 (20–89) p < 0.001

Sex
  Male (%) 112 (46%) 69 (29%) p < 0.001

  Female (%) 129 (54%) 165 (71%)

Stage (AJCC 7th ed.)
  I (%) 145 (60%) N/A -

  II (%) 50 (21%)

  III (%) 41 (17%)

  IV (%) 5 (2%)

NSCLC type
  Adenocarcinoma (%) 177 (73%) N/A -

  Squamous cell carcinoma (%) 64 (27%)

Body mass index
  Mean (range) 27.2 (14.8–49.5) 27.0 (16.4–49.6) 0.7

Comorbidities
  Diabetes (%) 55 (23%) 16 (7%) < 0.001

  COPD (%) 68 (28%) 17 (7.3%) < 0.0001

  Hypertension (%) 129 (54%) 44 (19%) < 0.001

  Dyslipidemia (%) 91 (38%) 35 (15%) < 0.001

  Cardiovascular disease (%) 72 (30%) 14 (6%) < 0.001

Smoking history
  Current smoker (%) 65 (27%) 15 (6%) < 0.001

  Ex-smoker (%) 156 (65%) 51 (22%)

  Never smoker (%) 20 (8%) 48 (21%)

  Unknown (%) 0 120 (51%)
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the logistic model of the metabolites only included 
the following: MG(0:0/18:1/0:0) (OR 1.33, 95% CI 
1.15–1.55), calcidiol (OR 1.51, 95% CI 1.25–1.85), 
3-methoxybenzenepropanoic acid (OR 1.38, 95% CI 
1.21–1.59), glycocholic acid (OR 1.21, 95% CI 1.01–
1.46), pyridoxamine 5′-phosphate (OR 0.90, 95% CI 
0.85–0.95), sphinganine 1-phosphate (OR 0.84, 95% CI 
0.75–0.92), gamma-CEHC (OR 0.40, 95% CI 0.31–0.51), 
and 1b,3a,12a-trihydroxy-5b-cholanoic acid (OR 1.12, 
95% CI 1.03–1.23). The impact of adjustment for clinical 
covariates was substantial, whereby several cluster-rep-
resentative metabolites lost statistical significance. The 
following ESI-positive cluster-representative metabolites 
conserved statistical significance after adjustment for 
clinical covariates: MG(0:0/18:1/0:0) (OR 1.33, 95% CI 
1.10–1.60), pyridoxamine 5′-phosphate (OR 0.86, 95% CI 
0.80–0.93), sphinganine 1-phosphate (OR 0.87, 95% CI 
0.76–0.99), gamma-CEHC (OR 0.48, 95% CI 0.34–0.66), 
and 1b,3a,12a-trihydroxy-5b-cholanoic acid (OR 1.19, 
95% CI 1.05–1.35).

The ESI-negative cluster-representative metabolites 
significantly associated with NSCLC case status in the 
multivariable logistic model of the metabolites only 
included the following: 20-carboxy-leukotriene B4 (OR 
1.51, 95% CI 1.30–1.77), 11-beta-hydroxyandrosterone-
3-glucuronide (OR 1.36, 95% CI 1.14–1.63), lithocholic 
acid glycine conjugate (OR 0.75, 95% CI 0.63–0.89), 

18-hydroxycortisol (OR 0.48, 95% CI 0.35–0.63), for-
maldehyde (OR 1.11, 95% CI 1.01–1.21), isodesmosine 
(OR 1.16, 95% CI 1.09–1.24), 3-methyl-2-oxovaleric 
acid (OR 0.92, 95% CI 0.89–0.95), and deoxycholic acid 
3-glucuronide (OR 0.93, 95% 0.89–0.97). The following 
ESI-negative cluster-representative metabolites main-
tained statistical significance after adjustment for clini-
cal covariates: lithocholic acid glycine conjugate (OR 
0.65, 95% CI 0.51–0.82), formaldehyde (OR 1.12, 95% 
CI 1.00–1.25), isodesmosine (OR 1.16, 95% CI 1.07–
1.27), 18-hydroxycortisol (OR 0.63, 95% CI 0.42–0.91), 
3-methyl-2-oxovaleric acid (OR 0.93, 95% CI 0.88–0.98), 
and deoxycholic acid 3-glucuronide (OR 0.91, 95% 0.85–
0.98). The complete logistic regression analysis results are 
viewable in supplemental Tables  2 (ESI positive) and 3 
(ESI negative).

Classification performance of cluster‑representative 
metabolites
The classification performance of the ESI-positive 
and ESI-negative models both with and without 
covariates is detailed in supplemental Table  A4. 
Using the metabolites alone, the diagnostic accu-
racy of between 75 (ESI positive) and 82% (ESI nega-
tive) was observed. Diagnostic accuracy notably 
improved with the addition of clinical covariate vari-
ables (age, sex, smoking history) to 90% (ESI positive) 

Fig. 1  Hierarchical cluster analysis by correlations and heat map visualization for ESI-positive (A) and ESI-negative (B) metabolites. Color labels 
correspond to the 12 clusters used to identify representative metabolites. The interior of the heat map is colorized according to the Log2 
normalized metabolite concentration, standardized to have means of zero and standard deviations of one: blue for low, yellow for average, and red 
for high. The samples are labeled yellow for cancer and purple for control
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and 94% (ESI negative). Receiver operator character-
istic curves of the logistic regression models (Fig.  4) 
demonstrated an area under the curve (AUC) of 

0.94 for both the ESI-positive and ESI-negative 
metabolites when clinical covariates were included 
in the model.

Table 2  Summary of cluster analysis representative metabolites

Abbreviations: m/z mass-to-charge ratio

Cluster representative ESI mode Formula m/z Metabolite class Function Disease associations

Sphingosine 1-phosphate + C18H38NO5P 380.2533 Phosphosphingolipid Cell survival, inflammatory 
response, lipid metabolism

Hepatocellular carcinoma 
[25], other cancers [26]

Pyridoxamine 5′-phos-
phate (vitamin B6)

+ C8H13N2O5P 249.0618 Pyridoxamines Amino acid metabolism 
neurotransmitter biosyn-
thesis, lipid metabolism

Ovarian cancer [27]

Sphinganine 1-phosphate + C18H40NO5P 382.2718 Phosphosphingolipid Membrane stabilization -

Calcidiol (25-hydroxyvita-
min D)

+ C27H44O2 401.3432 Vitamin D and derivatives Vitamin D precursor Prostate, breast, and colo-
rectal cancer survival [28]; 
conflicting data for lung 
cancer incidence [29, 30]

3-Methoxybenzenepropa-
noic acid

+ C10H12O3 181.0858 Phenylpropanoic acids - -

8-Hydroxyguanine + C10H13N5O6 168.0559 Purine derivative Mutagenic base, marker of 
DNA damage

Lung and stomach cancer 
[31]

1b,3a,12a-Trihydroxy-
5b-cholanoic acid

+ C24H40O5 409.3037 Steroids Fat absorption and 
transport

-

Glycocholic acid + C26H43NO6 466.3250 Steroids Fat emulsification, bile acid Hepatocellular carcinoma 
[32], cholangiocarcinoma 
[33, 34], prostate cancer [35]

MG(0:0/18:1/0:0) + C21H40O4 357.2989 Glycerolipids Lipid metabolism, lipid 
transport

-

2-Hydroxydecanedioic 
acid

+ C10H18O5 219.1263 Hydroxy acids Cell membrane stabilizer, 
energy storage

Zellweger syndrome [36]

Gamma-carboxyethyl 
hydroxychroman (gamma-
CEHC)

+ C15H20O4 249.1541 Benzopyrans Vitamin E metabolism Colorectal cancer [37]

Cholic acid glucuronide − C30H48O11 583.3146 Steroids Cholesterol metabolism -

Formaldehyde − CH2O 59.0137 Carbonyl compounds Protein and nucleic acid 
metabolism

Leukemia [38], nasopharyn-
geal cancer [38]

17-Hydroxypregnenolone 
sulfate

− C21H32O6S 411.1838 Steroids Lipid metabolism, cell 
signaling

-

N1-Aceytylspermine − C9H21N3O 303.2322 Carboxylic acids Cellular metabolism -
Isodesmosine − C24H40N5O8 525.2811 Carboxylic acids Elastin degradation Liver cirrhosis [34, 39], cystic 

fibrosis [40, 41]

11-Beta-hydroxyandroster-
one-3-glucuronide

− C25H38O9 481.2450 Hydroxyindoles Lipid metabolism -

Lithocholic acid glycine 
conjugate

− C26H43NO4 432.3120 Steroids Fat excretion, absorption, 
and transport

-

3-Methyl-2-oxovaleric acid − C6H10O3 129.0549 Ketoacids Amino acid metabolism Maple syrup urine disease 
[42, 43]; colorectal cancer 
[44, 45]

18-Hydroxycortisol − C21H30O6 377.1993 Steroids - Primary aldosteronism 
[46, 47]

N(6)-Methyllysine − C7H16N2O2 159.1177 Carboxylic acid Amino acid metabolism -
Deoxycholic acid 3-glucu-
ronide

− C30H48O10 567.3370 Steroids Fat emulsification -

20-Carboxy-leukotriene B4 − C20H30O6 411.1899 Fatty acyls Lipid and drug metabo-
lism

-

Pyroglutamic acid − C5H7NO3 128.0347 Carboxylic acid Amino acid metabolism NSCLC [48]
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Discussion
This study demonstrates that metabolomic analysis of 
plasma using UHPLC-QTOF-MS can potentially dif-
ferentiate patients with clinical early-stage NSCLC from 
those who are lung cancer-free based on a wide variety of 
metabolites. To our knowledge, this study represents the 
largest cohort of patients with clinical early-stage NSCLC 
who have undergone non-targeted metabolomic analysis. 
We observed that plasma contains a number of classes of 
metabolites with potential classification utility, including 
phospholipids, fatty acids, steroids, fatty acyls, and amino 
acids. Cluster-representative metabolites of interest 
were identified including MG(0:0/18:1/0:0), 3-pyridox-
amine 5′-phosphate, sphinganine 1-phosphate, gamma-
CEHC, 1b,3a,12a-trihydroxy-5b-cholanoic acid from the 
ESI-positive mode, and lithocholic acid glycine conju-
gate, formaldehyde, isodesmosine, 18-hydroxycortisol, 
20-carboxy-leukotriene B4, 3-methy-2-oxovaleric acid, 
and deoxycholic acid 3-glucuronide in the ESI-negative 
mode. Our findings suggest that these classes of metabo-
lites and selected cluster-representative metabolites are 
worthy of further evaluation with targeted, quantitative 
metabolomic analyses for the development for the detec-
tion of early-stage NSCLC.

A number of the cluster-representative metabolites 
reported herein have been previously associated with 
oncogenesis. Alterations in fatty acid and lipid metabo-
lism have been reported amongst studies assessing 
the serum or plasma [12, 13, 25] of lung cancer cases 
compared to controls. Sphinganine and sphingosine 
[12] overlap with several of the cluster-representative 

metabolites arising from this study, notably sphingosine-
1-phosphate and sphinganine-1-phosphate. Phosphos-
phingolipids, including sphingosine 1-phosphate (S1P), 
are cell membrane-derived and have important roles in 
cell signaling, cell survival, inflammatory response, angi-
ogenesis, and tumor growth [26]. S1P is implicated as a 
pro-tumorigenic factor which activates signaling path-
ways including Ras/ERK, PI3K/RAC, STAT3, and PLC 
which are associated with various cancers [27–30]. Ster-
oid hormones including calcidiol (25-hydroxyvitamin D), 
the primary circulating form of vitamin D, and calcitriol 
(1,25-dihydroxyvitamin D), the primary active form of 
vitamin D, are implicated in the incidence [31] and prog-
nosis [32] of a number of human malignancies including 
breast, colorectal, and prostate cancer. The association 
between vitamin D and NSCLC incidence and prognosis, 
however, remains controversial with conflicting direc-
tions of association reported [31] which may be partially 
explained by the complex interaction of effect modifiers 
including age, sex, and smoking status [33]. Curiously, in 
this study, we observed calcidiol to have utility as a clas-
sifier of NSCLC status, but its statistical significance in 
the logistic regression model disappeared when the clini-
cal covariates were added to the model, not dissimilar 
to the aforementioned pathogenesis and pharmacoepi-
demiology studies. Of interest, a cluster-representative 
metabolite, 8-hydroxyguanine, is a mutagenic base which 
denotes hydroxyl-mediated DNA damage which is impli-
cated in lung and gastric cancer oncogenesis in preclini-
cal models [35]. This metabolite did not perform as well 
as other cluster-representative metabolites at predicting 

Fig. 2  Principal component analyses of the cohort using the 12 cluster-representative metabolites from the ESI-positive and ESI-negative modes
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Fig. 3  Forest plot of the distribution of odds ratios from the multivariable logistic regression analysis for cluster-representative metabolites with and 
without adjustment for covariates of age, sex, and smoking status metabolites for A ESI-positive and B ESI-negative analyses
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NSCLC status in this study but may merit further tar-
geted evaluations in the future due to its potential link to 
oncogenesis.

Low-molecular-weight organic acids, including lactic 
acid, are known to be produced from cancers as a result 
of their altered glucose metabolism [36]. In this study, in 
the ESI-negative mode, a low-molecular-weight organic 
acid, pyroglutamic acid, was found to be a cluster-repre-
sentative metabolite. Interestingly, pyroglutamic acid has 
been previously scrutinized for its discriminatory perfor-
mance of serum from NSCLC versus matched controls 
in a panel of ten other candidate organic acids [37] and 
was found to have the best discrimination, with an AUC 
of 0.76. However, when compared with other cluster-
representative metabolites from this study, pyroglutamic 
acid was outmatched in discriminatory capacity. This 
highlights the importance of starting metabolomic bio-
marker development processes with wide non-targeted 
approaches prior to narrowing down to further quantita-
tive targeted approaches rather than the opposite.

The small overlap of NSCLC-specific altered metabo-
lites reported in the literature as compared to our list of 
cluster-representative metabolites is likely a consequence 
of the heterogeneity of biofluids assessed, variations in 
pre/post-analytical laboratory procedures, and sample 
sizes utilized. Further differences may be explained by the 
choice of statistical methodology, driven by differences in 

analytical objectives, as well as preferred local best prac-
tices that have arisen in this rapidly growing field.

Exploratory analysis of the classification performance 
using representative metabolites from within each clus-
ter of metabolites demonstrated classification accura-
cies in the range of 90%. With our experimental design 
planned to have a nearly 1:1 ratio of cases to controls, 
these results suggest further development work for this 
application of metabolomics is warranted. In this large 
cohort of patients with clinical early-stage NSCLC, we 
observed that age, sex, and smoking history, which are 
known risk factors for the development of NSCLC, sig-
nificantly affected the performance of fitted predictive 
models. Of these, smoking status and age had particu-
larly strong effects in the multivariable logistic regres-
sion models. The degree to which the clinical covariates 
influenced the classification characteristics of the logis-
tic regression model mirrored the findings of Miy-
amoto et al., who found that the inclusion of age and sex 
improved the sensitivity and specificity of blood-based 
lung cancer metabolomic models [13]. These find-
ings underline the need for future studies of metabo-
lomic profiling for purposes of lung cancer detection 
to utilize comprehensively annotated biospecimens, 
including, at minimum, smoking history, age, and sex 
variables so to allow effective study design (e.g., strati-
fied or matched sampling of cases and controls) as well 

Fig. 4  Receiver operator characteristic curves of cluster-representative metabolite logistic regression model with and without covariates (age, sex, 
smoking history) for ESI-positive (A) and ESI-negative (B) modes
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as analytical methods such as multivariable adjustment 
[13] or propensity matching [16]. Furthermore, there 
are likely many other biologically plausible confounding 
clinical variables including ethnicity, body mass index, 
dietary, or lifestyle choices. Given the current paucity of 
published data assessing the impact of these additional 
covariates, any future metabolomics studies planned for 
this milieu should assess any potential impact of these 
variables on metabolomic profiles in order to improve 
the calibration of any future diagnostic models.

A limitation of this study is that specimen collection 
was not explicitly controlled for the prandial state. How-
ever, since many of our specimens were collected along-
side other routine bloodwork which require fasting prior 
to sample collection, it is conceivable that a considerable 
proportion of samples were indeed collected in the fast-
ing state. Unfortunately, since prandial status data were 
not recorded in the biorepository databases, it could not 
be verified for each patient. This issue may be common 
to biorepository specimens like those used in our study, 
as most biorepositories were conceived with genomic or 
transcriptomic studies in mind where the prandial state 
is of little importance as compared to metabolomic anal-
yses. As a result, this study was unable to control for the 
effects of the prandial state. A literature search did not 
find any published data which explored the impact of the 
prandial state on lung cancer metabolomic profiles. Thus, 
future work in this milieu should be performed amongst 
patients who have undergone standardized pre-sampling 
preparations which would reduce the impact of the diges-
tion of various foods on their metabolomic profiles used 
for lung cancer classification.

Metabolomic data sets are highly multidimensional, 
leading to an increased risk that key associations may 
go unnoticed as “noise” as opposed to “signal.” With 
this in mind, the next logical step in the development 
of a metabolomics profile aimed at the detection of 
early-stage lung cancer would be targeted metabolomic 
analyses using shorter, pre-specified lists of metabo-
lites from biospecimens that are completely annotated 
with clinical covariate data and preferably collected in 
the fasting state. Based on the findings of this study, 
analyses targeting lipid, fatty acid, steroid, and amino 
acid entities such as some of the cluster-representative 
metabolites would be reasonable. By targeting specific 
regions of the metabolome, associations of individual 
metabolites with ES-NSCLC would be more accurately 
assessed and evaluated. These associations may be 
developed in clinical trials and in the setting of case-
control trial design, for example, but will ultimately 
need to be studied and calibrated using cohort study 
designs where the prevalence of ES-NSCLC is a known 
truth. A potential source of such specimens and data 

may be found in image-based lung cancer screening 
programs which are already operational or are running 
in the context of a clinical trial.

Conclusions
Global alterations in metabolism were found in the 
plasma of early-stage NSCLC cases compared to cancer-
free controls. Further targeted analyses of specific metab-
olites and classes of metabolites using clinical covariate 
annotated biospecimens are warranted to refine this non-
invasive approach to lung cancer detection.
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