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Abstract

Background: Metabolite genome-wide association studies (MGWAS) are key for understanding the genetic
regulation of metabolites in complex diseases including cancers. Although mGWAS has revealed hundreds of
metabolomics quantitative trait loci (mQTLs) in the general population, data relating to gastric cancer (GC) are still
incomplete.

Methods: We identified mQTLs associated with GC by analyzing genome-wide and metabolome-wide datasets
generated from 233 GC patients and 233 healthy controls.

Results: Twenty-two metabolites were statistically different between GC cases and healthy controls, and all of them
were associated with the risk of gastric cancer. mGWAS analyses further revealed that 9 single nucleotide
polymorphisms (SNPs) were significantly associated with 3 metabolites. Of these 9 SNPs, 6 loci were never reported
in the previous mMGWAS studies. Surprisingly, 4 of 9 SNPs were significantly enriched in genes involved in the T cell
receptor signaling pathway.

Conclusions: Our study unveiled several novel GC metabolite and genetic biomarkers, which may be implicated in

the prevention and diagnosis of gastric cancer.
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Introduction

Gastric cancer (GC) is one of the most common, multi-
factorial malignancies mediated by environmental and
genetic factors [1, 2]. Several genome-wide association
studies (GWAS) have been performed to identify genetic
biomarkers for GC [3-7]. Although multiple single nu-
cleotide polymorphisms (SNPs) have been found to asso-
ciate with GC, the effect size is small and the influence
of genetic factors on the biological processes underlying
GC remains elusive.

* Correspondence: Iby@fjmu.edu.cn; wec@fimu.edu.cn
'School of Public Health, Fujian Medical University, Fuzhou, China
Full list of author information is available at the end of the article

B BMC

GWAS with intermediate phenotypes, like changes in
metabolite and protein levels, are key in establishing
functional links between genetic variants and disease
end points [8]. Metabolomics is a rapidly developing dis-
cipline that focuses on the study and analysis of small
endogenous molecules (MW < 1500 Da) [9]. As the end-
point of the signaling cascade, it represents the final re-
sponse of living systems to environmental, genetic, and
disease factors [9, 10]. Advances in metabonomic tools
provide a unique opportunity to reveal complex relation-
ships between genotypes and phenotypes [10]. There-
fore, metabonomics may be an ideal intermediate
phenotype choice. Prior studies have shown that GC is
associated with alterations in circulating metabolites,
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such as nucleotides, lipids, and amino acids [11, 12].
Nevertheless, the relationship between metabolite levels
and biological mechanisms of GC remains unclear.

GWAS for metabolic traits (metabolite genome-wide
association studies, mGWAS) has revealed hundreds of
metabolomic quantitative trait loci (mQTLs) in the gen-
eral population [10, 13-15]. For GC, the identification of
novel mQTLs may provide a valuable tool for discover-
ing genetic biomarkers related to GC and provide new
insights from the perspective of metabolism. Mapping
GC-associated mQTLs could also shed light on the eti-
ology and mechanisms of GC, which in turn is import-
ant for the prevention, early detection, diagnosis, and
targeted treatment of this malignancy. However, to our
knowledge, there are currently no studies of MGWAS
associated with GC.

To identify the GC-associated mQTLs for the first
time, we combined genome-wide and metabolome-wide
datasets generated from 233 GC patients and 233
healthy controls. Patients were age-, sex-, smoking sta-
tus-, alcohol consumption-, H. pylori infection-, and
time of blood sample collection-matched to healthy con-
trols. We hypothesized that by combining phenotypic,
metabolomic, and genetic data, we could better identify
individuals at risk of GC and uncover biological mecha-
nisms related to GC.

Materials and methods

Study samples

This study was based on a population-based case-
control study, in which GC patients and healthy individ-
uals were consecutively enrolled in Xianyou County be-
tween March 2013 and December 2017. All cases were
newly diagnosed histologically based on tissue specimens
and had lived in Xianyou for at least 10 years. GC pa-
tients with other cancers, secondary or recurrent gastric
cancer, gastritis, previously received neoadjuvant chemo-
therapy or chemoradiotherapy or radiotherapy, pregnant,
metabolic diseases such as diabetes, gout, hyperlipid-
emia, systemic administration of corticosteroids, neuro-
logical and psychiatric diseases, severe hepatic and renal
dysfunction, and severe respiratory disease requiring
continuous oxygen treatment, etc., were excluded. For
the healthy individuals, there was no abnormality of
blood tests and endoscopic examinations.

The study initially included 244 GC cases and 244
healthy individuals. Ethical approval for the study was
obtained from the Biomedical Research Ethics Commit-
tee of Fujian Medical University, China (No. 97,2014).
Following an explanation of the study, written informed
consent was obtained from all participants at study
enrollment.
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Metabolite profiling

Blood samples were collected after an overnight fast, im-
mediately centrifuged, and stored at —80°C until assayed.
Plasma metabolites were profiled as previously described
using Agilent 1200 high-performance liquid chromatog-
raphy combined with a 6520 accurate electrospray
ionization/quadrupole-time-of-flight mass system (Agi-
lent Technologies, CA, USA) [16]. A total of 225 com-
pounds were detected. If a variable had a nonzero
measurement value in at least 80% of the variables
within one of the two subsets, the variable was included
in the data set; otherwise, the variable was removed.
This procedure will be referred to as the “80% rule” [17].
After being excluded based on extracted ion chromato-
gram (EIC) and “80% rule,” 60 metabolites have
remained for subsequent analyses. The final metabolo-
mics dataset contained 20 nucleotides, 19 lipids, 7 amino
acids, 8 organoheterocyclic compounds/others, 3 pep-
tides, and 3 unknown.

Genome-wide genotyping

Approximately 900,000 SNPs were genotyped using the
Axiom™ Precision Medicine Research Array (Thermo
Fisher Scientific, Waltham, MA, USA). Genotyping was
performed as described according to the manufacturer’s
instructions. Briefly, genomic DNA was extracted using
a Genomic DNA Isolation Kit (Biovision, CA, USA).
Each sample was whole-genome amplified, fragmented,
precipitated, dried, resuspended in appropriate
hybridization buffer, chip cleaned, stained, and scanned.
Participants were excluded if they satisfy any of the fol-
lowing items: (1) low call rate (overall rate < 95%), (2)
ambiguous gender, and (3) duplicates or familial rela-
tionship (PI_HAT > 0.025). SNPs were excluded if they
(1) were not mapped to autosome chromosomes, (2) had
a call rate < 95%, (3) had minor allele frequency (MAF)
< 0.05 in controls, and (4) were an excessive deviation
from Hardy-Weinberg equilibrium in controls (p < 1 x
107%). As a result, 233 pairs of subjects and 258,544
SNPs were left for subsequent analysis.

Statistical analysis

Before statistical analysis, each metabolic peak in all sub-
ject samples was normalized based on QC samples for
removing the unwanted analytical variations occurring
intra- and inter-batches. And the plasma abundant
values of metabolites investigated were set to a log scale
and auto-scaled (mean-centered and divided by the
standard deviation of each variable) using MetaboAna-
lyst 4.0. An orthogonal partial least squares discriminant
analysis (OPLS-DA) and univariate two-sides t-test were
used for metabolic profile description and metabolic sig-
nature discovery between GC cases and healthy controls.
The false discovery rate (FDR) method was used to
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correct for multiple hypothesis testing and to reduce
false positives. Those metabolic features with variable
importance in the projection (VIP) values > 1.0 in the
OPLS-DA model and FDR-adjusted p values < 0.05 in
the t-test were considered to be significantly different
between GC cases and healthy controls. Then, logistic
regression was performed to test the association between
discriminant metabolites and incident GC.

After that, we analyzed the associations between dis-
criminant metabolite levels and genome chip variants
using a generalized linear model adjusted for age, sex,
family relationship, smoking status, alcohol consump-
tion, pickled vegetable intake, and H. pylori infection
analysis in TASSEL software (version 5.0). To control
for false-positive error rates deriving from the large
number of SNPs tested, a conservative Bonferroni-
adjusted p-value of p = 8.79 x 107 (= 0.05/(258544SNPs
x 22 metabolites)) was applied for declaring genome-
wide significance for the SNP-metabolite associations.
The significant SNPs were annotated to the neighboring
genes of 1000 Genomes Project (hgl9/1000 Genomes
ASN) downloaded from the University of California
Santa Cruz (UCSC) genome browser (http://
hgdownload.cse.ucsc.edu). Then, we conducted Gene
Ontology (GO) enrichment analysis to investigate pos-
sible biological, molecular, or cellular processes associ-
ated with significant SNP-related genes using Metascape
(https://metascape.org/) [18]. Furthermore, the inter-
action network between metabolites, genes, and GO
terms were visualized using Cytoscape [19]. Finally,

Table 1 Demographic characteristics of study participants
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RNA-seq data of gastric cancer tissue and adjacent nor-
mal tissue of six gastric cancer patients in Asia were
downloaded from The Cancer Genome Atlas (TCGA;
https://www.cancer.gov/tcga), and t test was performed
to compare the candidate gene expression between two
different groups shown in boxplot using R (R version
3.6.0).

Results

Study sample characteristics

A total of 233 GC cases and 233 healthy controls were
included, with the mean age of 64.80 + 7.89 years and
65.16 + 7.91 years, respectively. As shown in Table 1, ex-
cept for pickled vegetable intake (p < 0.05), there was no
statistically significant difference in gender, age, smoking
status, alcohol consumption, and H. pylori infection, be-
tween GC cases and healthy controls (p > 0.05).

Metabolic profiles and discriminant metabolites between
GC cases and healthy controls

To identify potential compounds that could be used to
differentiate the metabolite profiles of GC cases and
healthy controls, we established a supervised OPLS-DA
model that focused on the actual class discriminating
variation. As shown in Fig. 1A and B, we observed a
clear separation between the two groups. Response per-
mutation testing was performed to verify the reliability
of the OPLS-DA model. As shown in Fig. 1C, the good-
ness of fit (R*Y) and prediction ability of the model (Q?)
were 0.472 and 0.420 for differentiating GC cases and

Control (n = 233) Case (n = 233) X p-value
Gender 0.000 1.00
Female 63 63
Male 170 170
Age 0.424 0.515
<65y 123 130
>65y 110 103
Smoking status 0.009 0.926
No 109 108
Yes 124 125
Alcohol consumption 1.378 0.240
No 194 203
Yes 39 30
Pickled vegetable intake 17.003 <0.001
No 66 30
Yes 167 203
H. pylori infection 0.567 0.451
No 141 133
Yes 92 100
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Fig. 1 Metabolic profiles and discriminant metabolites between GC cases and healthy controls. A Orthogonal partial least-squares discrimination
analysis (OPLS-DA) score plots. B OPLS-DA three-dimensional score plots. C Validation plots obtained from 200 permutation tests for the OPLS-DA
models. D Volcano plot of discriminant metabolites between GC cases and healthy controls. Notes: blue, GC cases; green, healthy controls; red,
discriminant metabolites

healthy controls, successful
model construction.

Subsequently, to find discriminant metabolites be-
tween GC cases and healthy controls, a univariate two-
sides t-test and the VIP scores from OPLS-DA models
were carried out. Metabolites with FDR-adjusted p-
values < 0.05 and VIP >1 were selected as discriminants.
Figure 1D shows that 22 metabolites were statistically
different between GC cases and healthy controls, includ-

ing 7 nucleotides, 9 lipids, and 6 others.

respectively, suggesting

Association between discriminant metabolites and gastric
cancer

Figure 2 denotes odds ratios for the association between
22 discriminant metabolites and GC risk, which was ad-
justed for pickled vegetable intake status. Eleven metab-
olites, including cytidine monophosphate (CMP), inosine
triphosphate (ITP), uridine 5’-monophosphate (5'-
UMP), uridine 5'-diphosphate (5'-UDP), guanosine,
phosphoribosyl-ATP, linoleic acid, L-palmitoylcarnitine,
testosterone, dihydrobiopterin, and paraxanthine, were

associated with increased risks of GC. Conversely, me-
tabolites including guanosine triphosphate (GTP),
Cer(d18:0/12:0),  8-Isoprostaglandin  E1,  platelet-
activating factor, TG(22:5/15:0/22:5), SM(d18:1/16:0),
cholic acid, indolelactic acid, indole-3-lactic acid, por-
phobilinogen, and L-histidinol were associated with de-
creased risk of GC. Receiver operating characteristic
(ROC) curve analysis was used to assess the discrimina-
tive ability of the 22 metabolites. The area under the
curve was 0.897 (95% CI 0.869 to 0.924), indicating a
high diagnostic value for GC. In short, these metabolites
are highly correlated with the occurrence of GC.

Genetic associations of discriminant metabolites

Next, we analyzed the association of these 22 metabo-
lites with genome chip variants. As listed in Table 2, 9
SNPs were significantly associated with 3 metabolite
concentrations at a stringent genome-wide cutoff of 8.79
x 107°. Of these, 4 loci are in the enhancer regions, 2
are in the 3'UTR. Besides, 6 loci have not been reported
before, while 3 loci were reported in the previous
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Metabolites OR 95% CI -Log10(P value)
Nucleosides
Cytidine monophosphate ——— 5.53(3.76,8.14) 17.36
Inosine triphosphate —— 3.11(2.32,4.16) 13.58
Uridine 5'-diphosphate _— 2.04(1.53,2.72) 5.9
Uridine 5'-monophosphate - 1.68(1.35,2.1) 5.33
Phosphoribosyl-ATP —— 1.62(1.23,2.15) 3.14
Guanosine - 1.46(1.17,1.82) 3.16
Guanosine triphosphate ) 0.59(0.4,0.88) 2.06
Lipids
Linoleic acid —— 2.24(1.7,2.94) 8.08
L-Palmitoylcarnitine - 1.54(1.25,1.88) 4.47
Testosterone - 1.41(1.13,1.75) 272
Cer(d18:0/12:0) - 0.61(0.44,0.85) 245
8-Isoprostaglandin E1 - 0.5(0.35,0.7) 4.1
Platelet-activating factor - 0.43(0.29,0.65) 4.25
TG(22:5/15:0/22:5) - 0.3(0.19,0.47) 7.03
SM(d18:1/16:0) - 0.24(0.16,0.35) 11.98
Cholic acid L] 0.13(0.08,0.21) 14.82
Organoheterocyclic compounds/others
Dihydrobiopterin —— 2.85(2.03,4.01) 8.78
Paraxanthine - 1.54(1.21,1.96) 3.42
Indolelactic acid - 0.63(0.47,0.83) 2.89
Indole-3-lactic acid - 0.55(0.39,0.78) 3.1
Porphobilinogen - 0.48(0.34,0.68) 4.46
Amino acids
L-Histidinol - 0.61(0.45,0.81) 3.1
T T T T 1T T T T 1
00.51 2 3 4 5 6 7 8 9
Odd Ratios
Fig. 2 Odds ratios (OR) and 95% confidence intervals (Cl) for discriminant metabolites and the risk of gastric cancer. Notes: OR is from logistic
regression models adjusted for pickled vegetable intake status

mGWAS study in the general population [20], including
rs12204145, rs12208390, and rs3927423. The last two
loci were in strong linkage disequilibrium (LD) P =1)
with the variant rs12202419. And markers R* for 3 me-
tabolites ranged from 7.23 to 8.46% and the total pheno-
typic variance explained by 9 SNPs was 70.46%.

Gene and metabolite interaction network

To investigate which biological pathways were associated
with these SNPs and the corresponding metabolites, we
carried out a GO enrichment analysis. The most signifi-
cantly enriched gene-based pathways were the T cell

receptor signaling pathway (GO:0002376) with five genes
(i.e., PDE4D, BTN3A3, BTN2A2, BTN3Al, BTN2A3P)
(Fig. 3). Figure 3 also denotes the relationships between
metabolites, genes, and GO terms.

Expression of 10 candidate genes between gastric cancer
tissue and adjacent normal tissue

Finally, GWAS was performed by plink to investigate
whether the genotype distribution of the 9 SNPs is dif-
ferent between GC cases and healthy controls. Unfortu-
nately, no statistically significant association was found.
Then, we downloaded RNA-seq data of gastric cancer

Table 2 SNP associations of discriminant metabolites with p < 879 x 107°

Metabolites SNP Chr  Pos Alt  Ref pvalue R? Candidate gene Function
Dihydrobiopterin rs140991639 2 226294958 A G 6.62E-09 7.23% NYAP2 Intron, ENh60914
Platelet-activating factor rs12208390 6 26437106 T @ 1.69E-09  8.10% BTN3A3,BTN2A3P Upstream
rs3927423 6 26393487 T C 273E-09  793%  BTN2A2 UTR-3
16912853 6 26401438 T C 3.80E-09 7.82% BTN3A1 Upstream
rs140044870 4 150707364 A C 5.88E-09 7.62% DCLK2 Upstream, Enh90264
rs12204145 6 26600156 A G 773E-09  751%  ABTI UTR-3
rs957788 13 108257220 C T 8.66E-09 7.51% FAM155A Intron
Cer(d18:0/12:0) rs1183416 13 44873710 T C 1.10E-09 8.46% SERP2 Upstream, Enh30302
15295977 5 58893286 A C 1.70E-09  828%  PDE4D Intron, Enh55272

SNP, single nucleotide polymorphism; Chr, chromosome; Pos, position; Alt, alternative allele; Ref, reference allele
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Fig. 3 A network model describing the metabolites, genes, and GO term interactions. Notes: yellow rectangle, metabolites; blue rectangle,
neighboring genes of significant SNPs; red diamond, GO cellular components; green rectangle, GO biological processes
.

tissue and adjacent normal tissue from TCGA and com-
pare the expression of 10 candidate genes between GC
tissue and adjacent normal tissue. As shown in Fig. 4,
there were statistically significant differences in the ex-
pression of 5 genes between the two groups (FDR_P
value < 0.05), which indirectly verifies the reliability of
this study.

Discussion

Discriminant metabolites between GC cases and healthy
controls

In this study, 22 metabolites were found to be associated
with the occurrence of GC, including 7 nucleotides, 9
lipids, 5 organoheterocyclic compounds, and 1 amino
acid.

Notes: green, adjacent normal tissue; red, gastric cancer tissue
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Fig. 4 Differentially expressed genes between gastric cancer tissue and adjacent normal tissue among 10 candidate genes (FDR_P value < 0.05).
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Nucleotide synthesis is key for cell proliferation as it is
required for DNA replication, gene transcription, and
ribosome biogenesis [21]. Tumor cells are in a state of
such rapid proliferation and differentiation that frequent
nucleotide synthesis and metabolism are upregulated
significantly. Our study found that the relative abun-
dance of CMP, 5'-UMP, 5'-UDP, ITP, guanosine, and
phosphoribosyl-ATP were increased in the GC cases
compared with healthy controls, while GTP was de-
creased. Previous research showed that guanosine was
also increased in GC samples, but no noticeable differ-
ence of ATP and GTP was observed between normal
and GC tissues [22]. This discrepancy may be due to the
difference in experimental materials. Nucleotides in the
blood are either passively released from stressed or dying
cells due to cell lysis or actively released through mem-
brane channels by exocytosis of vesicles or as part of
exosomes [23]. The increase of nucleotides in plasma in
our study may indicate an increase of dead cells in the
blood of GC patients. On the one hand, it may come
from the death of normal cells due to undernutrition
[24, 25]. Alternatively, it may come from the increase of
programmed cell death process triggered by cellular
stress, DNA damage, and immune surveillance, to resist
tumor proliferation [26].

Lipids, including phospholipids, fatty acids, triglycer-
ides, sphingolipids, cholesterol, and cholesteryl esters,
are key constituents of all biological membrane struc-
tures [27, 28]. Moreover, lipids could function as second
messengers to transduce signals within cells, and serve
as important energy sources when nutrients are limited
[29]. As a result, proliferating cells need to acquire suffi-
cient lipids to support membrane growth and integrity.
Accumulating evidence has demonstrated that lipid me-
tabolism is substantially reprogrammed in cancers in-
cluding GC [11, 30]. In this study, linoleic acid, L-
palmitoylcarnitine, testosterone, Cer(d18:0/12:0), 8-
Isoprostaglandin E1, platelet-activating factor, TG (22:5/
15:0/22:5), SM (d18:1/16:0), and cholic acid were found
to be associated with GC. Yu et al. demonstrated that
there was no difference in plasma linoleic acid concen-
tration between gastric cancer patients and healthy indi-
viduals [31], but some studies also found that the
increase of linoleic acid in plasma or diet may increase
the risk of hepatocellular carcinoma, colorectal cancer,
and prostate cancer [32, 33]. Linoleic acid can be metab-
olized to arachidonic acid, which plays an important role
in inflammatory processes, as the latter can serve as a
substrate for the production of some pro-inflammatory
eicosanoids, leading to the production of inflammatory
mediators such as tumor necrosis factor-alpha (TNF-a)
and interleukin-1 (IL-1) [34]. Higher L-palmitoylcarni-
tine levels were found in mice with colon cancer and pa-
tients with acute pneumonia, indicating an increase in
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inflammation and fatty acid beta-oxidation [35, 36].
Findings of our study suggest that linoleic acid and L-
palmitoylcarnitine may also play a pro-inflammatory role
in gastric cancer.

Cer(d18:0/12:0) and SM(d18:1/16:0) are members of
sphingolipids (SPs), which are structural molecules of
cell membranes with important roles in maintaining bar-
rier function and fluidity [35, 37]. Sphingolipids also
regulate various biological processes such as growth,
proliferation, migration, invasion, and/or metastasis by
controlling signaling functions within the cancer cell sig-
nal transduction network [38]. Changes in cellular cer-
amide levels are followed by the activation of
downstream effectors, which results in cell cycle arrest,
senescence, or programmed cell death [39]. In this study,
the decrease of Cer(d18:0/12:0) in plasma may indicate
the disorder of the cell cycle and programmed cell death
process, resulting in the exuberant proliferation of can-
cer cells and the continuous production of the cell
membrane.

Platelet-activating factor, also known as PAF or PC(O-
16:0/2:0), is a ubiquitous, potent phospholipid activator
and mediator of inflammation that plays an important
role in the pathogenesis of inflammatory disorders [40].
In vitro and animal studies suggest that PAF can act on
the growth of various human tumor cell lines, increasing
the adhesiveness of tumor cells to vascular endothelia,
enhancing oncogene expression, and contributing to
tumor development through enhancement of cell motil-
ity and stimulation of angiogenic response [41-44]. PAF
receptor expression is increased in patients with gastric
adenocarcinoma, and it is closely related to tumor prolif-
eration ability and tumor size [45], which indicates that
gastric adenocarcinoma tissue needs to consume more
PAF. Transcripts of PAF and PAF receptors were also
significantly increased in hepatocellular carcinoma speci-
mens compared with non-cancer specimens [46]. In
conclusion, PAF can change local angiogenesis and cyto-
kine networks and is essential to suppress the immune
system and promote metastasis and tumor growth [47].
In this study, the decrease of the platelet-activating fac-
tor in plasma may indicate the increase of the platelet-
activating factor in the tumor microenvironment. How-
ever, these hypotheses need to be effectively verified by
subsequent experiments.

The relative abundance of dihydrobiopterin (BH2), the
precursor of tetrahydrobiopterin (BH4) of folate biosyn-
thesis, was increased in gastric cancer patients compared
with the healthy controls. Tetrahydrobiopterin (BH4) is
essential for the synthesis of nitric oxide (NO) [48], and
it is recognized as an essential step in initiating neoplas-
tic transformation [49]. A previous study demonstrated
that the BH4:BH2 ratio is lower in tumor tissues. As a
consequence, nitric oxide synthase activity generates
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more peroxynitrite and superoxide anion than nitric
oxide, resulting in tumor growth and anti-apoptotic sig-
naling [50].

Genetic associations of discriminant metabolites
Although we found some metabolites associated with
GC, the biological mechanisms remain unclear. Hence,
it is essential to combine metabolomics with other
-omics methods to get a more integrated understanding
of gastric carcinogenesis. mGWAS is an excellent
method in quantifying metabolic data and uncovering
genetic variants affecting metabolite levels [13]. In this
study, the area under the ROC of 22 discriminant me-
tabolites was 0.897 (95% CI 1.12 to 1.62), indicative of
an ideal intermediate phenotype choice of GC. There-
fore, we proceeded to identify mQTLs associated with
GC by testing the genetic associations of 22 discriminant
metabolites with genome-wide data. We found that 9
SNPs were significantly associated with 3 metabolites.
Of them, 3 loci were reported in the previous mGWAS
[20], and 6 loci were novel. Surprisingly, 4 of these 9
SNPs were significantly enriched in five genes (i.e.,
PDE4D, BTN3A3, BTN2A2, BTN3A1, BTN2A3P) in-
volved in the T cell receptor signaling pathway (GO:
0002376).

Besides, 6 SNPs were found to be associated with PAF,
which influences the occurrence of gastric cancer. They
included rs12208390, rs3927423, and rs6912853 in
butyrophilins (BTN) gene; rs140044870 in DCLK2;
rs12204145 in ABT1; and rs957788 in FAM155A. The
BTN gene belongs to the immunoglobulin superfamily.
There are seven human BTN genes in three related
phylogenetic subfamilies. BTN1 subfamily contains only
the BTN1A1l gene, while BTN2 contains BTN2A1,
BTN2A2, and BTN2A3 pseudogenes, and BTN3 con-
tains BTN3A1, BTN3A2, and BTN3A3 genes [51]. Stud-
ies have shown that overexpression of BTN3A and
dominant expression of BTN3A2 subtypes are closely re-
lated to the poor prognosis of pancreatic ductal adeno-
carcinoma and gastric cancer [52, 53]. Overexpression of
the BTN3A2 gene is associated with increased prolifera-
tion and invasion of gastric cancer cells [52]. Further-
more, Sarterk et al. found that BTN2A2 is a co-
inhibitory molecule that modulates T cell-mediated im-
mune responses [54]. Also, Lebrero-Fernandezc et al.
found that BTN2A2 gene expression was significantly
increased in the tissues of colon cancer patients com-
pared with healthy controls [55]. Importantly, we found
that the relative abundance of PAF in the plasma of the
gastric cancer group and the control group was different,
and PAF-related genes were mainly enriched in the T
cell receptor signaling pathway. Therefore, we speculate
that PAF-related SNPs may regulate PAF metabolism by
regulating the expression of gastric cancer BTN family
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genes, mediate the T cell receptor signaling pathway,
promote angiogenesis, and promote the growth and me-
tastasis of gastric cancer cells.

Previous studies revealed that the Neuronal tyrosine-
phosphorylated Adaptor for The PI3-kinase (NYAPs)
could activate the PI3K signaling pathway [56]. More-
over, activation of the PI3K signaling pathway promotes
cell growth and survival and is a significant cancer devel-
opment regulator [57]. Consistently, this study found
that the rs140991639 loci in NYAP2 were associated
with BH2, which may be related to the occurrence of
gastric cancer. Other targets found in this study that
may be related to the occurrence of gastric cancer in-
clude DCLK2 (associated with reduced survival in cancer
patients [58]), ABT1 (encodes proteins needed by ribo-
somes and contains genetic modifiers responsible for
promoting nerve cell survival [59]), and FAM155A (asso-
ciated with tumor invasion phenotype and early distant
metastasis in patients with surgically treated renal clear
cell carcinoma [60]). It is worth noting that the rs957788
in FAM155A was found to be associated with anorexia
nervosa in a GWAS study [61]. Furthermore, we found
rs295977 in PDE4D and rs1183416 in SERP2 were re-
lated to Cer(d18:0/12:0). To our knowledge, both
PDE4D (phosphodiesterase 4D) and SERP2 (stress-asso-
ciated endoplasmic reticulum protein family member 2)
are associated with tumors [62, 63]. Among them,
PDE4D has been reported to act as a proliferation pro-
moter in several different tumors [64—66], and muta-
tions in SERP2 are associated with leukemia [67]. In our
study, both the 2 loci were connected to Cer(d18:0/12:
0), but further studies are needed to explore the specific
relationship between the occurrence of gastric cancer.

Conclusions

In summary, we found 22 metabolites that were statisti-
cally different between GC cases and healthy controls.
All of them were associated with the risk of gastric can-
cer. The area under the ROC of 22 discriminant metabo-
lites was 0.897 (95% CI 0.869 to 0.924), indicating a high
diagnostic value for GC and an ideal intermediate
phenotype choice of GC. More importantly, we identi-
fied 6 new mQTLs in GC cases that may be a valuable
tool for discovering genetic biomarkers related to GC.
Therefore, this paper provides new insights into the pre-
vention, early detection, diagnosis, and targeted treat-
ment of gastric cancer. However, a validation cohort and
in vivo and in vitro experiments are required to confirm
these findings and fully explore the implications of this
study.
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