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Abstract

Background: Colorectal cancer (CRC) is a complex multifactorial disease. Increasing evidence suggests that the
microbiome is involved in different stages of CRC initiation and progression. Beyond specific pro-oncogenic
mechanisms found in pathogens, metagenomic studies indicate the existence of a microbiome signature, where
particular bacterial taxa are enriched in the metagenomes of CRC patients. Here, we investigate to what extent the
abundance of bacterial taxa in CRC metagenomes can be explained by the growth advantage resulting from the
presence of specific CRC metabolites in the tumor microenvironment.

Methods: We composed lists of metabolites and bacteria that are enriched on CRC samples by reviewing
metabolomics experimental literature and integrating data from metagenomic case-control studies. We
computationally evaluated the growth effect of CRC enriched metabolites on over 1500 genome-based metabolic
models of human microbiome bacteria. We integrated the metabolomics data and the mechanistic models by
using scores that quantify the response of bacterial biomass production to CRC-enriched metabolites and used
these scores to rank bacteria as potential CRC passengers.

Results: We found that metabolic networks of bacteria that are significantly enriched in CRC metagenomic samples
either depend on metabolites that are more abundant in CRC samples or specifically benefit from these
metabolites for biomass production. This suggests that metabolic alterations in the cancer environment are a major
component shaping the CRC microbiome.

Conclusion: Here, we show with in sillico models that supplementing the intestinal environment with CRC
metabolites specifically predicts the outgrowth of CRC-associated bacteria. We thus mechanistically explain why a
range of CRC passenger bacteria are associated with CRC, enhancing our understanding of this disease. Our
methods are applicable to other microbial communities, since it allows the systematic investigation of how shifts in
the microbiome can be explained from changes in the metabolome.

Keywords: Genome-scale metabolic models, Colorectal cancer microbiome, Colorectal cancer metabolome,
Bacterial driver-passenger model

Background
Colorectal cancer (CRC) is the third leading cancer
worldwide and more than 1.2 million new cases are di-
agnosed each year, approximately 45% of which are fatal
[1, 2]. CRC is a complex multifactorial disease with
many risk factors statistically and mechanistically associ-
ated with its incidence and prevalence, including host

genetics, smoking, excessive alcohol consumption, high
consumption of red and processed meat, obesity, and
diabetes [3–7]. Many recent studies have highlighted
possible roles of the gut microbiome in the initiation
and progression of CRC (for reviews, see [8–13]). Add-
itionally, many of the factors that are associated with
CRC development are also associated with possible shifts
in the composition of the microbiome, such as the afore-
mentioned dietary factors [14].
Dietary compounds, the resident microbiota, and their

secreted products are among the most significant external
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components that interact with gut epithelial cells at the
mucosal surface [8]. Under certain conditions, gut bacteria
can favor tumorigenesis by promoting inflammation,
DNA damage, cell proliferation, or anti-apoptotic signal-
ing [9–11]. Several specific bacterial mechanisms that can
trigger cancer initiation or progression have been iden-
tified by cell and animal studies. For instance, the
commensal Enterococcus faecalis bacteria produces
extracellular superoxide, which can induce DNA dam-
age, chromosomal instability, and malignant trans-
formation in mammalian cells [15]. There are many
other specific cancer-driving mechanisms associated
with bacteria that are commonly found in the human
gut, such as Helicobacter pylori [16], enterotoxigenic
Bacteroides fragilis [17], and colibactin-producing
Escherichia coli [18].
Besides specific causal mechanisms, collective effects of

the microbiome community have been associated with
CRC, generally termed dysbiosis. For instance, in a mouse
model of CRC, specific-pathogen-free (SPF) C57BL/6
mice developed significantly fewer tumors under germ-
free conditions [19], which was also observed when these
mice were treated with broad-spectrum antibiotics [20].
Conversely, these mice developed significantly more tu-
mors when fed with stool from CRC patients, compared
to mice fed with stool from healthy controls [21].
Certain microbiome community profiles have been as-

sociated with CRC in humans. Metagenomic studies
have found consistent similarities in microbial commu-
nities derived from the tumor site of different patients
compared to the healthy tissue [22, 23] and specific bac-
terial taxa have been consistently associated with stool
samples of CRC patients [24–28]. This CRC microbiome
signature is suggested to be an important feature for the
early diagnosis of CRC [24].
The evidence described above that links the microbiome

to CRC suggests a complex interaction that is influenced
by many different factors. In contrast to other microbe-
induced cancers [29], CRC has not been associated with a
single microbial species or mechanism and is understood
to result from cumulative host and microbial factors [9].
A conceptual model to explain the shifts in the CRC
microbiome is the “bacterial driver-passenger model” [11],
which describes a chronological order in the association of
different bacteria with CRC. According to this model,
“driver bacteria” first cause DNA damage and promote
the malignant transformation of epithelial stem cells and,
after tumorigenesis is initiated, this process promotes
niche alterations that favor the outgrowth of “passenger
bacteria”. These bacteria may or may not further aggravate
the progression of the disease and are generally found to
be enriched in the microbiome of CRC patients [11].
In this study, we implemented a computational ap-

proach to answer the question whether the outgrowth of

CRC associated bacteria can be explained by changes in
CRC metabolites, as expected from the driver-passenger
model. For this purpose, we analyzed the data from five
metagenomic case-control studies [24–28] and 35 meta-
bolomic studies [30–64] to identify specific bacteria and
metabolites that are enriched in CRC patients. We used
over 1500 genome-scale metabolic models (GSMMs)
from human-associated bacterial strains [65] and found
that CRC enrichment can be predicted from bacterial
dependency on CRC metabolites and from the specific
growth advantage conferred by these metabolites. We
thus linked metagenomic and metabolomic data with
mechanistic models that explain why a range of bacteria
are specifically enriched in the CRC tumor environment.

Results
We set out to identify bacteria that respond to the altered
metabolic profile in the CRC tumor microenvironment
[11]. Our approach is illustrated in Fig. 1. In summary, we
first identified CRC metabolites that are enriched in the
tumor environment versus healthy tissue as measured by at
least three metabolomic studies [30–64] (Fig. 1a, Table 1).
To evaluate the effect of CRC metabolites on human
microbiome bacteria, we used 1544 genome-scale meta-
bolic models (GSMMs) derived from the human micro-
biome that allow bacterial growth to be mechanistically
modeled in silico in a well-defined metabolic environment
resembling the human intestinal lumen [65] (Fig. 1a). This
environment is referred to in the text as the “MAMBO” en-
vironment. We also reproduced all of the in silico experi-
ments using two alternative metabolic compositions as
basal environments which are referred to as “Western diet”
and “high-fiber diet” environments [66]. For the specific
composition of the basal environments, see Additional file
1: Table S1. We then used computational experiments to
integrate information about metabolite enrichment in CRC
with mechanistic models and to rank bacteria as potential
CRC passengers (Fig. 1b, c). These experiments are further
explained in the next subtopics.

Individual CRC metabolites show a high overlap with
metabolites that promote growth of CRC bacteria
To investigate in which bacteria the CRC metabolites are
important for biomass production, we developed a meas-
ure that is referred to in the text as the “metabolite im-
portance”, or MI score. The MI score is defined by
removing CRC metabolites one by one from the environ-
ment of the GSMMs and measuring the impact of the re-
moval on predicted in silico growth (Fig. 1b). The
measure is based on the Ochiai similarity score [67], a
score commonly used in ecological studies, that presents a
range between 0 and 1 (see “Methods” section for details),
where 1 means that there is a perfect overlap between the
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CRC metabolites and the metabolites that are important
for growth, while 0 means there are is no overlap.
We calculated MI scores for all human microbiome bac-

teria (Additional file 2: Table S2) using the metabolites
that are enriched in CRC as identified by our literature
search (Table 1). Next, we identified CRC bacteria that are
significantly enriched in the metagenomes of CRC pa-
tients compared to healthy controls from five metage-
nomic case-control studies [24–28](Fig. 1b, Table 2). We
then evaluated whether the genera containing CRC bac-
teria have higher MI scores than non-CRC bacteria, which
would suggest that CRC metabolites are more important
for biomass production in CRC bacteria than in other bac-
teria. As shown in Fig. 2a, most CRC genera have on aver-
age higher MI scores than non-CRC genera (adj. P=6.9e-
08; Mann-Whitney U test). Fig. 3 summarizes the associ-
ation of CRC bacterial genera to specific CRC metabolites,
showing that different bacteria depend on different groups
of CRC metabolites and, in general, CRC bacteria depend
on more CRC metabolites than non-CRC bacteria (Fig. 3).

The combination of CRC metabolites confers specific
growth advantage for CRC bacteria
We next tested which bacteria showed a specific re-
sponse to the increased availability of combined CRC

metabolites in the context of the gut environment. For
this purpose, we developed the “specific growth advan-
tage,” or SGA score that evaluates how an increased
growth rate of a GSMM depends on supplementing the
environment with a specific set of metabolites. In gen-
eral, many bacterial models respond to increased avail-
ability of metabolites with increased growth (not shown),
so to quantify whether a strain responded specifically to
enrichment of CRC metabolites, we compared this
growth advantage to the growth advantage when ran-
dom metabolite subsets were enriched (Fig. 1c). The
SGA score between 0 and 1 consists of the proportion of
random sets of enriched metabolites that caused a
smaller growth advantage than when the CRC metabo-
lites were enriched. Based on the supplementation of all
CRC metabolites at once, this score is complementary to
the MI score, which is based on depletion of individual
metabolites. The results were consistent with the MI
score, as the average SGA score was significantly higher
for CRC bacteria than for non-CRC bacteria (adj. p =
4.6E−5; Mann-Whitney U test) (Fig. 2b).
Significantly higher MI and SGA scores for CRC bacteria

than for non-CRC bacteria (above) indicate that these bac-
teria benefit from the CRC metabolites in the tumor
microenvironment. Both scores reflect different but related

Fig. 1 Computational approach to identify colorectal cancer metabolic passengers. a As inputs we used (i) CRC metabolites that were identified
from metabolomics literature, (ii) genome-scale metabolic models, and (iii) a basal gut-like environment [66]. b Important metabolites for biomass
production were defined as the ones that reduced growth if that metabolite was removed. The MI score was defined by comparing the list of
important metabolites with the CRC metabolites. c Specific growth advantage was evaluated by supplementing the basal environment with the
26 CRC metabolites, and comparing this with the growth advantage on 1000 sets of 26 random metabolites. The SGA score was defined as the
proportion of random sets where the growth advantage was lower than with the CRC metabolites (depicted in the distribution mass to the left
of the red vertical line that indicates growth on the CRC metabolites). In the illustrated examples, the yellow bacteria is predicted to be a
CRC passenger

Garza et al. Cancer & Metabolism             (2020) 8:3 Page 3 of 13



aspects of the association between the CRC metabolites
and bacterial metabolism and are thus weakly but signifi-
cantly correlated (Spearman correlation 0.12, p = 2.4 E−7).
We combined the two scores into a single score by using a
copula function that accounts for this correlation. We refer
to the combined score in the rest of the text as the “metab-
olite response” or MR score. As shown in Fig. 2c, the MR-
score was significantly higher for CRC bacteria than for
non-CRC bacteria (p = 3.9E−7; Mann-Whitney U test).

Bacteria that profit from CRC metabolites are enriched in
CRC
Above, we showed that bacterial genera that are enriched
in CRC tend to have higher average MI, SGA, and MR

scores than other genera. We next evaluated whether
CRC bacteria are ranked significantly higher than other
bacteria in a ranked list based on our scores. This would
indicate that our ranking is enriched for CRC bacteria as a
group compared to non-CRC bacteria and suggest that
metabolic alterations in the CRC environment can sys-
tematically explain the differential abundance measured
by metagenomes. For this purpose, we generated a cumu-
lative weight distribution curve (W) by iterating over the
lists ranked by our scores from top to bottom. W was in-
creased by a normalized constant (see “Methods” section)
if the bacterium was found to be enriched in CRC and de-
creased otherwise. As shown in the color strips of Fig. 4,
CRC bacteria ranked high on the lists for all three scores
and the cumulative weight curve W is mostly increasing
with the first bacteria. This implies that the top bacteria
are mostly from genera that are found by metagenomics
to be enriched in CRC. Importantly, these enrichments
are significantly higher than expected based on two related
null hypotheses: (1) random shuffling of the bacterial la-
bels in the list ranked by our scores and (p < 1.0E−4) (2)
random shuffling of the labels for CRC-enriched bacterial
genera (p < 1.0E−4), as shown by the curves W surpassing
the horizontal 95 percentiles of the peak values of 104 sim-
ulations with the null distributions (Fig. 4a–c, Table 3).
Enrichment for CRC bacteria improves when using the
MR score, which combines the MI and SGA scores, com-
pared to using any of the scores individually. This is
shown by a greater maximum value of the cumulative
weight curve for the MR score (Fig. 4) and indicates that
both MI and SGA scores provide complementary infor-
mation about the enrichment of CRC bacteria in the
tumor microenvironment.

MI, SGA, and MR scores consistently enrich for CRC
bacteria
We evaluated the performance of our scores under dif-
ferent conditions and controlled for potentially con-
founding factors. Results for the different conditions
tested are summarized in Table 3 and individual scores
are available in Additional file 2: Table S2. We first eval-
uated if our scores were robust in enriching for CRC
bacteria if we tested different subsets of models. The
1544 models used in the results described above were
obtained by reconstructing genome-scale metabolic
models for bacteria commonly found in the human
microbiome and not specifically the human gut. Further-
more, in our analysis so far, CRC enrichment was de-
fined at a genus level while bacterial association to CRC
has been investigated at a higher taxonomic resolution
(Table 2 and Additional file 2: Table S2). Thus, we in-
vestigated whether our scores would still identify CRC
bacteria (1) if we only considered GSMMs generated
from gut bacteria and (2) if we defined CRC enrichment

Table 1 Metabolites enriched or depleted in CRC

Metabolite References

L-Valine Enriched [33, 35, 41, 62, 64]

Stearic acid Enriched [31, 34, 44, 62]

L-Arginine Enriched [33, 35, 41]

Phenylalanine Enriched [33, 34, 41, 44]

Spermidine Enriched [35, 48, 55]

Taurine Enriched [32, 34, 35, 40–43, 48, 63]

L-Threonine Enriched [33, 35, 41, 42, 62, 64]

Glutathione Enriched [35, 41, 47, 64]

Putrescine Enriched [35, 41, 48]

Palmitic acid Enriched [31, 34, 44]

Proline Enriched [33–35, 41, 44, 62]

Asparagine Enriched [33, 35, 41, 62]

Hypoxanthine Enriched [33, 35, 44]

Lactic acid Enriched [31, 32, 34, 35, 40–42, 62, 63]

Aspartic acid Enriched [30, 33, 35, 41, 42, 47]

Cholesterol Enriched [32–34, 44, 62]

Glutamic acid Enriched [33, 35, 41, 42, 44, 47]

Tyrosine Enriched [33, 35, 44, 63]
Depleted [64]

Choline Enriched [32, 34, 40, 44, 50–52, 63]

Uridine Enriched [34, 41, 44, 62]

Serine Enriched [33, 35, 41, 62, 64]

Vaccenic acid Enriched [31, 34, 44]
Depleted [33]

Lysine Enriched [33, 35, 41, 44]

Glycine Enriched [31, 33–35, 41, 45, 62]
Depleted [32]

Methionine Enriched [33, 35, 44, 62]

Isoleucine Enriched [33, 35, 41, 62, 64]

Glucose Depleted [31, 32, 40–42, 44, 62, 64]

Glutamine Enriched [64]
Depleted [33, 35, 38]

Myoinositol Depleted [42, 44, 47, 50, 64]
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Table 2 Bacterial genera enriched in CRC

Genus Enriched mOTUs AUC/adj. p values

Parvimonas Parvimonas_micra [1145]
Parvimonas_sp._oral_taxon_110 [4961]

0.71/1.8E−20
0.57/3.7E−08

Dialister Dialister mOTU [0561] 065/5.0E−20

Gemella Gemella_morbillorum [4513] 0.70/3.E−18

Fusobacterium Fusobacterium_nucleatum_subsp._animalis_[C] [0776]
Fusobacterium_nucleatum_subsp._nucleatum_[C] [0777]
Fusobacterium_nucleatum_subsp._vincentii_[C] [0754]
Fusobacterium_sp._oral_taxon_370 [1403]

0.66/9.6E−17
0.57/4.4E−08
0.57/2.1E−07
0.56/3.7E−07

Peptostreptococcus Peptostreptococcus_stomatis [4614] 0.67/8.4E−16

Porphyromonas Porphyromonas mOTU [2350]
Porphyromonas_somerae [2101]
Porphyromonas_asaccharolytica [1517]
Porphyromonas mOTU [0125]
Porphyromonas mOTU [1184]
Porphyromonas_uenonis [2102]

0.61/1.6E−13
0.57/5.5E−09
0.58/2.9E−08
0.57/1.1E−07
0.56/8.6E−07
0.59/1.7E−10

Solobacterium Solobacterium_moorei [0531] 0.64/1.7E−10

Lachnoclostridium [Clostridium]_symbiosum_[C] [1475] 0.67/2.3E−10

Hungatella Hungatella_hathewayi [0882] 0.66/3.7E−09

Prevotella Prevotella_intermedia [0515]
Prevotella_nigrescens [0276]

0.58/2.8E−09
0.56/5.5E−08

Anaerococcus Anaerococcus_sp._[C_obesiensis/vaginalis] [0429] 0.58/6.6E−07

Blautia [Ruminococcus]_torques_[C] [1376] 0.64/1.5E−07

Anaerotruncus Anaerotruncus mOTU [1529] 0.60/1.0E−06

Fig. 2 Distribution of the metabolite importance (MI) (a), specific growth advantage (SGA) (b), and metabolite response (MR) scores (c) in CRC
and non-CRC bacteria. Each dot represents a GSMM, CRC genera are shown separately while non-CRC genera are combined
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on a species-/strain-specific level instead of a genus
level. For this purpose, we mapped taxonomic marker
genes from the bacterial genomes of our database of
GSMMs to the same database used to identify CRC
enriched bacteria (see [28] and “Methods” section). This
allowed us to identify the closest mOTUs for each of
our GSMM and evaluate if the same mOTU was also
identified in any of the stool samples from the meta-
analysis [28]. We then restricted our analysis to bacteria
that were found in these samples because we assumed
that they represented gut bacteria. Next, these mappings
also allowed us to define whether the closest mOTU for
each GSMM was found to be consistently enriched in
CRC across different studies (adj. p < 1.0E−5 and AUC >
.50, Additional file 2: Table S2). Within the subset of hu-
man gut bacteria, i.e., those that were identified in stool
metagenomes, we found that mOTUs enriched in CRC
across studies are also enriched by the MI, SGA, and
MR scores (Table 3). Together, these results indicate
that the observed response of CRC bacteria to CRC me-
tabolites was not confounded by enrichment for gut bac-
teria and is still observed at finer taxonomic resolution.
To further corroborate this finding, we tested whether

within the gut bacteria, the mOTUs that are depleted in
CRC also have significantly lower MI, SGA, and MR
scores than the group of enriched mOTUs. Depletion in
CRC was defined in more permissive terms than enrich-
ment, since no mOTUs met the significance threshold
of adjusted p < 1.0E−5 (Additional file 2: Table S2). In-
stead, we used a cutoff of adjusted p < 5.0 E−2. As ex-
pected, all three scores were significantly smaller in the
group of depleted bacteria compared to the enriched

bacteria (p = 1.0E−5, p = 3.5E−2, and p = 6.2E−4, re-
spectively, for the MI, SGA, and MR scores, Mann-
Whitney U test).
Next, we restricted our analysis only to the subset of

models derived from the AGORA study (Additional file
2: Table S2). The models from this study were generated
for > 700 bacteria identified as gut isolates [66]. We used
this group in an independent test to rule out the possi-
bility that our scores were enriching for gut bacteria ra-
ther than for CRC bacteria. Results on this subset and
on the subset identified from metagenomes as gut bac-
teria above were similar to the results on the full data-
base (Table 3, detailed scores are available in Additional
file 2: Table S2). These results confirm that the observed
enrichment for CRC bacteria was not an indirect effect
of enrichment for gut bacteria.
All results described so far were obtained using the

basal gut environment predicted by our MAMBO algo-
rithm (see “Methods” section and ref [65]). We evaluated
if the choice of alternative in sillico metabolic environ-
ments would provide similar results. For this purpose,
we used two alternative basal environments derived from
the AGORA study [66] referred to as the Western diet
and the high fiber diet. We reproduced all our in sillico
tests with these alternative basal environments instead of
the MAMBO environment. For all conditions, the MI
score was still significant and showed significant enrich-
ment of CRC bacteria (Table 3). The SGA score no lon-
ger showed significant enrichment of CRC bacteria
when the alternative diets were used, suggesting that the
SGA score depends more strongly on the choice of basal
environment than the MI score (Table 3).

Fig. 3 Distribution of important metabolites within CRC and non-CRC bacteria. Each cell is colored according to the fraction of models that
require the metabolite for biomass production
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Discussion
Changes in the CRC metabolome
Colorectal tumors change the local metabolic environ-
ment of the intestine. When a tumor forms, the mucosal
barrier becomes impaired, allowing metabolites to diffuse
into the intestinal lumen. The change in metabolite com-
position and reduced mucosal barrier allows opportunistic
pathogens to colonize tumor sites in some cases leading
to secondary infections and sepsis [11, 68]. For example,
the opportunistic bacterium Streptococcus gallolyticus
subsp. gallolyticus causes infections in CRC-patients [68],
potentially due to growth advantages at the tumor site
[69] and a specific subset of virulence factors [70]. Other
site-specific alterations in the CRC tumor-site include
changes driven by inflammation and by the Warburg me-
tabolism that causes shifts in pH and oxygen concentra-
tion in tumors relative to normal mucosal tissue [71].

Modeling metabolite response of CRC bacteria
These shifts in the tumor microenvironment facilitate
the outgrowth of CRC passenger bacteria, contributing
to the assembly of a specific CRC tumor microbiome
[11, 72, 73]. Although many factors contribute to the
specific CRC tumor microbiome, the metabolome was
predicted to be a dominant factor that may account for
many of the observed shifts in microbiome community
profiles [9]. We have previously shown that the micro-
bial abundances in four different human body sites can
be linked to the environmental metabolome by in silico
metabolic modeling [65]. Here, we extended our model-
ing approach and showed that the modeled metabolic
capacity of bacteria can be used to predict their specific
response to metabolic changes in the environment. To
do this, we developed three different scores to quantify
the effect of specific metabolites on bacterial growth,
that exploit GSMMs of different bacteria. We show
that these scores significantly prioritize GSMMs of
CRC bacteria over non-CRC bacteria, suggesting that
the responses to tumor-associated metabolites explain
persistent differences in the gut microbiome of CRC
patients relative to healthy controls. In the present
study, we only associated bacterial response to metab-
olites that have been found to be enriched in CRC,
since these were by far the most representative set of

Fig. 4 Cumulative weight distribution W of bacteria ranked by the
MI (a), SGA (b), and MR (c) scores. Each increase in W is linked to a
colored dot and corresponding vertical line in the color strips,
representing GSMMs belonging to a CRC genera. Non-CRC bacteria
are represented by a black vertical line and an associated decrease
in W. Null 1 indicates the 95 percentile of the maximum cumulative
weight distribution in 104 randomizations of the model rankings in
the list. Null 2 is the 95 percentile of the maximum cumulative
weight distribution in 104 weighted randomizations of the CRC-
association of genera
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metabolites. The only metabolites that were found by
3 or more studies to be depleted in CRC were glu-
tamine, glucose, and myoinositol (Table 1) and we
thus could not produce meaningful comparisons with
metabolite depletion as we did with the 26 CRC
enriched metabolites.

Bacterial drivers and passengers of CRC
As defined in 2012, CRC passengers are bacteria that re-
spond to changes in the tumor environment and are
thus enriched in CRC tumor tissue [11]. CRC drivers are
bacteria that possess specific oncogenic properties that
may drive tumorigenesis. Examples include Enterotoxi-
genic Bacteroides fragilis (ETBF) that is able to degrade
and colonize the mucus layer, causing inflammation and
increased cell proliferation and colibactin-producing
Escherichia coli that can cause double-strand breaks in

DNA (reviewed in [74–76]). While the current analysis
identified CRC passengers, we cannot draw any conclu-
sions about CRC drivers. In fact, some of the passenger
bacteria detected herein have been shown to contain
mechanisms that drive tumorigenesis, or at least have a
role in preparing and sustaining their own niches. On
the one hand, Fusobacterium nucleatum is among the
bacteria that specifically benefit from CRC metabolites.
On the other hand, Fusobacterium is also hypothesized
to drive tumorigenesis via its unique adhesion protein
(FadA) binding to E-cadherin and activating beta-
catenin signaling which in turn regulates inflammatory
and potentially oncogenic responses. In our current ana-
lysis, F. nucleatum are among the bacteria that most
strongly benefit from the CRC metabolites and may thus
be regarded as “driving passengers” [77]. Apart from a
few described examples, further research is needed to

Table 3 Enrichment for CRC bacteria in different basal environments and model subsets

Basal environment Model subset Score Max W CRC enrich.
p value
(null 1)

CRC enrich.
p value
(null 2)

Mann-Whitney
U statistic

Mann-Whitney
p value

Adj. p value#

MAMBO All MI 0.2813 1.00E−04 1.00E−04 109720.5 1.79E−08 6.90E−08

SGA 0.2620 1.00E−04 1.00E−04 103113 2.20E−05 4.57E−05

MR 0.3255 1.00E−04 1.00E−04 107855.5 1.14E−07 3.85E−07

Gut MI 0.3995 1.00E−04 1.00E−04 10156 2.09E−05 4.57E−05

SGA 0.3330 1.00E−04 1.00E−04 8694 1.98E−02 2.97E−02

MR 0.4258 2.00E−04 1.00E−04 9491 5.28E−04 1.02E−03

AGORA MI 0.4302 1.00E−04 1.00E−04 43996 1.53E−15 1.38E−14

SGA 0.3446 1.00E−04 1.00E−04 38949 1.61E−07 4.83E−07

MR 0.4423 1.00E−04 1.00E−04 42642 2.51E−13 1.69E−12

Western diet All MI 0.3193 1.00E−04 1.00E−04 113411.5 1.44E−10 6.48E−10

SGA 0.1035 9.16E−02 9.74E−02 86876.5 2.73E−01 2.73E−01

MR 0.1327 2.17E−02 1.94E−02 91885 3.82E−02 5.16E−02

Gut MI 0.4713 1.00E−04 1.00E−04 10493 2.57E−06 6.31E−06

SGA 0.2607 1.36E−02 1.59E−02 8417.5 4.27E−02 5.49E−02

MR 0.3544 5.00E−04 3.00E−04 9265.5 9.35E−04 1.68E−03

AGORA MI 0.4231 1.00E−04 1.00E−04 44395.5 2.82E−16 3.81E−15

SGA 0.1744 8.80E−03 8.70E−03 31390.5 1.16E−01 1.36E−01

MR 0.2412 1.00E−04 1.00E−04 34690.5 1.01E−03 1.70E−03

High-fiber diet All MI 0.3179 1.00E−04 1.00E−04 113424 1.41E−10 6.48E−10

SGA 0.1117 6.62E−02 6.56E−02 86914 2.66E−01 2.73E−01

MR 0.1274 5.90E−02 2.91E−02 91129 4.77E−02 5.85E−02

Gut MI 0.4713 1.00E−04 1.00E−04 10495 2.53E−06 6.31E−06

SGA 0.2273 3.93E−02 3.78E−02 7782 1.98E−01 2.14E−01

MR 0.2831 7.70E−03 7.10E−03 8384 3.10E−02 4.41E−02

AGORA MI 0.4197 1.00E−04 1.00E−04 44399.5 2.77E−16 3.81E−15

SGA 0.1641 1.69E−02 1.71E−02 30795 1.88E−01 2.12E−01

MR 0.2102 1.50E−03 1.90E−03 33887.5 3.59E−03 5.70E−03
#adjusted p values <0.05 were considered significant
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chart the mechanisms allowing the different constituents
of the human microbiome to promote tumor initiation
and progression.

Our general method can be used in other environments
We developed three different scores that integrate
GSMMs with lists of metabolites to quantify the effect of
specific metabolite enrichment on bacterial growth. Our
results show that these scores are able to identify which
bacteria respond to the metabolic change. As such, the
metabolite importance (MI score), specific growth advan-
tage (SGA score), and metabolite response (MR score) can
be applied to answer similar questions in other biomes. It
should be noted that our analysis was only possible be-
cause we obtained and carefully curated lists of CRC-
associated metabolites (Table 1) and bacteria (Table 2).
Moreover, we exploited a comprehensive database of
> 1500 quality GSMMs from the human microbiome that
we developed previously [65]. We obtained better results
particularly for the SGA score when using a basal growth
environment that was predicted from stool metagenome
abundance profiles [65] compared to environments pre-
dicted from general diets [66]. While these prerequisites
may be difficult to obtain for highly under-sampled envir-
onmental biomes, questions about the effect of metabo-
lites on the microbiome in the human system may be
more readily answered using our setup. For this reason,
we have made a significant effort to make our methods ac-
cessible with a detailed online instruction guide, provided
as an ipython notebook that contains the information to
fully reproduce our results and apply the method to simi-
lar systems (see “Methods” section).
Our prediction of CRC passengers proved to be con-

sistent with metagenomic enrichment data and is not in-
compatible with many of the other aforementioned
specific mechanisms that explain the relation of individ-
ual bacteria with CRC. A possible future extension could
be to include quantitative information about microbes
and metabolite abundances, rather than the qualitative,
binary classification that we used here (i.e., bacteria and
metabolites are CRC-associated or not). In the present
study, we integrated information from multiple publica-
tions and thus could only provide qualitative definitions
of enriched metabolites and bacteria. Nevertheless, the
highly significant detection of specific CRC bacteria (Fig.
4) suggests that our approach could also be applied to
microbiome studies where quantitative metagenomic
and metabolomic data were measured.

Conclusion
In this study, we have shown that our current under-
standing of bacterial metabolism, based on genome an-
notations, allows us to explain the association of
bacterial passengers to CRC as being driven by the

availability of specific CRC metabolites. Thus, our
models and computational experiments suggest that
metabolic alterations in the cancer environment are a
major component in shaping the CRC microbiome. Our
method allowed us to identify likely CRC metabolic pas-
sengers which are consistent with experimental studies
and indicated that most of the CRC enriched genera are
also favored specifically by CRC metabolites and the
CRC tumor-like metabolic environment. Beyond the
specific question of CRC metabolic passengers, we have
provided an example of the systematic use of GSMMs to
predict and understand the microbial abundance pat-
terns that are measured by metagenomics, by using
mechanistic models that link bacterial metabolism to
their metabolic environment.

Methods
Genome-scale metabolic models
We used a database consisting of 1544 GSMMs of
human-associated microbes from our MAMBO study
[65] that includes 763 AGORA human gut GSMMs [66]
(Additional file 2: Table S2). These models were built
using the ModelSEED pipeline [78] and were tested by
flux balance analysis (FBA) [79]. In our previous study
[65], gene annotations were used to predict the meta-
bolic reactions that were encoded by each genome. Here,
these metabolic reactions were represented by their stoi-
chiometric coefficients in a matrix (S) exhibiting reac-
tions as columns and metabolites as rows. The null-
space of S (Sv=0) was used as a proxy for the equilib-
rium reaction rates (v), and because S does not have a
unique solution, specific values of v were determined by
maximizing a biomass reaction (z) by linear program-
ming. To assure that each model could effectively pro-
duce biomass, parsimonious gap-filling was used and a
minimal set of reactions that were potentially missing
from the models were included.

CRC metabolites
To identify enriched or depleted metabolites in the tumor
sites of CRC patients, we surveyed metabolomics litera-
ture. We identified publications with experimental data
cited in a review about metabolomics of CRC [80] and
additionally reviewed more recent publications. In total.
we evaluated 35 publications that mentioned metabolo-
mics and CRC in the abstract and manually inspected
these studies for lists of metabolites that were measured in
tumor and healthy tissue [30–64]. We found 29 metabo-
lites to be reported as differentially abundant in tumor vs.
healthy tissue and present as such in 3 or more publica-
tions (Table 1). We used the enriched metabolites to de-
fine the CRC tumor microenvironment.
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Basal gut environment
For all experiments described in the main text, we used a
basal gut environment predicted by our MAMBO algo-
rithm based on 39 stool metagenomes [65]. This environ-
ment was used as proxy for the metabolite concentration
that is available for bacteria in the colon and rectal lumina
and is defined in terms of relative uptake-rate limits for
GSMMs in mmol.gDW−1.h−1. Additionally, we tested two
other basal environments representing proxy for the meta-
bolic composition of the Western diet and high-fiber diet
[66]. The formulation of the basal environments is avail-
able in Additional file 1: Table S1.

Importance of CRC metabolites
To rank bacteria by their dependence on CRC metabo-
lites, we defined a metabolite importance score (MI). For
this purpose, we first simulated the growth of each
GSMMs in the basal environment (obtaining the basal
biomass flux z) and then removed each of the basal en-
vironment metabolites by blocking their import reac-
tions in the model, leading to a new biomass flux z’. If
the growth effect z’/z for a given GSMM fell below a
threshold value 0.3; i.e., a more than 70% reduction in
predicted growth rate (other threshold values yielded
similar results, not shown), the metabolite was consid-
ered important for the GSMM. For each GSMM, this re-
sulted in a binary vector containing one component for
each metabolite present in the basal diet. This was given
the value of 1 if the metabolite was important (i.e., re-
moval decreased growth) or 0 otherwise (Additional file
3: Table S3). These vectors were compared to the CRC
metabolites (Table 1) using the Ochiai coefficient [67],
resulting in a MI score that we used to rank all bacterial
GSMMs. High-ranking bacteria depended strongly on
CRC metabolites, and we interpreted these bacteria as
potential CRC passengers.

Growth benefit on CRC metabolites
Next, we evaluated whether bacterial strains responded
to the increased availability of the combination of all 26
CRC metabolites in their environment simultaneously.
Because GSMMs generally show enhanced growth rates
in richer environments, we first created an expected
null-distribution of growth responses upon the addition
of random metabolites. To do this, we selected one
thousand random sets of 26 metabolites from the basal
environment and changed their uptake rates to virtually
unconstrained values (104 mmol.gDW−1.h−1). Each time,
we compared the new biomass flux z(random) to the
biomass flux after supplementing the GSMM with 26
unconstrained CRC metabolites z(CRC). This allowed us
to calculate a specific growth advantage score (SGA) de-
fined as the proportion of randomizations whose

z(random) was inferior to z(CRC). Finally, all bacteria
were ranked by this SGA-score, and the bacteria at the
top of this list were interpreted as exhibiting a growth
benefit that is specific to CRC-like conditions.

Combined score
Both the MI and SGA scores provided scores between 0
and 1. We combined both scores into a summarized
score that accounts for possible statistical dependence
between the scores, we refer to this score as the metab-
olite response score (MR). For this purpose, we used the
Ali-Mikhail-Haq copula function [81], which accounts
for the correlation between the two scores within the
range that we observed (see “Results” section).

Enrichment of CRC-associated bacteria
In order to identify bacterial species that are differen-
tially abundant in CRC patients compared to healthy
controls, we integrated data from five metagenomic
case-control studies [24–28]. For consistency in the bio-
informatic analysis, raw sequence data were jointly qual-
ity controlled and taxonomically profiled using the
mOTU profiler version 2 [82, 83]. Read counts were
transformed into relative abundances to account for li-
brary size differences between samples. Microbial species
that were not detected consistently (maximum relative
abundance not exceeding 10−3 in at least 3 studies) and
the fraction of unmapped reads were discarded. Signifi-
cance of differential abundance was then tested for each
remaining species using a non-parametric permutation-
based Wilcoxon test that was blocked for study (and in
the case of [26] also for additional metadata indicating
sampling before or after diagnostic colonoscopy) as im-
plemented in the R coin package [84]. This blocked test
accounts for differences between studies (e.g., due to dif-
ferent DNA extraction protocols or geographic differ-
ences in microbiome composition) by estimating the
significance based on permutations of the observed data
within each block.
For a comprehensive analysis, we unified this list to

genus level (Table 2) since this was the lowest taxo-
nomic level that we could unambiguously match species
and mOTUs found by metagenomics to be enriched in
CRC and the strains for which we had GSMMs. We fur-
ther attempted to classify our strains using the same set
of marker genes that was used to profile metagenomic
samples. Each strain was assigned to its closest mOTU
present in the mOTU profiler version 2 database [82,
83]. We repeated the experiments using mOTU level
classification instead of genus-level classification with
the mOTUs that were possible to match with bacterial
species identified in the metagenome analysis. Results
are reported in the main text as the subset formed by
gut bacteria (Table 3).
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Significance of ranking
To assess the significant enrichment of measured CRC
bacteria among the ranked lists, we used an approach
similar to gene-set enrichment analysis [85, 86]. Briefly,
we generated a cumulative weight distribution (W),
which was defined by as the normalized fraction of posi-
tives minus the fraction of negatives observed in a list,
versus the position in the list. High values are obtained
if all positives are observed early in the list, in which case
the fraction of positives approaches 1 before negatives
are seen. Positives were defined as GSMMs of bacteria
that were found to be enriched in CRC, negatives were
all the other bacteria. We summarized W by its max-
imum value and used Monte Carlo simulations to assess
the likelihood of obtaining max(W) by chance. To evalu-
ate if max(W) is significant, we generated two empirical
null distributions by (i) reshuffling the order of bacteria
ten thousand times and (ii) selecting 10,000 random
subsets of 13 genera from our bacteria database
weighted by the number of species in each genus while
keeping the ranked lists in order. For the lists ranked by
the metabolite overlap and biomass fold-change scores,
we computed empirical p values for both null hypoth-
eses (Fig. 4).

Data availability
All the data used in this study and raw results used in gen-
erating the tables and figures are made available at https://
github.com/danielriosgarza/bacterial_passengers.py. Add-
itionally, we provide a detailed Ipython notebook that con-
tains the scripts used in this study as well as a thorough
explanation of the computational methods we used. This
script can be accessed from the GitHub repository and
can be used to reproduce all data figures and tables.
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