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PERSPECTIVE

A perspective on multi‑target drug 
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Abstract 

Diseases of infection, of neurodegeneration (such as Alzheimer’s and Parkinson’s diseases), and of malignancy (can‑
cers) have complex and varied causative factors. Modern drug discovery has the power to identify potential modula‑
tors for multiple targets from millions of compounds. Computational approaches allow the determination of the asso‑
ciation of each compound with its target before chemical synthesis and biological testing is done. These approaches 
depend on the prior identification of clinically and biologically validated targets. This Perspective will focus on the 
molecular and computational approaches that underpin drug design by medicinal chemists to promote understand‑
ing and collaboration with clinical scientists.
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Introduction
Drug discovery in the 21st century has the disadvantage 
that it is very difficult to get new compounds into the 
clinic. The diseases where cures or at least treatments 
are sought are complex ones involving many potential 
defects in the structure, function, or regulation of the 
cells involved. Major targets that will be considered here 
are Alzheimer’s (AD) and Parkinson’s (PD) diseases of 
neurodegeneration, and cancer. Despite the complexity 
of causative factors that can lead to these disease states, 
the tools of modern drug discovery have the power to 
cover millions of compounds or fragments and determine 
their potential association with a target before specific 
chemical synthesis  and biological testing is done. This 
perspective will focus on the molecular and computa-
tional approaches that underpin drug design by medicinal 
chemists. These approaches require the prior identifica-
tion of clinically and biologically validated targets, and 
subsequent experimental testing both in vitro and in vivo. 
The success of drug design for complex diseases depends 
on an interdisciplinary and collaborative approach, and 

on scientists and clinicians who are willing to communi-
cate and work together throughout the process.

Designing multi‑target drugs for complex diseases
The transition from the single‑target to the multi‑target 
concept for drug design
Traditionally drugs have been designed with the aim of 
targeting a single biological entity, usually a protein (the 
so-called “on-target”), with high selectivity to avoid any 
unwanted effects arising from mis-targeting other bio-
logical targets (“off-targets”). On this basis, the concept 
of drugs interacting with multiple targets has long been 
flagged as undesirable, as it was inherently associated 
with adverse side effects. However, the complexity of the 
current incurable pathologies has clearly demonstrated 
that such single-target drugs are inadequate to achieve a 
therapeutic effect [1, 2]. In parallel, we have learned that 
molecules hitting more than one target may possess in 
principle a safer profile compared to single-targeted ones 
[1, 2].

Building on such accumulating evidence, the concept 
of multi-target drugs has made rapid and spectacular 
progress from being an emerging paradigm when first 
enunciated at the beginning of 2000 [3–5], to one of the 
hottest topics in drug discovery in 2017. Indeed, in the 
years, these concepts have triggered the interest of the 
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drug discovery community both in academia and phar-
maceutical companies to such a point that a plethora of 
multi-target drugs are already available on the market.

The analysis of FDA‑approved new molecular entities 
(NMEs) from 2015 to 2017
As a clear proof of such translational success of multi-
target drugs into the clinic, we have performed an 
analysis of the US Food and Drug Administration (FDA)-
approved new molecular entities (NMEs) from 2015 to 
2017 (status September 2017), following a similar analy-
sis (from 2000 to 2015) made by Lin et  al. [6]. The 101 
new NMEs on FDA.gov approved over this triennium 
were classified into NME categories (small molecules, 
biologics, therapeutic combinations and diagnostics). By 
using the DrugBank database, which compiles informa-
tion on approved drugs, together with their target(s) and 
mechanism(s) of action (MoA), the small molecules have 
been further analyzed and subdivided into single-target 
and multi-target drugs. As depicted in Fig.  1, biotech 
drugs (proteins, peptides and monoclonal antibodies) 
represent 31% of the novel NMEs, nearly approaching the 
number of single-target drugs (34%). This clearly reflects 
the recent increased pharma interest in discovery of bio-
logics [7], which build on the premise of a personalized 
treatment [8].

Notwithstanding the increase of approved biologics in 
recent years, small molecules, both single-targeted and 
multi-targeted ones, continue to contribute. Although 
the number of single-target small molecules (34%) is still 
greater than that of multi-target drugs (21%), the latter 
keeps increasing compared to previous years (16%) [6, 9]. 
However, if we broaden our view and reason in terms of 
general polypharmacology, we can add together the 21% 
of multi-target drugs and the newly approved therapeu-
tic combinations (10%). In this way, the total percentage 
(31%) approaches that of single-target drugs (34%). This 
unequivocally supports the attractiveness of polyphar-
macological strategies, especially in certain therapeutic 
areas, such as anti-infective, nervous system, and anti-
neoplastic agents (Fig. 2).

Examples of multi‑target drugs for complex diseases
With regards to anti-infectives, daclatasvir is one of the 
last approved (2015) non-interferon based agents against 
hepatitis C virus (HCV), developed to selectively target 
one of the key viral proteins involved in the HCV repli-
cation, i.e. nonstructural 5A (NS5A) phosphoprotein 
[10]. Despite the high effectiveness, several combination 
therapies have been approved since January 2016 because 
drug-resistance is an already established phenomenon 
[10]. These combinations were all conceived based on the 
prototypical polypharmacology hypothesis that targeting 

two different nodes of HCV replication may exhibit 
superior antiviral activity compared to single drugs and 
reduced resistance [11]. These combinations include: (i) 
elbasvir, a NS5A inhibitor, combined with grazoprevir, a 
NS3/4A protease inhibitor, (ii) the combination of sofos-
buvir, a nucleotide analogue NS5B polymerase inhibitor, 
and velpatasvir, a NS5A inhibitor, and (iii) the fixed-dose 
combination of glecaprevir, an NS3/4A protease inhibi-
tor, and pibrentasvir, an NS5A inhibitor [11].

Nervous system application of polypharmacology 
has led to approval of four multi-target drugs. Recently, 
an increased number of multi-target drugs have been 
developed to treat schizophrenia and major depres-
sive disorders [12–14]. The main strategy for treatment 
of schizophrenia is based on antagonizing dopamine 
D2, serotonin 5-HT2A and α1-adrenergic receptors [15]. 
Incorporating effects at these broad targets has the objec-
tive of either improving antipsychotic efficacy or mitigat-
ing adverse effects. With these concepts in mind, starting 
from the arylpiperazine substructure as suitable scaffold 
for achieving a fine balancing of D2, 5-HT1A and 5-HT2A 
receptors activities, the prototype of the third-generation 
of antipsychotics, aripiprazole, launched into the mar-
ket in 2015, was the first designed serotonin-dopamine 
activity modulator (SDAM). However, it also displayed 
unwanted side effects, probably arising from a sustained 
interaction with post-synaptic D2 receptors. Thus, brex-
piprazole was licensed on October 2015 as a novel D2 
and 5-HT1A partial agonist, with less intrinsic activity 
at D2 receptors and more balanced activities at 5-HT2A, 
5-HT1A, and α1B receptor subtypes than aripiprazole [15].

Fig. 1  Distribution of the new molecular entities (NMEs) approved 
from 2015 to 2017 (status September 2017), organized according to 
the different classes of NMEs
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Another excellent example is cariprazine, approved by 
the FDA in September 2015 for the treatment of schiz-
ophrenia and bipolar disorders. Similarly to the above 
mentioned SDAM, cariprazine shares the arylpipera-
zine substructure linked to an alkyl-N′,N′-dimethyl urea, 
which determines a profile of partial agonism at D2 and 
D3 receptors [16]. This mechanism is innovative because 
many other antipsychotics are only D2 and 5-HT2A par-
tial agonists (see above).

Concerning neurodegenerative disorders, the polyp-
harmacological approach looks particularly promising, 
given the complexity and multifactorial nature of such 
diseases and their unknown etiopathogenesis [17, 18]. 
For example, rasagiline, approved in 2006 for neurode-
generative diseases, displayed a multi-target profile. The 
first new chemical entity approved for neurodegeneration 
in over a decade is a multi-target drug called safinamide. 
Safinamide was originally developed as anticonvulsant 
agent [19] and approved in March 2017 as an adjunc-
tive treatment for PD thanks to its particular multi-tar-
get profile. It combines dopaminergic effects, including 
selective and reversible MAO-B and dopamine reuptake 
inhibition, which are largely responsible for its effects on 
motor symptoms, along with non-dopaminergic prop-
erties, i.e. blockade of voltage-dependent Na+ and Ca2+ 
channels and consequent inhibition of glutamate release 
that is thought to confer neurorescue and neuroprotect-
ant effects [20].

Apart from schizophrenia and neurodegeneration, 
another key disease that would benefit from polyphar-
macological strategies is cancer, where several aber-
rant proteins and pathways concur to initiate tumor 

growth and to facilitate its progression. Similarly to the 
above mentioned diseases, redundancies and complexi-
ties of biological pathways often lead to compensation 
and resistance to targeted therapies [21–23]. Among 
the different classes, multi-kinase inhibitors emerged 
as the most exploited anti-cancer polypharmacologi-
cal approach, followed by pan-inhibitors of histone dea-
cetylases (HDACs). Lenvatinib in the first group is a 
reversible multi-tyrosine kinase receptors inhibitor that 
modulates the activities of vascular endothelial growth 
factor receptors (VEGFR) 1–3, fibroblast growth factor 
receptors (FGFR) 1–3, RET, mast/stem cell growth fac-
tor receptor kit (SCFR), and platelet-derived growth fac-
tor receptor (PDGFR) beta, all implicated in pathogenic 
angiogenesis, tumor growth, and cancer progression [24]. 
Given the broad activity profile, it was approved for the 
treatment of radioiodine-refractory thyroid cancers. Ner-
atinib is another recently approved multi-tyrosine kinase 
inhibitor with an irreversible mechanism of action, which 
exhibits antitumor activity by targeting epidermal growth 
factor receptor (EGFR), and human epidermal growth 
factor receptor 2 (HER2), both highly expressed in sev-
eral carcinomas. Taking advantage of the high sequence 
identity shared by EGFR and HER-2 (82%) in the ATP 
domain, the design of such dual-inhibitor bearing a 
Michael acceptor warhead was undertaken. Computa-
tional studies guided the optimization of this molecule 
so that its warhead is positioned suitably to interact with 
Cys 773 of EGFR and the analogous Cys 805 of HER-2 
[25].

Another well-explored class of multi-kinase inhibitors 
is represented by dual inhibitors of cyclin-dependent 

Fig. 2  The 21 multi-target drugs and 10 therapeutic combinations approved in 2015–2017 organized according to their Anatomical Therapeutic 
Chemical (ATC) Classification System
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kinase (CDK) 4 and 6. Starting from the pyrido[2,3-d]
pyrimidin-7-one scaffold as template for the inhibition 
of a broad cross-section of kinases, including pan-CDKs 
inhibitors which have been discontinued due to the 
associated toxicity, through a combination of chemi-
cal screening and optimization, it was found that the 
modification at the C2-position provides inhibitors with 
exquisite selectivity for CDK 4/6. Among them, palboci-
clib, abemaciclib and ribociclib were approved by FDA as 
breast cancer therapy in this time frame [26].

Midostaurin, a semi-synthetic derivative of the pan-
kinase inhibitor staurosporine, is a well-known multi-
kinases inhibitor, approved on April 2017 for the 
treatment of those adult patients with newly diagnosed 
acute myeloid leukemia that have a specific variant of the 
FLT3 gene. It was shown to inhibit the activity of protein 
kinase C alpha (PKC alpha), VEGFR2, KIT, PDGFR and 
WT and/or mutant FLT3 tyrosine kinases [27].

Regarding the hot topic of epigenetic polypharmacol-
ogy [28], panobinostat is a cinnamic hydroxamate-based 
histone deacetylase inhibitor (pan-HDAC inhibitor) 
approved on February 2015 by the FDA for the treatment 
of multiple myeloma in combination with bortezomib (a 
proteasome inhibitor) and dexamethasone. Nonselective 
inhibition of both classes (I and II) of HDAC enzymes 
resulted in increased acetylation of histone proteins, 
leading to cell cycle arrest and/or apoptosis of cancer 
cells. However, it is interesting to note that its broad 
activity profile against HDACs, which depends on zinc 
chelation for activity, lacks therapeutic efficacy as mon-
otherapy in patients with multiple myeloma, whereas 
synergistic activity has been demonstrated when used in 
combination with other drugs targeting different hubs of 
the tumor network [29]. This lends support to the con-
cept that the network disruption approach is highly valu-
able in anti-cancer drug discovery.

Current challenges of rational design of multi‑target drugs
From these data, we can conclude that the time is ripe 
to extend applicability of multi-target drugs and poly-
pharmacology across different therapeutic areas. How-
ever, how to develop them in a rational way is still a big 
challenge, both in terms of target selection and small 
molecule discovery [30–32]. Regarding the first issue, 
although there is a variety of valuable online resources 
[33–35], it is still a challenge to choose the right combi-
nation of targets for the disease of interest in both multi-
target drugs and therapeutic combinations. It requires 
good understanding of target-disease associations, path-
way-target-drug-disease relationships and adverse events 
profiling [36]. Furthermore, the selection should be based 
on whether or not modulating the selected targets could 

lead to additive or synergistic effects [37]. Particularly, 
additive effects can be obtained when the targets belong 
to the same pathway, whereas synergism can be achieved 
only if the selected targets are located on functionally 
complementary pathways. This means that in both cases 
the effect is attained at lower doses, and consequently a 
better safety profile can be expected with respect to sin-
gle-target drugs [37].

With regards to the second issue, although early 
drugs were discovered serendipitously, multi-target 
compounds are now rationally designed, typically by 
combining two distinct frameworks into a single chemi-
cal entity [38–40], starting from compounds with the 
desired activity towards the targets of interest. Thus, 
multi-target compounds routinely result from the inte-
gration of pharmacophores of selective molecules, either 
already known drugs or drug candidates (Fig.  3). Intui-
tively, pharmacophores featuring similar scaffolds, usu-
ally ring systems, can be fused or merged depending 
on the overlapping degree between the starting frame-
works. Alternatively, if pharmacophores present differ-
ent structural elements required for the interaction with 
each target, they can be conjugated with cleavable or 
non-cleavable linkers, although this strategy often leads 
to molecules with poor drug-likeness properties [41]. In 
all cases, the generation of multi-target compounds is 
typically driven by the nature of the targets, the availabil-
ity of starting frameworks and the chemical tractability. 
Beyond that, the essential requirement of the multi-tar-
get compounds is that each framework retains the ability 
to interact with its specific target [32]. This undoubtedly 
challenging task involves considering structure–activity 
relationships that govern the interaction of the starting 
molecules with their specific targets, and becomes most 
challenging when these targets are only slightly related 
or unrelated (i.e. when they belong to different protein 
families) [32].

Furthermore, establishing the same degree of modula-
tion for each target (i.e. balancing the activities towards 
the targets) and “designing out” unwanted interactions to 
any undesired target (off-target) are critical factors to be 
addressed. The latter aspect is of particular importance 
when designing multi-target compounds directed to 
targets belonging to the same family (e.g., multi-kinases 
inhibitors), but also in the case of shared functional 
domains and/or binding sites across target families [32]. 
Clearly, the rational design of multi-target compounds 
is far from being an easy task, dealing with the crucial 
issues of selecting the right target combination, achieving 
a balanced activity towards them, and excluding activity 
at the undesired target(s), while at the same time retain-
ing drug-like properties.
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The tools to identify hits/leads
Computational approach to ligand discovery and back 
validation of hits by docking
Rational drug design is extensively applied in the search 
for novel agents as an efficient tool for hit identification, 
validation, optimization, and evaluation. Computational 
approaches such as cheminformatics and virtual screen-
ing, pharmacophore development, molecular dock-
ing and molecular dynamics are mainly used to identify 
new agents, define molecular determinants for enhanced 
activities, design and evaluate more efficient drugs with 
improved safety [42].

The structure-based in silico methods use structures of 
ligand-target complexes to identify the structural origins 
of activity and selectivity of related ligands. Ligand-based 
computational methods are able to determine essential 
structural features for a set of bioactive ligands and iden-
tify the structure of potential lead molecules [43]. Novel 
in silico methods that combine ligand and structure 
activity relationship methods provide the most compre-
hensive information about drug-target interaction and 
significantly increase the success rate of the rational drug 
design [44–46]. Different computational approaches for 
ligand discovery have been developed helping to reduce 
late stage attrition and to limit the number of expensive 
and time consuming experiments required to synthesize 
the active novel hits with optimized pharmacodynamic 

and pharmacokinetic properties [47]. The importance of 
wide application of computational methods in drug dis-
covery processes has been extensively reviewed [48, 49].

A commonly used cheminformatics methodology for 
lead identification is similarity-based. Molecular similar-
ity between chemical structures from in silico libraries 
and molecules already known to possess activity against 
protein target is used to predict bioactivity. Unlike the 
simplest approach for single-targets, this method can be 
modified for application on multi-target problems with 
some missing data. In that case, the researchers do not 
base their search on single known active compound, but 
rather on families of compounds [50]. Another modifi-
cation that can be applied to multi-target problems is a 
quantitative method of estimating the probability that a 
certain molecule is associated with the particular bioac-
tivity-scaffold combination defining one specific refined 
family [49]. Subsequently, more complex methods can 
help to make comparable predictions of not only a query 
activity but also molecules with off-target and promiscu-
ous interactions. This approach was successfully imple-
mented for the identification of performance-enhancing 
molecules that should be prohibited in sports [50], and 
for predicting multi-target bioactivities of potential 
polypharmacological compounds for treatment of neu-
rological diseases [51]. Cheminformatics-based tar-
get identification has been applied for identification of 

Fig. 3  Rational design of multi-target compounds
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multi-target ligands intended to interact with MAO-A 
and MAO-B; acetylcholinesterase (AChE) and butyryl-
cholinesterase (BuChE); or with histamine N-methyl-
transferase (HMT) and histamine H3-receptor (H3R) 
[51].

Quantitative structure–activity relationship (QSAR)
Quantitative structure–activity relationship (QSAR) 
modelling, widely used for development of the biological 
and physical properties of new compounds, is a crucial 
initial step in lead optimization to correlate molecular 
structure with biological and pharmaceutical activities 

(Fig. 4). This approach selects molecular descriptors that 
are representative of the molecular features responsi-
ble for the relevant molecular activity. The usefulness 
of these descriptors in QSAR studies has been exten-
sively demonstrated, and they have also been used as a 
measure of structural similarity or diversity [45, 47]. 
The 2D-QSAR methods require lower calculation times 
which allow them to be used mostly as preliminary fil-
ters to reduce the number of compounds that require 
further screening in later stages of drug development. 
The 3D-QSAR approach is used to construct a tridimen-
sional structure of the pharmacophore and to define the 

Fig. 4  Schematic representation of the QSAR workflow
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functional links between the 3D-molecular determinants 
and the activity [47]. The important advantage of QSAR 
modeling is an understanding of the effect of chemical 
structure on activity. When a large amount of experimen-
tal data is available, QSAR makes possible the selection of 
the best candidates for the synthesis of novel compounds. 
Interpolation can be applied, but it must be taken into 
account that extrapolation should not be extended out-
side the scope of the data set. The results obtained in this 
way can be used to understand the productive interac-
tions between functional groups in the molecules and 
those in their target. On the other hand, QSAR modeling 
can have several disadvantages. False correlations can 
occur if the biological data used include experimental 
errors. Sometimes QSAR results cannot select the most 
active compounds with a suitable degree of confidence 
if the underlying experiments do not include a complete 
sense of experimental design [41, 42, 47]. Successful 
examples of the 3D-QSAR approach and related chemo-
informatic methods application are described in compre-
hensive overview about the development of tacrine- and 
donepezil-like multitarget compounds for the treatment 
of AD [44, 52].

Virtual screening (VS)
Virtual screening (VS) is a reliable, inexpensive method 
for identifying leads by providing the screening of whole 
libraries of small molecules in order to get practically 
achievable number of compounds with the structures of 
the highest probability of binding to a drug target [53]. 
VS, a computational method with an essential role in 
drug discovery and an alternative to experimental high 
throughput screening, can be classified into two tech-
niques: ligand-based virtual screening (LB-VS) and struc-
ture-based virtual screening (SB-VS). LB-VS approaches 
are based on analysis of a miscellaneous set of ligands 
in order to define pharmacophore for further score and 
are usually applied when no structural information about 
the target protein is available. SB-VS can be employed 
when the three-dimensional structure of target protein is 
known from X-ray crystallography or nuclear magnetic 
resonance (NMR) spectroscopy. This technique involves 
molecular docking of each ligand into the binding site, 
followed by ranking of the compounds based on their 
likely affinity for the biomolecular target. The techniques 
of VS often require construction of an in silico library of 
compounds which could readily be synthesized once they 
have been selected from a virtual screen [54].

Examples of application of SB-VS in lead discovery 
have been reviewed by Sliwoski et  al. [53]. One of the 
most successful is SB-VS of 0.7 million compounds from 
the database rCat [55] with Hsp90, an important thera-
peutic target for oncology, which allowed identification 

of lead compounds and their development to potent 
inhibitors of Hsp90. In another example, a homology 
model of M1 acetylcholine receptor (mAChR) based on 
crystal structure of bovine rhodopsin, served for VS and 
led to development of a series of novel 1-(N-substituted 
piperidin-4-yl) benzimidazolones [53].

In addition to independent application, the combina-
tion of the structure- and ligand-based VS strategies can 
be also implemented in lead identification studies where 
all available chemical and biological information are 
taken into account. Lepailleur and co-workers applied 
pharmacophore-based virtual screening in combination 
with similarity based clustering method and molecular 
docking to identify dual H3R antagonist/5-HT4R agonists 
[56]. Binding experiments confirmed that benzo[h]-[1,6]
naphthyridine ligands selected by this VS approach exert 
high affinity for both H3 and 5-HT4 receptors. Recently, 
Bottegoni et  al. [57] carried out a VS protocol to iden-
tify fragments that display considerable activity at both 
β-secretase1 (BACE-1) and glycogen synthase kinase 3β 
(GSK-3β), two structurally unrelated enzymes associated 
with the onset of AD.

Perhaps one of the best examples that describe the 
application of computer approaches in drug develop-
ment is ligand discovery for the treatment of AD. A vir-
tual ligand screen was applied for lead optimization of 
two donepezil hybrid compounds that inhibit MAO-A, 
MAO-B, AChE, and BuChE. The experimental results 
confirmed the quality of the 3D-pharmacophores show-
ing that the most potent against all four enzymes were 
the compounds selected by the models from previous 
3D-QSAR analyses as the best candidates [58, 59]. The 
synthesis and pharmacological evaluation of new done-
pezil-indolyl hybrids [58, 59] and donepezil-pyridyl [60] 
as multifunctional drugs for the potential treatment of 
AD, using the multipotent reference compound ASS234 
have also been reported by the same group. Potential for 
development of multiple ligands for dopamine recep-
tors involved in numerous neurological disorders was 
comprehensively reported by Butini et  al. [61]. Rational 
design and a computational approach were used for 
identification of a new series of 1,2,4-triazol-yl-azabicy-
clo[3.1.0]hexanes as a D3 receptor antagonists [62] with 
high in  vitro affinity and selectivity at the D3 receptors. 
On the basis of the profile of aripiprazole a series of new 
antipsychotics with affinities at D3 and D2 receptors were 
developed [63], where compound cariprazine has passed 
clinical evaluation and was approved by the FDA for 
schizophrenia and bipolar disorders in 2015.

The most important advantages of VS compared to 
laboratory experiments or high-throughput screen-
ing (HTS) are capacity for testing large in silico librar-
ies of compounds, price, speed, and safety. The VS 
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analysis can be applied to reduce the initial number of 
compounds before using HTS methods. VS approaches 
allow investigation of compounds that have not yet been 
synthesized or purchased. Some disadvantages of VS 
arise from the fact that VS cannot completely replace 
the experimental HTS which can test the activity of 
hundreds to thousands of compounds against the tar-
get and which provides essential results for further drug 
discovery.

Molecular docking
To confirm all predictions and perform back validation of 
hits, molecular docking studies can be conducted before 
compound synthesis. Molecular docking is a computa-
tional technique that can be used to model the interac-
tion between a small molecule and a target protein at 
the atomic level, subsequently providing the prediction 
of which conformation best fits the protein binding site 
and an estimate of the stability of the ligand–protein 
complexes [64]. The most often used docking software 
packages are CDOCKER [65], GOLD [66] and AutoDock 
[67]. Knowing the location of the binding site beforehand 
allows a small part of the protein to be studied and sig-
nificantly increases the docking efficiency. Generally, 
objective functions are calculated and used to analyse 
possible conformations of ligands, to search for the most 
stable binding modes of the ligands with the target, and 
to optimize the geometry of docked ligand-target com-
plexes. It would be too expensive to generate all the pos-
sible conformations, so various sampling algorithms are 
developed to reproduce the binding mode and to provide 
scoring functions to rank all generated conformations. 
Programs based on different algorithms have made dock-
ing an increasingly important tool in pharmaceutical 
research.

The main advantages of using molecular docking meth-
odology are to analyse the binding modes of the ligand 
with the target, compare binding energies of various 
ligands, and estimate stability of docked ligand-target 
complexes. The objective and scoring functions used in 
docking reflect the fact that binding of a ligand to its tar-
get is partly based on their chemical complementarities 
and physicochemical interactions, and partly on shape 
complementarities, which may well be conformation-
dependent. Flexibility of the target biomolecule can be 
modelled either by performing virtual docking to set of 
rigid protein conformations or by examining dynamic 
ligand-target complexes. A combination of molecular 
docking and molecular dynamic studies can therefore be 
used to select the key interactions between the ligands 
and the targets that must be retained in new molecules.

Examples of successful implementation of the dock-
ing simulations can be illustrated by the studies of novel 
multi-target compounds for neurodegenerative dis-
eases (Table  1). Molecular modeling analysis and dock-
ing simulations, using the program Autodock Vina and 
the Protein Data Bank crystal structures of four enzymes 
(AChE/BuChE/MAO-A/MAO-B), conducted on a series 
of experimentally synthesized donepezil-indolyl hybrids 
[59] and donepezil-pyridyl hybrids [60] revealed that 
compounds DIH15 [59] and DPH14 [60] expressed the 
best observed drug-like characteristics and might be 
considered as a promising compounds for further devel-
opment for the treatment of AD. Moreover, a series 
of docking simulations identified the most promising 
donepezil hybrid [68] as an interesting lead compound 
for the design of novel MTDL for AD therapy, ready for 
experimental validation. The subsequent experimental 
validation of predicted hits is the only indicator of actual 
reliability of implemented computational approach and 

Table 1  The examples of successful docking studies used in ligand discovery for the treatment of AD

Novel ligand Target PDB Ligand-receptor interactions Refs.

Donepezil-inolyl hybrid (DIH15) AChE 1C2B Tyr124, Tyr341, Phe338, Trp286, Tyr72 [59]

BuChe 2PM8 Ser198, Hys438, His438, Trp82, Trp231

hMAO-A 2Z5X Glu215, Val93, Leu97, Ala111, Tyr407, Tyr444, FAD, Cys323

hMAO-B 2V5Z FAD, Leu 88, Pro102, Ile316

Donepezil-pyridyl hybrid (DPH14) AChE 1C2B Trp286, Tyr124, Trp86, Tyr124, Tyr337, Tyr341, Tyr72, Tyr124, Asp74 [60]

BuChe 2PM8 Trp82, Ser198, Leu286, His438, Tyr332

hMAO-A 2Z5X Tyr407, Tyr444, Gln215, Ser209, Val93, Leu97, Ala111

hMAO-B 2V5Z Tyr398, Tyr435, Gln206, Cys172, Pro102, Thr201, Thr314, Ile316

Donepezyl hybrid (compound 5) AChE 1EVE, 2CKM, 1Q83 Trp279, Trp84, Tyr334, Asp72, Tyr70, Phe330 [68]

BuChe 2PM8 Trp79, Phe330, Tyr70, Phe290, Trp279

hMAO-A 2Z5X Phe208, Ile325, Leu97, Leu337, Val210, Cys323, Arg109, Gly110

hMAO-B 2BYB Ile199, Ile316, Tyr326, Arg100, Gly101, Glu84, Leu88
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represents the critical step which should be a standard 
component that follows any ligand discovery process 
[45].

Computational approaches to druggability
Multi-potent inhibitors of cholinesterases and monoam-
ine oxidases were proposed as novel agents for therapy 
of AD and PD [51, 59, 68–71]. Ladostigil and rasagiline, 
drugs acting as inhibitors of monoamine oxidase, are 
propargylamine derivatives able to retard neurodegener-
ation and decrease deposition of Aβ-containing plaques. 
Therefore, these agents were selected for clinical trials as 
novel drug candidates in therapy of AD. The completed 
phase II clinical trials for ladostigil (NCT01354691) and 
rasagiline (NCT00104273) were an important proof of 
concept for MTDL as novel drugs in therapy of AD.

The effectiveness of CNS drugs depends on drug pen-
etration through the blood–brain barrier (BBB) between 
the blood capillaries and brain tissue, the extent of distri-
bution of the drug in the brain, and the drug activities on 
the targets. These multiple factors increase the complex-
ity of CNS drug discovery [72]. The main parameter of 
interest is the unbound brain concentration (Cu,b) of the 
drug. The Cu,b can be directly related to the drug concen-
tration at the target site and thus to in vivo drug efficacy. 
Receptor occupancy is also very important experimental 
descriptor for evaluating target engagement by the exam-
ined drug. Total brain concentration (Cb) is only used as 
measure of the nonspecific binding of the drug to brain 
[73, 74]. The development of quantitative structure-
exposure relationships between molecular parameters of 
drugs and experimental parameters of their brain expo-
sure is now a valuable tool for predicting CNS drug effi-
cacy [74, 75].

The most important physicochemical factors for CNS 
drug penetration in brain and for efficacy are optimal 
lipophilicity, hydrogen bonding, aqueous solubility, pKa, 
and molecular weight of agents. Moderate lipophilicity of 
CNS drugs at physiological pH [cLogP: 2–5, cLogD (pH 
7.4): 2–5] facilitate transport through BBB [76], while 
higher lipophilicity increase plasma protein binding, 
decrease solubility in plasma, and rise metabolic and tox-
icity risks of the agents [77].

Hydrogen bonding parameters, such as hydrogen 
bond donor (HBD) and hydrogen bond acceptor (HBA) 
counts, are dominant descriptors for unbound brain con-
centrations (Cu,b) of agents as crucial measure of in vivo 
CNS drug efficacy [78]. Reducing the HBD and HBA 
counts (HBD < 3; HBA < 7) [72, 76] of a drug is a key step 
applied in optimizing drug brain exposure [79]. Moderate 
lipophilicity (cLogP < 4) together with considerable topo-
logical polar surface area (TPSA 40–80  Å2) are defined 
as optimal combination of parameters for increased 

unbound brain concentrations of CNS drugs [80]. Aque-
ous solubility can also be examined in combination with 
the above molecular properties. Most CNS drugs show-
ing aqueous solubility of more than 100  μM have low 
safety risk [81].

Current CNS drug discovery applies computational 
approaches to propose structural modifications of inves-
tigated compounds for better brain penetration and 
in vivo drug efficacy. Design of CNS drug candidates with 
optimal balance between physicochemical properties for 
efficient brain exposure is now the big challenge in CNS 
drug discovery [82–84]. Thus, future CNS drug design 
will include developments of predictive computational 
methods and exploring of CNS property space for more 
efficient penetration in brain and enhanced efficacy [74, 
75].

Biological validation of leads
The biological side of drug discovery is intimately inte-
grated to the process of high-throughput compound 
assessment. Computational searches are underpinned 
by the prior identification of targets for specific medi-
cal conditions and by the crystal structures or at least a 
detailed pharmacophore derived from in vitro structure–
function studies. The large numbers of hits from compu-
tation searches then require high throughput assessment 
using chemical libraries and assays for the specific tar-
gets. This section will focus on the types of assays used in 
small-scale academic laboratories, but adaptation to high 
throughput and multiplexed methods are now also essen-
tial for translational drug discovery.

Most disease-modifying targets can be divided into 
the three categories: receptors, enzymes, or macromol-
ecule interactions. For all of these assessing binding is the 
primary goal. The initial hits from binding (either com-
putationally or experimentally determined) are then fur-
ther discriminated using more in depth methodologies. 
The biological information is fed back into the chemical 
development to optimize the hits to provide lead com-
pounds to explore for toxicity and for efficacy in higher-
level systems. It is at the hit-to-lead stage that academic 
groups both in medicinal chemistry and in biological and 
medical sciences can make substantial contributions, 
particularly with the improved biophysical technologies 
now available [85, 86].

The initial screening of compounds for biological activ-
ity should ideally give values that can be compared with 
other studies. Limitations on materials or time are often 
restrictive when screening large numbers of compounds. 
Table 2 compares some parameters that can be obtained 
for receptors, enzymes, proteins and cells at the simplest 
level. Measuring effects that result from the association 
of ligand and its target can be more convenient, and is 
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often more informative, certainly for receptors, the first 
of the targets to be considered below.

Receptors
In the last 20 years, advances in cloning and purification 
of membrane-bound proteins and in crystallography and 
other methods of structural determination have enabled 
the structural characterisation of large numbers of recep-
tors. The GPCR family has moved on from a few struc-
tures and use of derived homology models to a database 
of structures and experimental parameters, and full sets 
of expressed receptor subtypes [87–89]. Many small 
commercial labs now offer screening services for aca-
demic researchers. With one GPCR-targeted AD drug 
in use (memantine, a NMDA receptor agonist), GPCR 
ligands are also interesting for multi-target compounds. 
A recent example for AD added a histamine receptor 
antagonist moiety to cholinesterase and monoamine 
oxidase inhibition [90]. However, it is the downstream 
effects and integration of signalling that are important. 
For a given cell, the challenge of understanding the action 
of multiple ligands on many GPCRs linked to multiple 
signaling routes can now be addressed using systems 
biology approaches to deconvolute the spatiotemporal 
phenomena of intracellular signal integration [91].

Designing ligands for GPCRs is not a trivial task. 
Understanding exactly how ligands induce agonism or 
antagonism involves complex allosteric effects [92]. Pro-
gress in this area is currently an exciting area of drug 
design (for example, [93]) producing more specific 
ligands for pharmacological use. The flexibility of the 
GPCR proteins also leads to in vivo complexity. Transient 
dimerization [94], heterodimers [95], and internalized 
megamers [96] are now beginning to be explored both 
to understand the signaling involved in cells and in vivo, 
and to design selective ligands that promote different 
aggregation states.

Enzymes
Since almost half of current drugs work on enzymes, 
evaluation of binding to active sites and the effect on the 
kinetics of the enzyme remain primary in  vitro tools. 
Evaluation of binding to purified enzymes by surface 
plasmon resonance (measuring on- and off-rates and 
affinity constants) is the major high through-put tool but 
isothermal titration calorimetry (ITC, measuring bind-
ing affinity and stoichiometry) is also used. As for recep-
tors, tuning the functional effect of binding is even more 
important. Ligands that compete with the native sub-
strate are relatively easy to design but effective drugs are 
usually non-competitive or have a long residence time 
(slow off-rate) or are irreversible inhibitors of enzyme 
activity [97–99]. Assessment of the enzyme kinetics 
usually uses a specific assay detecting the change in the 
substrate or (better) in the product using absorbance or 
fluorescent detection. Increased sensitivity for an  assay 
can be devised by designing fluorescence probes or by 
coupling the assay product to another (excess) enzyme 
that converts the product into something measurable. 
The desired output in initial compound screening is an 
IC50 value. This is a simple way of comparing a series of 
compounds assayed under the same conditions but does 
not allow comparisons with other series or work using 
other assays. For enzymes, it is much more informative 
to measure defined parameters (such as KD or Ki) that 
can be compared with computed binding constants, and 
can be used in modelling complex pathways. It should 
be noted that the relationship of IC50 to Ki from enzyme 
kinetics depends on the mechanism of inhibition [100].

Cell‑based assays
Designing drugs to combat neurodegeneration has always 
looked to cell survival as an ultimate target because cell 
death is involved both in PD (specifically in the substan-
tia nigra) and in AD (general neuronal loss). Anti-oxidant 

Table 2  Increasing complexity of measurements for assessing new compounds in vitro

Target Parameters Effects

Receptor (R)
L+ R

kon

⇄

koff

LR → conformational change
Multiple effects possible: on, off, partial, etc

Enzyme (E)
Reversible L+ E

kon

⇄

koff

LE

Irreversible L+ E

kon

⇄

koff

LE
kinact
−−→ L− E

Decreases product, prevents depletion of substrate but can be out-
competed by substrate

Inactivated enzyme; recovery depends on normal turnover of 
enzyme (minutes to days)

Protein or DNA (M)
L+M

kon

⇄

koff

LM
Ligand and target often at same concentration in vitro. Outcome of 

binding best measured downstream

Cell target (T)
Lout

cell uptake
−−−−−→ Lin

metabolism?
−−−−−−−→

Organelle uptake
Other binding

→ L+ T

kon

⇄

koff

LT
Concentration at target site unknown
Major effects often easy to assess (e.g., cell death) but mechanism 

can be obscure
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activity, a target of early research, is still seen as desirable 
in compounds such as rasagiline. Further, the propargyl 
moiety of l-deprenyl was found to have neuroprotective 
effects, up-regulating cell survival pathways [101, 102].

Testing effects of chemicals on mitochondrial health 
requires more sophisticated methods. The primary goal is 
to protect ATP generation, best measured in intact cells 
by the respiratory capacity and the response to probes 
of mitochondrial oxidative phosphorylation. Using neu-
ronal or glial cell cultures, the parameters of ATP turno-
ver, proton leak, and maximum respiration rate can be 
determined using a dedicated analyzer (Seahorse XF) to 
measure the oxygen consumption rate (cell respiration) 
and extracellular acidification rate (an indicator of glyco-
lysis) and how these respond to additions of oligomycin 
and respiratory inhibitors [103]. Live cell imaging with a 
chemical probe can be used to determine reactive oxygen 
species (ROS) production (a sign of damaged mitochon-
dria or inhibited electron transport) and mitochondrial 
membrane potential. It is particularly valuable for visu-
alizing mitochondrial movement [104] or morphology 
(MitoRed staining) that is an indicator of mitochondrial 
health or stress. Other biochemical methods augment the 
information, such as mRNA or protein levels of proteins 
involved in mitochondrial movement, biogenesis, fission 
and fusion (for example, [105, 106]). When the target is 
inside mitochondria, designing compounds to deliver a 
drug specifically to mitochondria is possible. Compounds 
with a shielded positive charge will penetrate the mem-
branes but be accumulated in response to the membrane 
potential as shown for the neurotoxin MPP+. This strat-
egy was exploited in the design of a compound to treat 
malignant gliomas [107].

The uncertainty for testing in complex systems is larger 
than for isolated or over-expressed enzymes or receptors, 
so in practice, IC50 values or the concentrations required 
to give a fixed endpoint are used for comparisons within 
a series of compounds. With uptake, compartmentation, 
non-specific binding, and metabolism to contend with, 
defined conditions and suitable statistical tests (and sam-
ple size) are essential.

Extending cell-based assays to organs or model ani-
mals introduces even more complexity, but a study of the 
toxicity of anti-inflammatory drugs showed reasonable 
concordance of toxic/non-toxic compounds in isolated 
mitochondria, rat hepatocytes, and a zebrafish model 
[108]. Metabolism can vary by  species: for example, a 
novel propargylamine compound with pro-cognitive 
properties, N-(furan-2-ylmethyl)-N-methylprop-2-yn-1-
amine (FMPA), was stable when incubated with human 
microsomes but was rapidly metabolized by rat micro-
somal CYPs [109]. For practical testing of large numbers 

of compounds in complex systems, the organ-on-a-chip 
is on the horizon [105]. It will allow deeper probing of 
action in a system close to reality but not yet in vivo, thus 
reducing the need for large numbers of animal experi-
ments, and improving the foundation for the choice of 
compounds for in vivo studies.

Conclusions
There is ongoing need to find more effective drugs to 
treat infection where adaptation of the invader result-
ing in resistance is a problem, to combat cancer where 
advanced understanding of the mechanisms now 
requires selective combinations for specific cancers, and 
to halt progression in AD where only symptomatic thera-
pies are available. Computational methods have enor-
mously increased the rational approach to drug design in 
recent years, building on the molecular structure deter-
minations of previous decades (a process still ongoing for 
membrane proteins such as receptors). QSAR methodol-
ogy has been applied to define molecular determinants 
for ligand effects on the target, to design novel struc-
tures, and to select the best candidates for further stud-
ies. Virtual screening approaches have been used to rank 
the designed compounds with big databases and for lead 
searches in large in silico libraries of compounds. Based 
on the molecular docking, dynamic studies explain bind-
ing, compare stability of the ligand–protein complexes, 
and enable determination of interactions important in 
the binding modes of the ligands.”

In diseases where single-target drugs have failed or 
show severe limitations, multi-target drugs emerge as 
more effective therapeutics. Herein, we have outlined 
current medicinal chemistry approaches that seek the 
initial tools to better define causative mechanisms and 
targets to which novel multi-target drugs should be 
directed. Prediction of the correct targets to combine 
relies on clinical experience from single–target drugs, an 
area that should be boosted considerably by quantitative 
systems pharmacology, a computer-based methodology 
that combines preclinical neuropharmacology, neuro-
physiology and existing clinical information, allowing 
testing of combinations in a virtual human patient [110]. 
Despite the tremendous therapeutic potential of multi-
target drugs, their rational discovery and their develop-
ment still represent a formidable challenge. In addition, 
translational barriers remain a problem either for sin-
gle- or multi-target drugs, as discussed for AD in [111]. 
However, we foresee that new multi-target molecular 
entities, well characterized at the chemical, theoreti-
cal and biological level, offer a path to progress both in 
understanding causes of disease and in defining effective 
small molecule treatments.
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