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Abstract 

Extracellular vesicles (EVs) are membranous vesicles released from almost all type of cells including cancer cells. 
EVs transfer their components, such as microRNAs (miRNAs), messenger RNAs, lipids and proteins, from one cell to 
another, affecting the target cells. Emerging evidence suggests that reciprocal interactions between cancer cells and 
the cells in their microenvironment via EVs drive disease progression and therapy resistance. Therefore, understand-
ing the roles of EVs in cancer biology will provide us with new opportunities to treat patients. EVs are also useful for 
monitoring disease processes. EVs have been found in many kinds of biological fluids such as blood, urine, saliva and 
semen. Because of their accessibility, EVs offer ease of collection with minimal discomfort to patients and are pre-
ferred for serial collection. In addition, they reflect and carry dynamic changes in disease, allowing us to access crucial 
molecular information about the disease status. Therefore, EVs hold great possibility as clinically useful biomarkers 
to provide multiple non-invasive snapshots of primary and metastatic tumors. In this review, we summarize current 
knowledge of miRNAs in EVs in cancer biology and as biomarkers. Furthermore, we discuss the potential of miRNAs in 
EVs for clinical application.
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Introduction
Intercellular communication plays an essential role in 
multicellular organisms and can be mediated through 
direct cell–cell contact or through the transfer of secre-
tory molecules. Recent studies have shown that as a new 
intercellular communication mechanism, small lipid 
bilayer vesicles, termed extracellular vesicles (EVs), play 
key roles in cancer progression and have great potential 
in clinical applications.

EVs are heterogeneous populations of vesicles that 
are secreted by almost all types of cells [1]. EVs include 
exosomes, microvesicles and apoptotic bodies, and 
these subgroups are categorized according to their ori-
gin, size and properties [2] (Fig.  1). Exosomes are small 
EVs (approximately 100  nm) and are derived from the 

intra-cellular endosomal compartment. Exosomes are 
initially formed by a process of inward budding into early 
endosomes to form multivesicular bodies (MVBs). These 
MVBs fuse with the limiting plasma membrane to release 
exosomes into the extracellular space [3, 4]. As exosomal 
markers, members of the tetraspanin family (CD9, CD63 
and CD81), members of the endosomal-sorting complex 
required for transport (ESCRT) complex (TSG101, Alix), 
heat shock proteins (Hsp60, Hsp70, Hsp90) and Rab pro-
teins (Rab27A/B) are recognized [5, 6]. Microvesicles are 
larger than exosomes (100–1000  nm) and are directly 
shed or bud from the plasma membrane in response to 
stimulation [7]. Microvesicles have been reported to be 
enriched in phosphatidylserine and have several lipids 
components [8]. Apoptotic bodies are several microm-
eters in diameter (800–5000  nm) and are released from 
the cell undergoing programmed cell death. Despite 
being classified by the origin of these vesicles, we must 
consider that current techniques cannot clearly distin-
guish each type of EV separately [9]. To avoid confusion, 
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in this review, we use EVs as a general term for all types 
of vesicles in the extracellular milieu, according to the 
recommendation of the International Society for Extra-
cellular Vesicles (ISEV) [10].

Although EVs have long been considered as disposal 
vehicles to eliminate unwanted proteins and biomol-
ecules [11], in 2007, Valadi et  al. identified miRNA as 
well as mRNA inside EVs and showed the potential func-
tionality of these nucleic acids in recipient cells [12]. 
miRNAs are small single-stranded non-coding RNAs 
that negatively regulate gene expression by binding to 
the 3′ untranslated region (3′ UTR) of mRNA, leading 
to mRNA degradation or the inhibition of translation 
[13]. Through this mechanism, miRNAs are involved 
in the progression of various diseases including cancer 
[14]. In 2010, three independent groups published that 
miRNAs in EVs can be transferred to immune cells [15], 
cancer cells [16], and endothelial cells [17] and have func-
tions within these cells. Subsequently, many researchers 
started to focus on miRNAs in EVs, and accumulating 
evidence has demonstrated that EVs transfer miRNAs 
from one cell to another and that their components have 
an effect on cancer progression [18, 19].

In this review, we summarize the potential of miRNAs 
in EVs in clinical applications. First, we describe the con-
tribution of miRNAs in EVs to cancer biology. Next, we 
discuss the possibility of EV-targeting therapy. In the sec-
ond part, we provide an overview of the utility of miR-
NAs in EVs as biomarkers of several major cancers. We 
focus on the problem associated with the present tumor 
biomarkers and discuss the possible uses of miRNAs in 
EVs as diagnostic and prognostic biomarkers.

The role of EVs in the cancer microenvironment
Induction of angiogenesis and endothelial cell 
permeability
Due to the hypoxic condition in tumors, angiogenesis, 
the formation of new blood vessels from an existing vas-
culature, is crucial for cancer cells [20]. Abnormal tumor 
angiogenesis is widely accepted as the major problem in 
cancer due to its contribution to cancer proliferation and 
therapy resistance. In addition, tumor vessels exhibit a 
high permeability, increasing metastatic dissemination 
[21, 22]. Endothelial cells are one origin of tumor vessels 
[23], and accumulating evidence has shown that cancer 
cell communication with endothelial cells via miRNAs 

Fig. 1 The classification of extracellular vesicles. EVs contain various molecules, such as miRNAs, mRNAs, DNAs, proteins and lipids. Exosomes are 
formed by inward budding into early endosomes to form MVBs. This inward budding process involves ceramide-dependent mechanisms or an 
ESCRT. Subsequently, these MVBs fuse with the limiting plasma membrane to release exosomes into the extracellular space. This fusion process is 
dependent on Rab GTPases (e.g., Rab27A/B). MVs are directly shed or bud from the plasma membrane. Apoptotic bodies are released from the cell 
undergoing programmed cell death. Pri-miRNA: primary microRNA
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in EVs is associated with angiogenic activity in tumors 
[24–27].

For example, Zhuang et  al. reported that miR-9-5p in 
EVs from murine cancer cells was delivered into endothe-
lial cells and promoted the migration of endothelial 
cells and angiogenesis. They found that secreted miR-
9-5p reduced levels of suppressor of cytokine signal-
ing 5 (SOCS5) and activated the JAK-STAT pathway 
in endothelial cells, leading to angiogenesis in tumors 
[24]. miR-210 is described as the major hypoxamir [28], 
inducing angiogenesis in endothelial cells and targeting 
Ephrin-A3 [29]. Several reports have shown that miR-
210-3p in EVs also contributes to tumor angiogenesis [25, 
26]. Kosaka et al. showed that the neutral sphingomyeli-
nase 2 (nSMase2) regulates EV-associated miR-210-3p 
secretion and promotes angiogenesis, which affects the 
capacity for metastasis [25]. Cui et al. reported that tis-
sue inhibitor of metalloprotease-1 (TIMP-1) lead to an 
accumulation of miR-210-3p in EVs via activation of the 
PI3K/AKT/HIF-1/miR-210 signaling cascade under nor-
moxic conditions [26]. In another study, Hsu et al. have 
shown that miR-23a-3p in EVs from hypoxic lung cancer 
cell increase not only angiogenesis but also vascular per-
meability. EVs containing miR-23a-3p directly suppress 
prolyl hydroxylase 1 and 2, activating the expression of 
hypoxia-inducible factor-1α in endothelial cells, which 
results in angiogenesis induction. miR-23a-3p also inhib-
its the tight junction protein zonula occludens-1 (ZO-1), 
which has been reported to play a central regulatory role 
in controlling angiogenesis barrier formation [30] and 
thereby increasing vascular permeability [27].

Tumor-derived EVs affect endothelial cells in distant 
microenvironments to form a metastatic site. The blood–
brain barrier (BBB) consists of endothelial cells and 
surrounding cells, and it normally serves as a defensive 
barrier. BBB destruction is one of the key events during 
brain metastasis [31], and previous reports have shown 
that miRNAs in cancer-derived EVs increase endothelial 
cell permeability and induce brain metastasis. Zhou et al. 
showed that metastatic breast cancer-derived EVs con-
tain miR-105-5p, which targets the tight junction protein 
ZO-1, thereby inducing endothelial cell permeability and 
brain metastasis [32]. In another study, Tominaga et  al. 
showed that EVs derived from a brain metastatic breast 
cancer cell line, which contains miR-181c-5p, induce 
destruction of the BBB [33]. miR-181c-5p negatively reg-
ulates 3-phosphoinositide-dependent protein kinase-1 
(PDPK1) and causes degradation of phosphorylated 
cofilin and severing of actin filaments [33]. Thus, can-
cer-derived EVs regulate the endothelial cell phenotype, 
thereby contributing to cancer progression and metasta-
sis. From a clinical perspective, sunitinib and sorafenib, 
which are popular molecular target drugs, inhibit the 

effect on vascularization by targeting vascular endothe-
lial growth factor receptors (VEGFRs) or platelet-derived 
growth factor receptors (PDGFRs) [34]. However, previ-
ous studies have reported that these drugs are not suc-
cessful in establishing a beneficial effect in advanced lung 
and breast cancer [35, 36]. As previously mentioned, the 
transfer of miRNAs in EVs derived from lung and breast 
cancer cells to endothelial cells activate different path-
ways to regulate angiogenesis or vascular permeability, 
which could be targeted by vascularization-inhibiting 
molecular drugs [24–27]. Therefore, intercellular transfer 
of EVs could be a new therapeutic target, especially for 
lung and breast cancer.

Crosstalk between cancer cells and stromal fibroblasts
Cancer-associated fibroblasts (CAFs) are the major com-
ponent of the tumor microenvironment, and CAFs have 
been reported to play a key role in malignant progression 
[37].

The mechanism responsible for CAF induction remains 
controversial, but recent studies have shown that TGF-β 
is partially responsible for activating CAFs [38, 39]. In 
addition, EVs derived from cancer cells also induce CaF-
like phenotypes in resident fibroblasts. Pang et al. showed 
that EVs derived from pancreatic cancer containing miR-
155-5p, which targets TP53INP1, result in the prolifera-
tion and activation of normal fibroblasts [40].

In contrast, CAFs also provide a benefit for cancer 
progression. Yeung et  al. demonstrated that CAFs and 
cancer-associated adipocytes secrete higher levels of 
miR-21-5p in EVs than in those from ovarian cancer cells, 
by using next-generation sequencing technology. In that 
study, they also revealed that miR-21-5p suppresses ovar-
ian cancer apoptosis and confers chemoresistance by 
binding to AFAP1 [41]. Donnarumma et al. showed that 
in breast cancer, CAF-derived EVs contain three miRNAs 
(miR-21-5p, -378e, 143-3p) that induce stemness and epi-
thelial–mesenchymal transition (EMT) of breast cancer 
cells, regulating the development of an aggressive cancer 
phenotype [42].

In another study, Baroni et  al. observed cross-talk 
between cancer cells and fibroblasts. miR-9-5p, which 
is upregulated in triple-negative breast cancer (TNBC)-
derived EVs, induces CAF-like properties in human 
breast fibroblasts. Moreover, fibroblasts activated by 
miR-9-5p alter the tumor behavior, modulating genes 
involved in cell motility and extracellular matrix (ECM) 
modeling [43]. Thus, interactions between cancer cells 
and CAFs via EVs promote cancer proliferation.

In addition, several reports have revealed that cancer-
derived miRNAs in EVs contribute to cancer progression 
through remodeling the fibroblasts within the distant 
site. Rana et  al. found that cancer-associated miR-494 
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and miR-542-3p in EVs are transferred to lymph node 
stromal cells and lung fibroblasts, targeting cadherin-17 
and upregulating matrix metalloprotease [44]. Fong et al. 
revealed that breast cancer cell-derived miR-122-5p in 
EVs suppresses glucose intake in astrocytes and lung 
fibroblasts by inhibiting pyruvate kinase. This increased 
glucose utilization and promotion of circulating tumor 
cell colonization favors brain and lung metastasis [45]. 
Fibroblast remodeling at distant sites is one of the major 
components of the developing premetastatic niche [46], 
and these studies indicate an additional contributory role 
of miRNAs in EVs.

Modulation of the immune system
Escape from immune-mediated tumor destruction has 
been recognized as a hallmark of cancer [47]. Zitvo-
gel et al. and Wolfers et al. were the first researchers to 
show the relationship between EVs derived from cancer 
cells and the immune system, and many studies have 
since confirmed this relationship [48, 49]. In the tumor 
microenvironment, immune cells, such as macrophages, 
natural killer cells, T lymphocytes and B lymphocytes, 
interact with tumor cells and regulate tumorigenesis and 
progression. It has been acknowledged that tumor pro-
gression is partly related to the extent of immune dys-
function, and emerging data indicate that EVs are a novel 
contributor to the immune modulation. EVs derived from 
cancer mostly have immunosuppressive effects that sup-
port tumor progression and metastasis. For instance, Kim 
et al. have shown that EVs from oral cancer patient sera 
contain FasL and induce apoptosis in Jurkat and  CD8+ 
T cell [50]. Myeloid-derived-suppressor cells (MDSCs) 
have been identified as a population of immature mye-
loid cells with the ability to suppress T cell activation, 
contributing to cancer proliferation [51]. Chalmin et  al. 
found that heat shock protein 72 (Hsp72) expressed on 
tumor-derived EVs triggers STAT3 activation in MDSCs 
through toll-like receptor 2, inducing their immunosup-
pressive activity [52].

In addition, cancer cell-derived EVs recruit immune 
cells to enhance tumor invasion and dissemination. Fab-
bri et  al. have revealed that lung cancer-derived EVs 
containing miR-21-5p and miR-29a-3p, which bind as 
ligands to the toll-like receptor (TLR) family (murine 
TLR7 and human TLR8) in surrounding tumor-asso-
ciated macrophages (TAMs), trigger NF-κB-mediated 
pro-inflammatory cytokine production and support the 
progression of cancer [53]. In another study, Ying et  al. 
have found that miR-222-3p in EVs derived from epithe-
lial ovarian cancer (EOC) cells shift macrophages toward 
a tumor-supportive TAM-like phenotype [54]. Regard-
ing the immune escape system, many types of cancer 
cells upregulate the expression of programmed death-1 

ligand (PD-L1), which plays an important role in block-
ing the immune system by binding to PD-1 expressed on 
the surface of T cells and induces programmed death in 
activated T cells [55]. Several studies have revealed that 
miRNA indirectly regulates the expression of PD-L1 in 
cancer cells. Fujita et  al. demonstrated that miR-197-3p 
indirectly regulates PD-L1 expression via the miR-197/
CKS1B/STAT3-mediated PD-L1 network [56]. Chen 
et al. showed that the expression of PD-L1 in lung can-
cer is regulated by the miR-200/ZEB1 axis and the 
subsequently suppresses  CD8+ T cells in the tumor envi-
ronment [57]. In 2016, Kataoka et  al. reported that dis-
ruption of the PD-L1 3′-untranslated region (UTR) is 
associated with cancer cells aberrantly expressing PD-L1 
[58]. The 3′ UTR is the site bound by miRNAs, suggest-
ing the possibility that miRNAs may directly mediate the 
expression of PD-L1. In addition, Haderk et  al. recently 
reported that noncoding Y RNA hY4 in EVs derived from 
chronic lymphocytic leukemia (CLL) modulate PD-L1 
expression in monocytes [59]. Although confirmation is 
still needed, these results support the presence of miR-
NAs packaged in EVs to regulate PD-L1 expression.

Regulation of cancer cell proliferation and drug resistance
EVs derived from cancer cells or microenvironmental 
cells affect cancer cell proliferation and drug resistance 
and regulate tumor progression during various phases.

First, during tumor initiation, there is competition 
between cancer cells and the surrounding normal epithe-
lial cells [60]. Kosaka et al. demonstrated that normal epi-
thelial prostate cells secrete EVs containing miR-143-3p, 
suppressing the proliferation of prostate cancer cells [16]. 
miR-143-3p in EVs derived from normal epithelial pros-
tate cells negatively regulates KRAS and ERK5, repress-
ing the proliferation of cancer proliferation. Normal 
epithelial cells derived EVs contribute to the maintenance 
of homeostasis and prevent cancer initiation; however, 
once the cancer cells overcome the suppression, the pri-
mary tumor starts to progress.

Primary tumors consist of heterogeneous cells with 
varying proliferative, invasive and metastatic abilities. 
Hence, through the intra-tumor transfer of EVs, tumor 
cells can collaborate to drive tumor progression. Le et al. 
showed that the transfer of miR-200  family from meta-
static breast cancer cells to poorly metastatic breast can-
cer cells promote mesenchymal-to-epithelial transition 
(MET) [61]. Although metastasis involves multiple steps, 
MET is a crucial step during the development of metas-
tasis at distant sites. In a xenograft model, they revealed 
that miR-200 miRNAs in EVs from metastatic cells pro-
moted metastasis in otherwise weakly metastatic cells, 
and demonstrated that the metastatic capacity could be 
transferred via the uptake of EVs. In another study, Singh 
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et  al. reported that the transfer of miR-10b-5p in EVs 
from metastatic breast cancer cells promotes the invasive 
capacity of non-malignant cells by targeting HOXD10 
[62]. Although their findings did not directly indicate that 
less invasive cancer cells became more invasive via the 
transfer of EVs from metastatic cancer cells, their results 
suggest that cancer-associated miRNAs in EVs can pro-
mote adjacent cells and lead to outcomes favoring tumor 
proliferation.

For patients with advanced-stage cancer, chemo-
therapy and targeted drugs are the main treatment 
strategies; however, their effectiveness does not last 
for long periods due to resistance [63]. Several stud-
ies have shown that EVs play a role as a noteworthy 
vehicle of the dissemination of cancer drug resistance. 
Indeed, horizontal transfer of miRNA via EVs is one of 
the main mechanisms leading to drug resistance. Chen 
et  al. revealed that drug-resistant breast cancer cells 
secrete several miRNAs (miR-30a-5p, miR-100-5p and 
miR-222-3p) that are enriched in EVs, reducing the drug 
sensitivity of drug-sensitive cancer cells [64]. Recently, 
Wei et  al. indicated that miR-222-3p, which is secreted 
by drug-resistant non-small-cell lung cancer (NSCLC) 
cells in EVs, is transferred and promotes gemcitabine 
resistance in sensitive cells by targeting suppressor of 
cytokine signaling 3 (SOCS3) [65]. Challagundla et  al. 
revealed that a unique cross-talk between neuroblas-
toma cells and human monocytes through miR-21-5p 
and miR-155-5p in EVs contributes to the development 
of drug resistance. NBL cells secrete miR-21-5p in EVs 
transferred to monocytes, activating the NF-κB pathway 
and upregulating miR-155-5p in monocytes. In return, 
activated monocytes secrete miR-155-5p in EVs trans-
ferred to NBL cells, targeting TERF1 and providing drug 
resistance [66].

EVs are also related to long-term recurrence. Bone mar-
row is one of the major homing organs for disseminated 
breast cancer cells. Even 10–20  years after resection of 
the primary site, breast cancer patients often develop a 
recurrence, especially in the bone marrow [67], which 
indicates that breast cancer cells spread and survive for 
a long time in a dormant state. Ono et  al. revealed that 
the mechanism responsible for the maintenance of dor-
mancy in bone marrow includes the transfer of miRNA 
in EVs secreted by bone marrow mesenchymal stem cells 
(BM–MSC) [68]. miR-23b-3p in BM–MSC-derived EVs 
contribute to the dormant state of breast cancer cells by 
downregulating a target gene, myristoylated alanine-rich 
C-kinase substrate (MARCKS), which encodes a protein 
that promotes cell cycling a motility. Therefore, cancer 
surrounding noncancerous BM–MSCs plays an impor-
tant role in inducing breast cancer cells dormancy and 
future recurrence.

As summarized above, EVs have various effects on 
cells in the cancer microenvironment and on cancer cells 
themselves, participating in the various timing features of 
tumor progression. Thus, it is crucial to understand the 
molecular mechanisms underlying cancer progression by 
EVs, and then we can consider tactics to defeat cancer by 
targeting EVs. In the next section, therapeutic strategies 
by EV targeting are discussed.

EV‑targeting therapeutic strategies
As we have shown, intercellular communication via EVs 
contributes to tumor progression through the transfer of 
their cargo (Fig. 2; Table 1). In addition, the pathways that 
are activated by the transfer of miRNAs in EVs mostly 
differ from those targeted by modern drugs, such as 
chemotherapy or molecular targeting drugs. Therefore, 
a reduction of cancer-derived EVs transfer will provide 
additional therapeutic value for inhibiting cancer prolif-
eration and dissemination. Three potential therapeutic 
strategies, inhibition of EV production, elimination of 
circulating EVs and disruption of the absorption of EVs, 
have been proposed [18] (Fig. 3). In this section, we sum-
marize these strategies and discuss their potential clinical 
applications.

Several articles have described the effectiveness of 
inhibiting EV production in  vitro and in  vivo. In 2013, 
Kosaka et  al. revealed that knockdown of nSMase2, 
which is required for the synthesis of ceramide, EV secre-
tion and miR-210-3p transfer, is inhibited, and angio-
genesis and metastasis in a xenograft mouse model are 
suppressed [25]. In another study, Yokoi et  al. reported 
that knockdown of nSMase2 suppresses peritoneal dis-
semination in ovarian cancer by inhibiting EV produc-
tion [69]. Until now, other molecules related to EV 
production, such as RAB27A, RAB27B and TSG101, 
have also been reported to be effective for inhibiting 
cancer-derived EV production [70, 71]. Inhibition of EV 
production will provide a chance to suppress intercellu-
lar communication, and therefore this strategy has great 
potential for the treatment of cancer. However, these 
genes have key roles in multiple cell biological events, 
and therefore their downregulation in normal cells would 
have adverse effects on normal cell functioning [18]. 
Indeed, it has been reported that nSMase2 is expressed in 
normal neural cells [72]. In addition, the downregulation 
of these genes may not have the same inhibitory effects 
on EV secretion between cancer types. Phuyal et al. have 
reported that inhibition of nSMase2 does not inhibit EV 
secretion in a prostate cancer cell line [73]. Therefore, to 
identify the genes related to cancer type-specific EV pro-
duction is a future challenge.

In 2012, Marleau et al. described a therapeutic strategy 
for the removal of circulating EVs. In their study, they 
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developed the hemofiltration system, which can specifi-
cally capture circulating cancer cell-derived HER2-pos-
itive-EVs [74]. HER2-expressing EVs have been shown 
to interfere with therapy and are associated with cancer 
progression [75]; therefore, selectively eliminating HER-
2-expressing EVs could be a new strategy to treat breast 
cancer. In 2012, Peinado et  al. showed that circulating 
EVs contribute to cancer metastasis by establishing a 
premetastatic niche, and they suggested a therapeu-
tic strategy [76]. Thus, it is natural to focus on the pos-
sibility that targeting the circulating EVs from cancer 
cells could be a strategy for preventing cancer metasta-
sis. Recently, Nishida-Aoki et al. revealed a new idea for 
eliminating EVs [77]. They showed that in a human breast 
cancer xenograft mouse model, administration of anti-
bodies against human-specific CD9 and CD63, which are 
enriched on the surface of EVs, significantly decreased 
metastasis, although no obvious effects on primary 
site growth were observed. In that study, EVs tagged by 

anti-CD9 and CD63 were internalized by macrophages 
via phagocytosis before they could promote cancer pro-
gression. In humans, anti-CD9 and CD63 antibodies can-
not selectively attach to cancer-derived EVs, so further 
investigations are needed. However, if we can identify the 
location of the cancer-specific molecules on EVs in more 
detail, circulating EV elimination, via using their antibod-
ies, could potentially be applied to treat patients. There-
fore, that study suggested a new novel treatment strategy 
for cancer.

Inhibition of EV internalization will also provide new 
therapeutic strategies. Christianson et  al. showed that 
heparan sulfate proteoglycans (HSPGs) serve as recep-
tors of EVs derived from glioblastoma (GBM) [78]. Hep-
arin, which is an HS mimetic, dose-dependently inhibits 
EV uptake and suppresses EV-dependent cell migration 
in GBM. Several other molecules related to EV inter-
nalization have also been reported [79–81]. However, 
the mechanism responsible for EV internalization is 

Fig. 2 Role of miRNAs in EVs in the cancer microenvironment. Through the transfer of miRNAs, EVs mainly promote tumorigenesis. Tumor-derived 
EVs can activate endothelial cells to promote angiogenesis or vascular permeability. Tumor-derived EVs can convert fibroblasts into CAFs. In return, 
CAF-derived EVs can confer proliferation or drug resistance to tumor cells. Tumor-derived EVs can contribute to creating an immunosuppressive 
microenvironment by impairing the function of immune cells. In another aspect of the immune system, tumor-derived EVs can mobilize TAMs to 
promote cancer progression. Moreover, tumor-derived EVs can provide drug resistance or proliferation to surrounding other tumor cells. In contrast, 
noncancerous cell-derived EVs also participate in the tumor microenvironment. EVs derived from MSCs contribute to long-term metastasis by 
inducing a dormant state in cancer cells. EVs derived from normal epithelial cells can suppress cancer proliferation
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quite complex and more obscure than the secretion 
mechanism. Unfortunately, no study has demonstrated 
an effect of inhibiting EV internalization in  vivo. One 
explanation for this deficit is the lack of detailed knowl-
edge about the cancer cell-specific EV uptake pathway. 
Like the other two strategies, avoiding damage to normal 
cell homeostasis should be a priority during therapeu-
tic development, and thus the identification of cancer-
specific EV uptake pathways is crucial. In 2016, Kowal 
et al. reported that different EV fractions have different 
EV protein markers [82], and they suggested that differ-
ent EV fractions have different molecular and biological 
properties. Furthermore, in 2017, Tkach et  al. reported 
that immature dendritic cells secrete two different EV 
subpopulations, namely, small EVs and large EVs, which 
have different effects on T helper cell [83]. Therefore, 
the identification of EV subpopulations with more onco-
genic cargo that affect recipient cells and their specific 
internalization pathways may be the most effective 
strategies.

As we have shown, inhibition of EV transfer suppresses 
tumor development and represents a new therapeutic 
strategy. Although many challenges remain, the aston-
ishing advances in the EV field provide promise that they 
will be overcome. In the future, targeting EV therapy 

would be considered a standard treatment, such as sur-
gery, radiotherapy and chemotherapy.

EV‑associated miRNAs as biomarkers in cancer
Approximately 10 years ago, the existence of miRNA in 
EVs and the presence of tumor-derived EVs in the periph-
eral circulation were reported [12, 84]. Since then, many 
studies have supported the possibility of miRNAs in EVs 
as cancer biomarkers.

Compared with conventional tissue biopsy, EV-based 
liquid biopsy has several merits. First, almost all cells 
secrete EVs, which can be found in many kinds of body 
fluids such as blood [85], urine [86], saliva [87] and 
semen [88]. Due to their easy accessibility, EVs offer ease 
of collection with minimal discomfort to the patients and 
are preferred for serial collections. In addition, although 
the small size of a tissue biopsy may not reflect the total 
genetic heterogeneity within the disease, EVs shed from 
heterogeneous cancers reflect the dynamic changes 
that occur during disease and allow us to access cru-
cial molecular information about the status of diseases. 
Furthermore, miRNAs in EVs are more suitable for the 
development of biomarkers than other circulating miR-
NAs because EVs are small lipid bilayer vesicles, and their 
cargo is protected from ribonucleases [3]. Therefore, EVs 

Fig. 3 Schematic of EV-targeting therapy. Intercellular transfer of the EV cargo contributes to cancer development, so reducing EV transfer will pro-
vide new therapeutic strategies. Inhibition of EV production, elimination of circulating EVs and disruption of EV absorption will be main strategies
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hold greater possibilities as clinically useful biomarkers 
to provide multiple non-invasive snapshots of primary 
and metastatic tumors. In this section, we describe the 
limitations of current biomarkers and summarize recent 
clinical sample-based studies of diagnostic and prognos-
tic biomarkers in the six major cancers.

Lung cancer
Lung cancer is the most common and the leading cause 
of cancer-related death in the United States [89]. NSCLC 
accounts for approximately 80% of all cases of lung can-
cer, and NSCLC has a poor 5-year survival rate due to the 
delay in detection of the disease [90]. There are no vali-
dated procedures to detect early-stage NSCLC other than 
low-dose helical computed tomography scanning [91], 
and therefore valuable biomarkers are required. Several 
reports have demonstrated the usefulness of miRNAs in 
EVs as diagnostic or prognostic biomarkers for NSCLC. 
In 2013, Cazzoli et al. used wide-range miRNA analysis to 
select candidate miRNAs in plasma-derived EVs from 10 
patients with NSCLC, 10 patients with lung granuloma 
and 10 healthy smokers. Subsequently, selected miRNAs 
were validated in a larger independent group of samples 
(105 NSCLC patients, 50 lung granuloma patients and 25 
healthy smokers). The result showed that the screening 
model (including miR-378a-3p, miR-379-5p, miR-139-5p 
and miR-200-5p) distinguishes between patients with 
any kind of nodules and control smokers, with an area 
under the receiver operating characteristic curve (AUC) 
of 0.908, sensitivity of 97.5% and specificity of 72.0%. The 
diagnostic model (including miR-151-5p, miR-30a-3p, 
miR-200b-5p, miR-629-5p, miR-100-5p and miR-154-3p) 
discriminates between NSCLC and granuloma, with an 
AUC of 0.76, sensitivity of 96% and specificity of 60% 
[92].

In 2017, Jin et  al. reported highly sensitive noninva-
sive biomarkers for early detection of NSCLC. They per-
formed RNA-sequence (RNA-seq) to identify candidates 
and validate adenocarcinoma and squamous cell carci-
noma (SCC)-specific miRNAs from 46 stage I NSCLC 
patients and 42 healthy individuals. They detected diag-
nostic biomarkers for NSCLC (let-7b-5p, miR-21-5p, 
miR-24-3p and miR-486-5p), adenocarcinoma (miR-
181-5p, miR-30a-3p, miR-30e-3p and miR-361-5p) and 
SCC (miR-10b-5p, miR-15b-5p and miR-320b). Surpris-
ingly, the diagnostic accuracy of combination miRNA 
panels exhibited an area under the curve (AUC) value of 
0.899, 0.936, and 0.911 for the detection of NSCLC, ade-
nocarcinoma, and SCC [93].

Despite the progression of NSCLC therapy, the prog-
nosis for patients with NSCLS remains poor. Therefore, 
clarification of the prognostic biomarkers is required to 
improve the outcome of NSCLC patients. In 2017, Liu 

et al. found that miR-23b-3p, miR-10b-5p and miR-21-5p 
in plasma-derived EV are independent prognostic bio-
markers for NSCLC. They selected candidate miRNAs 
using a qPCR-array panel and validated by qRT-PCR. 
Addition of the three miRNAs significantly improved 
the predictive accuracy for survival, with an increase in 
the time-dependent AUC from 0.88 to 0.91 [94]. Dejima 
et al. used microarray analysis to examine plasma from 3 
NSCLC patients with recurrence after surgery, 3 patients 
without recurrence and 3 healthy volunteers. They then 
assessed the candidate miRNAs in a separate cohort 
of 195 NSCLC patients and 30 healthy individuals. The 
results showed that disease-free survival was significantly 
worse in the high miR-21-5p group and the high miR-
4257 group, respectively, suggesting that the expression 
of miR-21-5p and miR-4257 in EVs has potential as a pre-
dictive biomarker for recurrence after surgical resection 
[95].

Colorectal cancer
Colorectal cancer (CRC) is the third most common 
cancer and the second leading cause of cancer-related 
death in the United States [89]. The prognosis of CRC is 
dependent on the disease stage at diagnosis, with a 5-year 
survival rate of 90% when diagnosed in the early stage 
[96]. Colonoscopy is the authorized method for diagno-
sis, but its invasiveness and uncomfortableness inhibit 
medical examination. The serum markers CA199 and 
CEA are useful for detecting CRC, but with low sensitiv-
ity and specificity [97]. Therefore, reliable and non-inva-
sive biomarkers are needed.

In 2014, Ogata-Kawata et al. reported the possibility of 
seven miRNAs (let-7a-5p, miR-1229-3p, miR-1246, miR-
150-5p, miR-21-5p, miR-223-3p and miR-23a-3p) in EVs 
as early diagnostic biomarkers for CRC. Compared with 
healthy controls, these miRNAs were significantly ele-
vated in CRC patients [98]. In addition, they were signifi-
cantly upregulated even in early-stage CRC patients and 
decreased after surgical resection. Recently, Wang et  al. 
reported the potential of miR-125a-3p in plasma-derived 
EVs as a biomarker for early-stage colon cancer. They 
selected candidate miRNAs by small RNA sequencing 
and validated them in 50 early-stage CRC patients and 
50 matched healthy volunteers. Although the diagnostic 
power of miR-125a-5p by itself was not very high (AUC: 
0.6849), the multivariate model showed an increased 
diagnostic power in combination with CEA with an AUC 
of 0.855, indicating that miR-125a-3p is an independent 
biomarker from CEA [99].

Despite surgical intervention and adjuvant therapy, 
recurrence is common in patients with CRC [100]. Sev-
eral studies have shown that miRNAs in EVs could be 
potential biomarkers of recurrence in CRC. Matsumura 
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et  al. revealed that miR-19a-3p in EVs could be a prog-
nostic biomarker for recurrence in CRC patients. They 
performed miRNA microarray analysis of EVs from 
patients with recurrence and with non-recurrence. They 
also performed microarray and CGH array analysis in 
124 CRC tissue samples. By comparing these results, they 
selected the miR-17-92a cluster as candidate miRNAs 
and validated them by qRT-PCR. Finally, they showed 
an association between the expression of miR-19a-3p in 
serum-derived EVs and a poorer prognosis [101]. In 2016, 
Liu et al. showed that the level of miR-4772-3p in EVs is 
significantly reduced in patients with stage II/III CRC 
patients with recurrence, with an AUC of 0.72, sensitiv-
ity of 78.6% and specificity of 77.1%. In that study, RNA 
seq-based miRNA profiling methods were performed to 
select candidate miRNAs [102].

Prostate cancer
Prostate cancer (PCa) is the most frequently diagnosed 
male tumor and the third leading cause of cancer-related 
death in males in the United States [89]. Prostate-specific 
antigen (PSA) is the gold standard biomarker to diagnose 
and monitor the response to treatment. However, PSA 
has a low specificity with a high false positivity in patients 
with benign prostatic hyperplasia (BPH) [103]. Therefore, 
new biomarkers are needed for the accurate diagnosis 
and stratification of patients with PCa.

Bryant et  al. analyzed miRNAs in plasma-derived EVs 
from a cohort of 78 PCa patients and 28 normal control 
individuals using a microarray panel of 742 miRNAs, find-
ing a total of 12 differentially quantified miRNAs. Among 
these miRNAs, they confirmed an association of miR-
141-3p and miR-375 with metastatic PCa using serum-
derived EVs in a separate cohort by qRT-PCR [104]. 
miR-141-3p is one of the most common cancer-associated 
miRNAs, which is useful for the diagnosis of prostate 
cancer and prediction of metastasis [105, 106]. Li et  al. 
reported the effectiveness of miR-141-3p in EVs by com-
paring PCa with BPH patients and healthy controls [107]. 
They also found that the expression level was higher in 
metastatic PCa patients compared with localized patients, 
with an AUC of 0.8694, sensitivity of 80% and specific-
ity of 87.1% [107]. Due to the anatomical localization of 
the prostate, urine appears to be an ideal substrate to 
detect prostate carcinogenesis. Digital rectal examination 
(DRE) enhances the analytical performance of biomarker 
analysis in EVs, so a popular time for urine collection is 
after DRE [108]. Foj et  al. recently revealed that among 
the most commonly deregulated miRNAs (miR-21-5p, 
miR-141-3p, miR-375, miR-214-3p and let-7c-5p) in PCa 
patients [105, 109, 110], miR-21-5p, miR-375 and let-
7c-5p are significantly upregulated in urinary EVs from 
PCa patients compared with healthy controls [111].

Huang et  al. described prognostic biomarkers for 
patients with advanced-stage prostate cancer. They per-
formed RNA sequencing to identify candidate miRNAs 
in the screening cohort (n = 23) and confirmed that miR-
1290 and miR-375 in EVs are significantly associated with 
poor overall survival in castration-resistant prostate can-
cer (CRPC) patients (n = 100) [112].

The recent clinical introduction of novel antiandro-
gens and chemotherapeutics has extended the survival 
of patients with metastatic CRPC (mCRPC). However, 
the rates of de novo and acquired resistance are high, 
and thus a liquid biopsy that can rapidly, sensitively and 
robustly identify which patients will respond to the treat-
ment is required [113]. The androgen receptor splice 
variant 7 (AR-V7) is associated with resistance to hormo-
nal therapy in mCRPC, and many researchers are focus-
ing on the possibility of AR-V7 as a biomarker [114, 115]. 
Although this report is not focused on miRNA, Del et al. 
demonstrated AR-V7 detected in RNA extracted from 
EVs could be a predictive biomarker of resistance to hor-
monal therapy [116].

Breast cancer
Breast cancer is the most common cancer in women in 
the United States, with an estimated 252,710 cases diag-
nosed in 2017 [89]. Traditional diagnostic methods, such 
as mammography, are effective but are known to have 
limited specificity and sensitivity. Although many studies 
have focused on the detection of circulating miRNAs in 
the serum or plasma of breast cancer patients, only a few 
studies to date have reported miRNAs in EVs from breast 
cancer patients. Eicheler et al. revealed that miR-101-3p 
and miR-372-3p in serum-derived EVs are significantly 
different between patients with breast cancer and healthy 
volunteers. They selected candidate miRNAs (miR-
101-3p, miR-372-3p and miR-373-3p) based on previous 
reports and quantified the expression of these miRNAs in 
serum-derived EVs from breast cancer patients (n = 50) 
and healthy volunteers (n =  12) by qRT-PCR [117]. In 
another study, Hannafon et al. performed small RNA-seq 
and selected several miRNAs (miR-1246 miR-21-5p, miR-
122-5p and let-7a-5p) that were enriched in EVs derived 
from a breast cancer cell line compared with an epithe-
lial cell line. They subsequently validated the expression 
of miRNAs in plasma-derived EVs and showed signifi-
cantly higher levels of miR-1246 and miR-21-5p in breast 
cancer patients (n = 16) compared with healthy controls 
(n = 16), each with AUCs of 0.69 and a combined AUC of 
0.73 [118].

Ovarian cancer
Ovarian cancer ranked fifth in cancer deaths among 
women in 2017 and is the leading cause of death among 



Page 11 of 18Urabe et al. Clin Trans Med  (2017) 6:45 

gynecological malignancies in the United States [89]. 
EOC account for 90% of ovarian cancer, and its high 
mortality may be related to the asymptomatic status of 
affected individuals until the late stage of disease, and 
therefore is detected too late. Currently, CA125 is the 
most frequently used serum biomarker, but it is not suffi-
ciently specific for the diagnosis of EOC at an early stage 
[119].

Meng et  al. revealed that miR-373-3p, miR-200a-3p, 
miR-200b-3p and miR-200c-3p in EVs are useful to dis-
tinguish malignant and benign ovarian disease. They 
selected six candidate miRNAs (miR-141-3p, miR-
373-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p and 
miR-429 from previous reports and evaluated them by 
qRT-PCR. They also evaluated the prognostic miRNAs 
in EVs and found that miR-200b-3p and miR-200c-3p 
were associated with an advanced FIGO stage and lymph 
node metastasis [120]. Ovarian cancer cells aggressively 
spread to the peritoneal cavity; therefore, ascetic fluid 
could be a useful and critical biomarker for ovarian can-
cer. Recently, Yokoi et  al. found that highly metastatic 
ovarian cancer cells secrete EVs carrying MMP1 mRNA, 
and they revealed the potential utility of ascetic EVs as a 
risk indicator of peritoneal metastasis [69]. Although we 
could not find a clinical study to demonstrate the useful-
ness of miRNAs in ascites-derived EVs in ovarian cancer, 
as Tokuhisa et  al. reported their effectiveness in gastric 
cancer [121], miRNAs in ascetic fluid hold great possibil-
ities for predicting the status of ovarian cancer patients.

Melanoma
Melanoma is the most deadly form of skin cancer [89]. 
Localized melanoma is curable by surgical resection, and 
the 5-year survival rate is 97%. However, once the mel-
anoma has spread to distant organs, it is refractory to 
existing therapies, and the 5-year survival rate declines 
to approximately 10% [122]. S100B, melanoma inhibitory 
activity (MIA) and lactate dehydrogenase (LDH) are the 
most widely used biomarkers for the metastatic devel-
opmental stage of melanoma, but they have very low 
sensitivity [123]. Thus, it is important to identify novel 
biomarkers for the management of melanoma patients.

Although several diagnostic EV biomarkers of mela-
noma have been reported [76, 123, 124], only two reports 
have been published concerning the effectiveness of 
miRNA in EVs as biomarkers. In 2014, Alegre et al. first 
assessed the diagnostic role of miRNAs in EVs derived 
from melanoma [125]. They selected miR-125b-5p, the 
circulating level of which had been assessed in previous 
reports of several kinds of cancers other than melanoma 
[126, 127]. In their study, miR-125b-5p in serum EVs was 
significantly suppressed in advanced melanoma patients 
compared with healthy controls [125]. In 2015, Pfeffer 

et  al. performed a microarray analysis using RNA pre-
pared from plasma-derived EVs and validated the candi-
date miRNAs. They found that miR-17-5p, miR-19a-3p, 
miR-21-5p, miR-126-3p and miR-149-5p are expressed 
at higher levels in plasma-derived EVs from metastatic 
melanoma patients in comparison to normal control vol-
unteers [128].

Limitations for diagnostic applications
As we have shown, a number of studies have focused on 
the clinical utility of miRNAs in EVs as tumor biomark-
ers (Table  2). Although some miRNAs in EVs are also 
highly expressed in serum or tissue, not all have provided 
consistent results, even in the same cancer types. One of 
the main explanation may be due to differences in cohort 
composition. To date, almost all studies have examined 
only a limited number of samples. miRNA levels cor-
relate not only with disease condition but also, to some 
extent the characteristics of the patients, such as age, sex 
and ethnicity. Therefore, if the number of samples is lim-
ited, such a characteristic difference may cause inconsist-
ent results between studies, and the lack of reference data 
to set up treatment thresholds. To overcome this prob-
lem, initial large-scale inter-laboratory studies should be 
performed.

In addition, several technical obstacles and scientific 
topics should also be considered. For effective biomarker 
analysis of EVs, a standardized method of EV collection is 
needed. As mentioned above, we currently cannot com-
pletely distinguish each type of EV. Ultracentrifugation 
is most common and conventional way to collect EVs, 
but it takes a large amount of time. Exo Quick is a fast 
and simple procedure, but it is a relatively crude isolation 
method with contaminating soluble proteins [9]. Den-
sity gradient-based isolation using sucrose or iodixanol 
(OptiPrep™) can be used to isolate each EV fraction with 
greater purity than other methods. However, its applica-
tion of the density gradient method in the clinical setting 
is questionable due to complications [129]. Furthermore, 
the differences in pre-analytical variables, such as sam-
ple-collecting and storage protocols are also important 
[130]. Therefore, the establishment of a standardized 
method that is simple, rapid, and has a high sensitivity of 
the sample purify is required.

Current miRNA measurement techniques should also 
be considered. Many studies have selected candidate 
miRNAs in EVs based on microarray results and vali-
dated them by qRT-PCR. qRT-PCR requires a suitable 
reference control gene that is challenging to identify. 
Some reports have used miR-16-5p as a housekeeping 
gene, which may serve as one standard [101, 105]. How-
ever, recent investigations of serum miRNA revealed a 
high variability in some diseases [131, 132]. In addition, 
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the spike-in external control, such as C. elegans miR-
39-3p, is also a popular normalization control, but it is 
difficult to completely regulate the amount of this artifi-
cial external control added to different samples. The use 
of non-suitable reference genes may impede our under-
standing of the expression levels of miRNAs, and thus 
further cooperative studies are needed to identify proper 
housekeeping miRNAs.

A procedure to select candidate miRNAs is another 
scientific topic. In some reports, candidate miRNAs were 
selected by referencing previous findings for serum or 
plasma circulating miRNAs; however, miRNA profiles in 
EVs and circulating miRNA profiles were not completely 
consistent [133]. Microarray provides a genome-wide 
expression profile of miRNAs, facilitating the detec-
tion of a large number of aberrant miRNAs. However, 
probe development is challenging for some miRNAs 
[134]. Some recent reports selected candidate miRNAs 
by RNA-seq [93, 99, 102, 112, 118]. The advantage of 
using RNA-seq technology is its provision of a compre-
hensive analysis of the whole transcriptomes and distinc-
tion between miRNAs that differ by even 1 nucleotide. 
Compared with microarray technology, RNA-seq has the 
advantage of higher sensitivity and the ability to detect 
new miRNAs that have not been previously reported 
[135]. In addition, miRNAs show sequence heterogene-
ity at the 3′ and 5′ ends. This variation, which is called 
isomiR, is difficult to detect particularly using qPCR-
based methods and is also exhibited in EVs [136]. 
Furthermore, several recent studies have focused on 
non-coding RNAs other than miRNAs in EVs [59, 137]. 
Therefore, to detect these RNAs, the demand for high-
throughput technologies such as RNA-seq will increase.

Recently, it was revealed that circulating miR-17-5p 
had been found at elevated level in all cancer types stud-
ied, and referred as early alarm signal for cancer [138]. 
Although miR-17-5p is not specific for a single type of 
cancer, combinations of miR-17-5p and cancer specific 
miRNAs in EVs might provide additional diagnostic 
power.

Thus, although miRNAs in EVs have great potential as 
cancer diagnostic or prognostic biomarkers, more inves-
tigations are required for effective implementation in the 
clinical setting.

Conclusion
In this review, we summarize current EV research to dis-
cuss the possibility of using the miRNAs in EVs in clini-
cal applications. EVs play a pivotal role in the regulation 
of multiple systemic pathophysiological processes. Thus, 
targeting intercellular communication will provide a 
new therapeutic strategy. In addition, compared with 
biomarkers detected in conventional specimens such as 

serum, plasma or urine, EV biomarker provide compara-
ble or higher specificity and sensitivity due to their sta-
bility. Furthermore, there has been intense interest in the 
potential of EVs as delivery vehicles, because EVs have 
some great characteristics, such as stability in the blood 
circulation, low side effect, and tropism to some organs 
[139]. Until now, several articles revealed that adminis-
tration of exogenous EVs including miRNA or siRNA can 
be therapeutic strategies [140, 141].

Although further research and development are 
needed for implementation in the clinical setting, the 
clinical utility of EVs is promising. EV research is devel-
oping quite rapidly, and thus we may be able to use them 
as therapeutic tools in the near future.

We ardently hope that the advancements in EV 
research will contribute to the treatment of cancer.
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