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Abstract 

Extensive genomic and transcriptomic heterogeneity in human cancer often negatively impacts treatment efficacy 
and survival, thus posing a significant ongoing challenge for modern treatment regimens. State‑of‑the‑art DNA‑ and 
RNA‑sequencing methods now provide high‑resolution genomic and gene expression portraits of individual cells, 
facilitating the study of complex molecular heterogeneity in cancer. Important developments in single‑cell sequenc‑
ing (SCS) technologies over the past 5 years provide numerous advantages over traditional sequencing methods for 
understanding the complexity of carcinogenesis, but significant hurdles must be overcome before SCS can be clini‑
cally useful. In this review, we: (1) highlight current methodologies and recent technological advances for isolating 
single cells, single‑cell whole‑genome and whole‑transcriptome amplification using minute amounts of nucleic acids, 
and SCS, (2) summarize research investigating molecular heterogeneity at the genomic and transcriptomic levels and 
how this heterogeneity affects clonal evolution and metastasis, and (3) discuss the promise for integrating SCS in the 
clinical care arena for improved patient care.
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Introduction
The human body is composed of an estimated forty trillion 
cells [1]. Cellular diversity is controlled by specific RNAs 
and proteins, whose expression is influenced by exogenous 
and endogenous signals. While DNA was traditionally 
thought to be stable, with individual genomes set at the 
time of fertilization, recent evidence demonstrates that 
humans are genomic mosaics, comprised of cells that are 
genetically distinct even though they were derived from a 
single zygote [2]. Cancer is one of the most common forms 
of mosaicism in humans, where genetic changes occur in 
the cancer genome during tumorigenesis. Genomic het-
erogeneity in cancer is further complicated by the poly-
clonal nature of most carcinomas, with populations of 
tumor cells harboring genetic alterations that differ from 

the host genome and from other cells within the tumor. 
Intratumor heterogeneity can affect all stages of cancer 
care from diagnosis through treatment of metastatic dis-
ease. Diagnoses based on a single biopsy will likely under-
estimate the extent of heterogeneity within the tumor and 
fail to completely detect all clinically-actionable variants, 
leading to the emergence of drug-resistant populations 
of cancer cells. Designing therapeutic regimens based 
solely on characteristics of the primary tumor often fails 
to effectively treat metastases, which may be descended 
from minor sub-clones within the primary tumor and/or 
have acquired new mutations [3]. Therefore, the ability to 
optimize patient care will depend on a thorough charac-
terization of genomic and transcriptional heterogeneity in 
cancer at the single-cell level.

Evaluating genomic heterogeneity at the single-cell 
level requires overcoming a number of challenges includ-
ing isolation of individual cells, effective amplification 
of a single-cell genome to allow for targeted, exome- or 
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genome-wide sequencing, and bioinformatics approaches 
to discriminate technical artifact from biological dif-
ferences [4]. The advent of next-generation sequencing 
(NGS) methods enables researchers to generate genomic, 
transcriptomic and/or epigenetic data from a single cell 
(Fig.  1). In this review, we describe (1) current single-
cell sequencing (SCS) methodologies and their applica-
tions for investigating the important role of genomic and 
transcriptomic heterogeneity in cancer and (2) how SCS 
approaches may be incorporated into the clinical arena 
for improved patient care.

Single‑cell sequencing technologies
SCS is a relatively new technology. The first single-cell 
RNA sequencing (RNA-seq) data, generated from a sin-
gle mouse blastomere, were published in 2009 [5], and 
the first protocol to sequence DNA from single cells 
was published in 2011 [6]. Generation of whole-genome 
sequence (WGS), whole-exome sequence (WES), or 
RNA-seq from single cells requires isolation of individ-
ual viable cells or intact nuclei, amplification of minute 
amounts of DNA or RNA from the cell, sequencing, and 
analysis of the ensuing data. Continuous advancements 

Fig. 1 Applications of single‑cell sequencing in cancer research. a Resolving intratumor heterogeneity; b investigating clonal evolution in primary 
tumors; c studying invasion in early stage cancers; d tracing metastatic dissemination; e genomic profiling of circulating tumor cells; f investigating 
mutation rates and mutator phenotypes; g understanding evolution of resistance to therapy; h defining cancer stem cells and cell hierarchies; and i 
studying cell plasticity and the epithelial‑to‑mesenchymal transition [86]
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in technology over the past 5 years have led to significant 
improvements in genome coverage and sequence quality, 
as well as drastic reductions in overall costs.

Isolation of single cells
A summary of methods for isolating single cells is pre-
sented in Fig. 2. Serial dilution provides a simple, low-cost 
method for isolating individual cells from abundant cell 
populations but is time consuming and requires expertise 
[7]. Micromanipulation and laser capture microdissec-
tion (LCM) both rely on visualization of the cells using a 
microscope. While LCM has the advantage of preserving 
spatial relationships within a tissue specimen, the tissue 
must be sectioned, often at thicknesses smaller than the 
diameter of single cell, leading to loss of chromosomal 
material [8]. Flow-assisted cell sorting and microfluidic 
platforms represent high throughput approaches that uti-
lize specific properties of the cells, such as size or expres-
sion of biomarkers, for isolating individual cells from 
cellular suspensions of fresh tissue [9]. The approaches 
outlined above are sufficient for isolating single cells from 
tissue sections or large populations of cells in culture, but 
are not effective for isolating rare cells such as circulating 
tumor cells (CTCs) in peripheral blood or disseminated 
tumor cells (DTCs) in bone marrow.

In contrast to the relatively non-specific methods men-
tioned above, numerous techniques have been developed 
for targeting and isolating single rare cancer cells from 
large populations of histologically diverse cells such as 

peripheral blood (Fig. 2). The CellSearch™ system is the 
only FDA-approved cell isolation and enumeration sys-
tem currently available. An important component of 
the system is the  CellSearch® Epithelial Cell Kit, which 
contains magnetic capture particles with a surface layer 
coated with antibodies targeting epithelial markers 
including leukocyte common antigen (CD45−), epithelial 
cell adhesion molecule (EpCAM+), and cytokeratins 8, 
18+, and 19+. Rare CTCs are isolated from whole blood 
and enriched by exposing the buffy layer to the capture 
particles. During incubation, CTCs bind to the capture 
particles, are magnetically separated from unbound cells, 
and are then enumerated by fluorescence staining [10].

MagSweeper™ is an automated system that also uses 
immunomagnetic separation to purify rare cells in cir-
culation. A magnetic rod is robotically swept through a 
sample containing labeled cells from peripheral blood to 
specifically capture circulating epithelial cells. Sequential 
rounds of cell capture-wash-release-recapture result in 
an enrichment of epithelial cells by  108-fold. Purified cells 
can be individually selected for subsequent biochemical 
analysis [11].

The DEP-Array™ system combines size and cell-sur-
face expression properties for cell isolation. DEP-Array™ 
achieves CTC enrichment by density gradient centrifuga-
tion followed by staining with antibodies directed against 
CD45− and various cytokeratins. CTCs with the appro-
priate epithelial cell morphology and staining patterns 
are then recovered for molecular assessment [12].

Fig. 2 Single‑cell isolation methods. a Methods for isolating single cells from abundant cell populations include: robotic or manual micromanipula‑
tion, serial dilution, flow‑sorting, microfluidic methods, and laser‑capture microdissection; b methods for isolating single cells from rare cell popula‑
tions include: CellSearch™, DEP‑Array™, CellCelector™, MagSweeper™, and nanofilters [16]
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CellCelector™ is a technique that uses automated 
micromanipulation for isolating individual cells from 
dense, single-cell microarrays. A suspension of cells from 
culture (or peripheral blood) is deposited on custom-
made arrays containing micro-wells, controlling distribu-
tion and density to deposit one cell in each well. The array 
is then screened by a process known as micro-engrav-
ing—the array is covered with a glass slide coated with 
mono-clonal antibodies (goat anti-mouse IgA and IgG) 
and incubated. Using a microarray scanner, the glass slide 
can be interrogated for antibodies of interest that were 
secreted by the cells in the corresponding wells. Areas on 
the glass slide serve as a guide to locate matching micro-
wells and individual cells in the wells can be selected by 
micromanipulation for subsequent analysis [13].

Because some of these isolation methods rely on cell-
surface markers such as EpCAM and other epithelial pro-
teins, these systems may not detect all rare cancer cells, 
including those that have undergone epithelial-to-mesen-
chymal transition (EMT). The CellSieve™ technique uses 
size discrimination to separate and isolate cells, and thus 
may be useful for capturing CTCs that are frequently 
larger than white blood cells [14].

Whole‑genome amplification
The minute amount of DNA (~6 pg) and RNA (~10 pg) 
isolated from a single diploid cell requires whole-genome 
amplification (WGA) or whole-transcriptome amplifica-
tion (WTA) to generate sufficient material for NGS. In 
recent years, numerous methods have been developed 
to amplify the DNA or RNA in a single cell with a focus 
on minimizing technical artifacts, such as preferential 
amplification of certain regions and/or allelic loss, and 
providing complete coverage of the genome [8, 15–17].

Currently, three main approaches are used for WGA 
(Table 1). In the degenerate oligonucleotide-primed poly-
merase chain reaction (DOP-PCR) method, amplification 
is initiated with primers that share defined sequences at 
the 5′- and 3′-ends but contain six variable nucleotides 

(all possible combinations of A, C, G, and T) near the 
3′-end to allow dense, even hybridization to the tem-
plate DNA [18]. During the initial five to eight cycles of 
amplification, the defined and variable nucleotides at the 
3′-end of the primers bind to the DNA template at many 
sites throughout the genome, followed by strand exten-
sion. In the second stage of amplification, the previously 
generated amplicons are amplified using primers that 
target the common sequence at the 5′-end of the prim-
ers [15] (Fig. 3a). High amplification bias, in which only 
certain regions of the genome are preferentially ampli-
fied and thus amenable to large-scale sequencing, results 
in relatively low coverage of the genome (~10%), making 
DOP-PCR useful for copy-number assessment in single 
cells but undesirable for single nucleotide variant (SNV) 
detection [16].

Multiple-displacement amplification (MDA) is a non-
PCR based amplification technique that does not require 
thermal cycling, in which random hexamer primers are 
annealed to denatured DNA from a single cell to synthe-
size new DNA strands [19]. As the polymerase advances, 
newly-synthesized strands are displaced from the origi-
nal DNA molecule and serve as templates for further 
primer annealing and additional DNA synthesis, result-
ing in a hyper-branched network and exponential ampli-
fication (Fig.  3b). DNA synthesis is normally catalyzed 
by φ29 DNA polymerase, an isothermal enzyme capa-
ble of generating quality DNA with high coverage of the 
genome for use in SCS. MDA works best for mutation 
detection but is not sufficient for copy number analysis 
due to moderate amplification bias and non-uniform 
genome coverage.

The multiple annealing and looping based amplifica-
tion cycles (MALBAC) method utilizes a quasi-linear 
pre-amplification step to decrease amplification bias 
[20]. An important strategy of the MALBAC method 
involves amplification using only the original template 
DNA, rather than exponential amplification, by protect-
ing the amplification products (Fig.  3c). Amplification 

Table 1 Comparison of whole‑genome amplification methods for single‑cell DNA sequencing. Adapted from Liang et al. [8]

SNV single nucleotide variant, CNV copy number variant, DOP-PCR degenerate oligonucleotide-primed polymerase chain reaction, MDA multiple-displacement 
amplification, MALBAC multiple annealing and looping based amplification cycles

Method Enzyme used Application Genome coverage SNV detection CNV detection Amplification bias

DOP‑PCR Taq DNA polymerase Single nucleus 
sequencing

Low (~10%) High false negative and 
false positive rates

Useful High  (102–106 fold)

MDA φ29 DNA polymerase; 
Bst DNA polymerase

Single nucleus exome 
sequencing

Moderate (>70%) Useful but has a high 
false negative rate 
due to amplification 
bias

Not accurate Moderate (3‑ to 4‑fold)

MALBAC Bst DNA polymerase Single‑cell genome/
exome sequencing

High (>90%) High false positive rate 
due to low fidelity

Accurate Low
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using Bst (Bacillus stearothermophilus) polymerase is 
initiated with primers that share a common 27-nucleo-
tide sequence at the 5′-end but contain eight variable 
nucleotides at the 3′-end to allow random hybridization 
to the template DNA. A polymerase with strand displace-
ment activity first synthesizes semi-amplicons of variable 
length, which dissociate from the template at high tem-
perature. Amplification of the semi-amplicons gener-
ates full amplicons with complementary ends that allow 
the formation of closed-loop structures, which prevent 
the full amplicons from being used as template. The full 
amplicons can then be exponentially amplified by PCR to 
generate microgram quantities of DNA for NGS. MAL-
BAC provides high uniformity in coverage across the 
genome (93% coverage of at least 1X at a mean sequenc-
ing depth of 25× for a single human cell) and is useful for 
detecting copy number variants (CNVs) in single cells; 
however, MALBAC has a high false positive error rate 
and is not appropriate for detecting point mutations [8].

Whole‑transcriptome amplification
A number of approaches have been developed for WTA 
of single cells (Fig. 4; Table 2; reviewed in [8]). The basic 
steps include reverse transcription of messenger RNA 
(mRNA) to complimentary DNA (cDNA) followed by 
cDNA amplification via PCR [9]. Tang and colleagues [5] 
first described a method for single-cell RNA-seq in which 
reverse transcription was performed using an oligo-dT 
primer with an anchor sequence, then a poly-A tail was 
added to the 3′-end of the first cDNA. The second strand 
was synthesized using a different oligo-dT primer with a 
different anchor sequence, and the cDNA was amplified 
by PCR. 

Smart-seq and Smart-seq2 (switching mechanism at 
the 5′-end of the RNA transcript) represent variations 
of this approach designed to reduce 3′-bias, increase 
cDNA yields and the number of full-length transcripts, 
and detect alternative splice sites, novel exons, and 
genetic variants [21, 22]. These techniques implement a 
template-switching step, which increases the number of 
transcripts with an intact 5′-end. During first-strand syn-
thesis, the reverse-transcriptase enzyme, isolated from 
the Moloney murine leukemia virus, adds extra cytosine 
(C) nucleotides to the 5′-end of the cDNA. By adding a 
primer containing guanine (G) nucleotides, the enzyme 
will switch templates and reverse-transcribe to the end 
of the primer, resulting in a full-length cDNA molecule 
that contains the complete 5′-end of the mRNA and an 
anchor sequence that will serve as a universal priming 
site for second-strand synthesis. Smart-seq2 contains 

Fig. 3 Main approaches used for whole‑genome amplification of 
single cells. a Degenerate Oligonucleotide‑primed polymerase chain 
reaction (DOP‑PCR) uses primers with common sequences at the 
5′‑ and 3′‑ends, but six random nucleotides near the 3′‑end to allow 
hybridization at many sites throughout the genome; b multiple 
displacement amplification (MDA) uses φ29 DNA polymerase and 
random primers in a non‑PCR based amplification reaction in which 
newly‑synthesized strands are displaced from the original DNA mole‑
cule and serve as templates for additional DNA synthesis, resulting in 
a hyper‑branched network; c multiple annealing and looping based 
amplification cycles (MALBAC) uses random primers with a common 
sequence at the 5′‑end to amplify only the original template DNA 
and semi‑amplicons. Full amplicons have complementary ends that 
allow the formation of closed‑loop structures that prevent further 
amplification [15]
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technological improvements to increase sensitivity, accu-
racy, and the number of full-length transcripts.

Quartz-seq was developed to improve reproduc-
ibility and sensitivity of SCS methods to quantify the 
heterogeneity of gene expression between cells. Quartz-
seq focuses on limiting the amplification of unwanted 
byproducts by removing excess primer with exonuclease 
I before second-strand synthesis, restricting poly-A tail-
ing, and using suppression PCR, which permits short 
DNA fragments to form a hairpin structure that cannot 
be amplified [23]. Similar to other poly-A tailing methods 
for WTA of single cells, Quartz-seq shows a weak 3′-bias 
but is capable of detecting differentially expressed genes 
between different cell types.

The cell expression by linear amplification and 
sequencing (CEL-Seq) method overcomes challenges 
posed by the minute amount of RNA in a single cell by 
including a template-switching step and using molecular 
barcoding (attaching a short unique sequence to template 
DNA or RNA molecules to uniquely identify each mole-
cule) and pooling of samples prior to linear amplification 
of mRNA in one round of in vitro transcription [24]. Sub-
sequent modifications (CEL-Seq2), including shortening 
the CEL-Seq primer, optimizing the conversion of RNA 
to dsDNA, and ligation-free library preparation, have 
increased the efficiency, sensitivity, and cost-effectiveness 
of the method [25]. Despite recent improvements, these 

approaches still suffer from 3′-amplification bias, and 
therefore may not detect variable transcripts.

Unlike other whole-transcriptome amplification meth-
ods, single-cell tagged reverse transcription (STRT) is a 
highly multiplexed method for single-cell RNA-seq that 
quantifies gene expression in single cells by sequencing 
the 5′-ends of mRNA. STRT uses a template-switching 
mechanism to simultaneously introduce a molecular bar-
code and an upstream primer-binding sequence during 
reverse transcription, which permits multiplex sequenc-
ing of multiple cells simultaneously. STRT provides the 
ability to identify the transcription start site, locate pro-
motor and enhancer elements, and conduct large-scale 
quantitative analysis but is not suitable for detecting 
alternatively-spliced transcripts [26].

Sequencing considerations
Despite recent progress, SCS techniques currently being 
used in research have technological limitations. Ampli-
fied DNA from single cells may be subjected to targeted 
sequencing, WES, or WGS. Targeted sequencing is asso-
ciated with a lower false positive rate, with more uni-
form coverage of the targeted areas. In contrast, WES 
and WGS provide greater coverage of the genome and 
an increased ability to discover mutations; however, as 
genome coverage increases so does the false positive rate. 
WGS of single cells provides the greatest opportunity to 

(See figure on previous page.) 
Fig. 4 Main approaches used for whole‑transcriptome amplification of single cells. a The Tang method performs reverse transcription of mRNA 
for single‑cell RNA‑seq using an oligo‑dT primer with an anchor sequence, then a poly‑A tail is added to the 3′‑end of the first cDNA and the 
second strand is synthesized using a different oligo‑dT primer with a different anchor sequence; b Smart‑seq and Smart‑seq2 implement a 
template‑switching step to increase the number of full‑length cDNA transcripts with an intact 5′‑end; c quartz‑seq limits amplification of unwanted 
byproducts by removing excess primer with exonuclease I before second‑strand synthesis and using suppression PCR to form hairpin structures 
that cannot be amplified; d cell expression by linear amplification and sequencing (CEL‑Seq) includes a template‑switching step and uses molecular 
barcodes and pooling of samples from multiple single cells prior to linear amplification; e single‑cell tagged reverse transcription (STRT) permits 
multiplex sequencing of multiple cells in the same reaction using a template‑switching mechanism to simultaneously introduce a molecular 
barcode and an upstream primer‑binding sequence during reverse transcription; f quantitative single‑cell RNA‑seq generates full‑length transcripts 
using template switching and incorporating random UMI (unique molecular identifier) sequences to label individual cDNA molecules and eliminate 
amplification bias [8]

Table 2 Comparison of single‑cell transcriptome sequencing methods. Adapted from Liang et al. [8] and Navin [16]

WTA whole-transcriptome amplification, SMART switching mechanism at the 5′-end of RNA template, M-MLV RT Moloney murine leukemia virus reverse transcriptase, 
CEL-Seq cell expression by linear amplification and sequencing, STRT single-cell tagged reverse transcription sequencing

Method Reverse‑transcription enzyme 
used

WTA method Reverse‑transcript size Position bias

Tang’s method Reverse transcriptase Poly‑A tailing 0.5–3.0 kb 3′‑end

Smart‑seq/Smart‑seq2 M‑MLV RT Template‑switching; locked nucleic 
acid in Smart‑seq2

Full‑length Low 3′‑end

Quartz‑seq Reverse transcriptase Poly‑A tailing; suppression PCR 0.4–4.0 kb 3′‑end

CEL‑seq/CEL‑seq2 In vitro transcription Poly‑A tailing; barcoding 3′‑end only High 3′‑end

STRT Reverse transcriptase Template‑switching; barcoding Full‑length, only detect 5′‑end 5′‑end
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detect genetic alterations across the genome but at sig-
nificantly increased cost [4].

Data analysis
Single-cell isolation techniques and WGA/WTA may 
introduce artifacts that must be considered when analyz-
ing sequencing data. Based on the cell selection approach 
utilized, cells may be biased in size, rates of cell division, 
or cellular properties. WGA techniques result in low 
physical coverage of the genome, allelic dropout (where 
one or both alleles at a heterozygous locus fail to amplify 
and therefore are not detected), uneven genome cov-
erage, and false-positive and false-negative errors. For 
RNA-seq, reverse transcription of mRNA to cDNA fol-
lowed by cDNA amplification via PCR introduces tech-
nical artifact and amplification bias, particularly for 
lower-abundance transcripts. In fact, only  ~10–20% of 
transcripts are reverse transcribed with current methods 
and many transcripts are not full-length [9]. Compar-
ing SCS results to bulk tumor sequence can be used to 
estimate technical errors; however, this approach may 
decrease the ability to detect variants specific to the sin-
gle cells. Incorporating molecular barcodes, also known 
as unique molecular indices or UMIs, may prove useful 
for improving efficiency and distinguishing true muta-
tions from PCR or sequencing errors [27]. New algo-
rithms and computational methods to address these 
limitations are currently being developed and may pro-
vide the necessary informatics infrastructure to accu-
rately and reliably analyze SCS data.

Single‑cell sequencing of tumor cells
Cancer stem cells
Normal stem cells are rare, quiescent cells that survive 
in an undifferentiated state for extended periods of time 
and have the capacity for unlimited self-renewal and the 
ability to generate morphologically diverse progeny cells 
[28]. Tissue-specific stem cells that reside in differenti-
ated tissues are important in growth and development 
because they also have the capacity for self-renewal and 
the ability to differentiate into a variety of specific cell 
types. Tissue-specific stem cells may accumulate certain 
mutations over time that initiate carcinogenesis, caus-
ing them to become cancer stem cells. Additional muta-
tions in cancer stem cells that alter molecular pathways 
influencing genome stability, resistance to apoptosis, and 
normal growth and differentiation, may occur during 
tumorigenesis, leading to substantial genetic and func-
tional diversity among clonal populations of cells within 
a primary carcinoma [29, 30]. Although the development 
of genetic diversity in cancer stem cells has not been well 
defined, SCS is now being used to study cancer stem cells 

to identify mutations in key functional pathways pro-
moting tumorigenesis [31]. Because cancer stem cells 
are believed to be responsible for many aspects of can-
cer biology such as tumorigenesis, metastasis, and drug 
resistance, eradication of these stem cells has become a 
prime objective of modern anti-cancer therapeutics.

The ability to quantify cell-to-cell variation in gene 
expression using single-cell RNA-seq is important to 
understanding clinical parameters such as a patient’s 
response to treatment and the potential for disease recur-
rence. As a result, research on cancer stem cells at the 
individual cell level has accelerated in recent years, focus-
ing on unique functional properties, including extensive 
cell-to-cell heterogeneity in gene expression and plastic-
ity in the degree of “stemness” [32]. Single-cell transcrip-
tome analysis of cancer stem cells has been difficult due 
to their rarity and the small amount of total RNA in a sin-
gle cell; however, recent developments in single-cell isola-
tion, WGA, and RNA-seq discussed above [33] provide 
an opportunity to study the transcriptomes of these rare 
stem cells and provide insight into the complex nature of 
functional heterogeneity at the individual cell level [34].

In breast cancer, single-cell gene expression profiling 
has been used to identify regulatory networks influenc-
ing differentiation, stemness, pluripotency, EMT, and 
proliferation, which are important for the identification 
of rare cell types such as stem cells [35]. Investigating the 
potential role of stem cells in the initiation and progres-
sion of breast cancer metastases, Lawson and colleagues 
[36] developed a fluorescence-activated cell sorting assay 
to identify human metastatic cells from a patient-derived 
xenograft (PDX) mouse model. Multiplex analysis 
detected heterogeneity in gene expression and revealed 
a distinct stem-cell-like gene expression signature in 
early stage metastatic breast cancer cells, suggesting that 
breast cancer metastases may be initiated by stem-like 
cells. Paired-end transcriptome sequencing identified 
unique patterns of gene expression in breast cancer stem 
cells compared to other breast cancer cell types that may 
regulate the effects of oncogenes and tumor suppressor 
genes [37].

Using single-cell RNA-seq to profile 430 cells from five 
primary glioblastomas, Patel et  al. [38] found variability 
among cells in patterns of gene expression in pathways 
such as oncogenic signaling, proliferation, and immune 
response. Importantly, an examination of “stemness” 
genes identified a continuous, rather than discrete, 
stemness-related gene expression signature among indi-
vidual glioblastoma cells, which suggests that glioblas-
tomas contain primitive populations of stem-like cells 
with variable degrees of differentiation and proliferative 
capacity.
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Table 3 Summary of single‑cell sequencing studies on primary tumors from a variety of human cancers

TNBC triple negative breast cancer, CNV copy number variant, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, SNV single nucleotide variant, 
RNA-seq RNA sequencing, PDX patient-derived xenograft, WES whole-exome sequencing KRAS Kirsten rat sarcoma viral oncogene homolog, EGFR epidermal growth 
factor receptor, SCS single-cell sequencing, ccRCC clear cell renal cell carcinoma, AML acute myeloid leukemia, ALL acute lymphoblastic leukemia, JAK2 Janus kinase 2
a These studies investigated transcriptomic differences in breast and glioblastoma stem cells isolated as single cells from the primary carcinomas

Tumor Tissue source  
(number of cells,  
patients/cell lines)

Data type Results Reference

Breast

TNBC (200, 2) CNV TNBC displays punctuated clonal evolution where CNVs are shared across 
single cells

[6]

TNBC (66, 1), ER + HER2‑ (113, 1) CNV and SNV TNBC has a higher mutation rate than ER + HER2‑ tumors or normal cells; 
CNVs are an early event in tumorigenesis

[39]

TNBC (1000, 12) CNV Supports theory of punctuated clonal evolution [40]

ER + (332, 2) CNV Supports theory of punctuated clonal evolution [41]

MDA‑MB‑231 and CN34 cell 
lines (44, 2)

RNA‑seq Rare cell populations with highly variable gene expression differences 
have increased metastatic capacity and ability to survive treatment

[42]

MDA‑MB‑231 cell line (15, 1) RNA‑seq Development of drug‑resistance to paclitaxel is associated with unique 
mutations; gene expression changes not detectable in bulk tumors

[43]

HER2 + (8, 2)a RNA‑seq 404 genes differentially expressed in breast cancer stem cells, including 
CA12 which may be prognostic

[37]

Lung

Lung adenocarcinoma PDX 
(34, 1)

RNA‑seq Gene expression profiling identifies a subpopulation of PDX cells with 
poor prognosis

[44]

Lung adenocarcinoma PDX 
(34, 1)

RNA‑seq and WES Identification of a subpopulation of KRAS+/low risk cells that were drug 
resistant

[45]

LC2/ad and LC2/ad‑R lung 
cancer cell lines (336, 7)

RNA‑seq Increased plasticity in gene expression among cells is associated with 
vandetanib resistance

[46]

Brain

EGFR amplified glioblastomas 
(50‑60, 2)

CNV Patterns of EGFR mutations differ among cells; heterogeneity may contrib‑
ute to therapy resistance

[48]

Glioblastomas (430, 5)a RNA‑seq Variable EGFR CNVs and cells reflecting different subtypes are present in 
primary glioblastomas

[38]

Colon

Colon tumor and normal adja‑
cent cells (63, 1)

SNV Different mutational profiles found in two sub‑clonal populations of cells 
may suggest bi‑clonal origins

[49]

HCT116 cell line (96, 1) RNA‑seq SCS reveals cryptic mutations not detected in bulk tumor [50]

Bladder

Muscle‑invasive bladder 
transitional‑cell carcinoma 
(66, 1)

SNV Cell‑lineage‑specific mutations may initiate carcinogenesis and drive 
cancer progression

[51]

Squamous cell carcinoma of the 
bladder (75, 1)

RNA‑seq Cell‑to‑cell heterogeneity in the expression of genes within cancer‑related 
pathways may affect outcomes

[52]

Kidney

Clear cell renal cell carcinoma 
(20, 1)

SNV ccRCC more genetically complex than predicted based on whole‑tumor 
sequencing

[53]

ccRCC primary carcinoma and 
paired metastasis propagated 
in PDX model (116, 1)

RNA‑seq Differential expression of targetable genes between cells supports multi‑
agent treatment strategy

[54]

Blood

Secondary AML (36, 3) SNV SCS identifies genomic complexity not seen in whole‑tumor analysis and 
resolves clonal relationships

[55]

Pediatric ALL (1479, 6) SNV CNVs precede somatic mutations; diversity of driver mutations affects 
clonal fitness

[56]

B‑cell ALL (276, 3) CNV CNVs not detected in bulk tumors are observed in single cells; CNVs 
develop in response to environmental stressors

[57]

JAK2‑negative myeloprolifera‑
tive neoplasm (58, 1)

SNV Lack of identifiable sub‑clones suggests tumor is monoclonal, but large 
genetic distances exist between cells

[58]
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Primary tumors
Breast cancer
A summary of SCS studies on primary tumors from a 
variety of human cancers is presented in Table  3. The 
first report of SCS in cancer published in 2011 [6] per-
formed copy number evaluation on flow-sorted nuclei 
from two triple-negative breast carcinomas. One tumor 
was found to be highly mono-genomic and was com-
posed of cells representing a single clonal expansion, 
but the other carcinoma was genetically heterogeneous, 
containing distinct clonal subpopulations of cells that 
were hypothesized to have originated early in tumor 
development. Further single-cell studies supported this 
concept that CNV tends to occur early in the develop-
ment of breast cancer. Wang and colleagues [39] evalu-
ated nuclei from cells undergoing cell division (G2/M 
nuclei) to examine clonal diversity and mutational evo-
lution in two breast cancer patients. No two single cells 
from a luminal A or triple negative breast tumor exhib-
ited identical genomic profiles even though the mutation 
rate was significantly higher in the triple negative carci-
noma (>13-fold). Alterations in copy number were widely 
shared, suggesting they occurred early in carcinogenesis, 
while point mutations appeared to evolve gradually over 
a longer period of time. A follow-up study using single-
nucleus sequencing of 1000 single cells from 12 patients 
with triple-negative breast cancer identified one to three 
major clonal subpopulations in each tumor that shared a 
common evolutionary lineage and were unlikely to result 
from gradual accumulation of CNVs over time [40]. Simi-
larly, in two patients with estrogen receptor (ER)-positive 
breast cancer, chromosomal alterations characteristic 
of ER+  tumors including duplications of 1q and 8q and 
deletion of 11q were shared across most single cells from 
both patients, indicating that these events occurred early 
in the development of these tumors [41]. Together, the 
SCS data suggest that the earliest steps of tumor develop-
ment involve copy number changes that occur in punctu-
ated bursts, but point mutations evolve gradually, driving 
clonal expansions and generating extensive clonal diver-
sity within a primary carcinoma.

NGS technology is being used extensively to identify 
genetic variability associated with acquired resistance 
to chemotherapy, which has become a major barrier to 
successful cancer treatment. Large-scale RNA-seq on 
single cells from breast cancer cell lines has shown that 
cells exhibiting high variability in RNA transcripts, which 
was also evident at the protein level, possess increased 
metastatic capacity and survival following chemothera-
peutic treatment [42]. Whole-transcriptome sequencing 
detected high heterogeneity in gene expression among 
individual cells from the MDA-MB-231 metastatic breast 
cancer cell line following exposure to paclitaxel (100 nM) 

for five days. Although most cells were killed, a small 
number of drug-tolerant cells survived, which expressed 
unique RNA variants influencing cell adhesion, cell sur-
face signaling, and microtubule organization/stabili-
zation [43]. These studies demonstrate that molecular 
heterogeneity at the single-cell level may have a signifi-
cant impact on patient outcomes and that quantification 
of this heterogeneity will be vitally important to success-
ful cancer treatment.

Adenocarcinoma of the lung
Adenocarcinoma of the lung is the most common histo-
logic subtype of lung cancer, accounting for more than 
40% of lung cancer incidence. Several studies have per-
formed single-cell RNA-seq on lung cancer patients to 
investigate molecular heterogeneity at the single-cell 
level. Min et al. [44] examined 34 single cells from a lung 
adenocarcinoma PDX model, and after filtering out dif-
ferentially expressed genes associated with xenografting 
and cell culture, identified a set of 64 genes associated 
with poor prognosis that stratified the adenocarcinoma 
cells into two groups. In a separate study, single lung 
adenocarcinoma cells from this same PDX were evalu-
ated by RNA-seq and expressed mutation profiling to 
study how heterogeneous cell populations respond to 
anti-cancer treatments [45]. Combining the status of 
the Kirsten rat sarcoma viral oncogene homolog (KRAS) 
G12D (35G>A) mutation with the expression profiles 
of 69 genes associated with clinical prognosis classi-
fied the adenocarcinoma cells into four groups with dif-
ferent gene expression patterns. One group of cells that 
appeared cell-cycle quiescent and exhibited upregula-
tion of ion channel transport genes survived exposure to 
chemotherapeutic agents and thus may be responsible 
for treatment failure. This study suggests that the actual 
cells responsible for drug resistance may be masked when 
analyzing large sections of the primary carcinoma, but 
single-cell RNA-seq data may be useful for detecting 
rare potentially drug-resistant sub-clones. Suzuki and 
colleagues conducted single-cell RNA-seq on 336 cells 
from seven lung adenocarcinoma cell lines to investigate 
how cellular heterogeneity influences drug response [46]. 
Focusing on the LC2/ad cell line and a derivative cell line 
(LC2/ad-R), which has acquired resistance to the multi-
tyrosine kinase inhibitor drug vandetanib, showed that 
average gene expression levels changed more in LC2/
ad-R cells than in LC2/ad cells in response to vandetanib 
treatment, potentially reflecting an acquired plasticity 
in the ability to respond to vandetanib. As seen in other 
single-cell studies, the great diversity in gene expression 
at the single-cell level, which may serve as a reservoir for 
cells to acquire drug resistance, cannot be detected with 
bulk tissue sequencing.
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Glioblastoma
Glioblastoma multiforme is the most common brain and 
central nervous system malignancy, characterized by a 
poor prognosis with exceptionally low overall survival. 
Glioblastomas are biologically aggressive carcinomas that 
present unique clinical challenges due to rapid growth 
rates with widespread invasion throughout the brain and 
inherent resistance to traditional as well as targeted ther-
apies [47]. Extensive cellular and molecular heterogeneity 
is a common feature of glioblastomas, including mul-
tiple alterations in the epidermal growth factor recep-
tor (EGFR) gene that may affect treatment response. To 
characterize genomic heterogeneity in EGFR-amplified 
glioblastomas, Francis et  al. conducted single-nucleus 
WGS on two glioblastomas with focal amplification of 
EGFR [48]. EGFR copy number was observed to be highly 
variable between single cells due to varying levels of 
EGFR amplification (5–200 copies), EGFRvII truncation 
(deletion of exons 14–15), and EGFRvIII deletion (dele-
tion of exons 2–7). These data suggest that heterogene-
ity in the expression of oncogenic EGFR mutations may 
contribute to therapy resistance and combining multiple 
EGFR inhibitors that act through different mechanisms 
may be required in glioblastoma patients who carry mul-
tiple EGFR variants.

Patel and colleagues used single-cell RNA-seq on 430 
cells from five primary glioblastoma neoplasms to sys-
tematically interrogate intratumor heterogeneity [38]. 
In agreement with the study described above by Fran-
cis et  al. [48], several oncogenic variants of EGFR were 
detected within a single glioblastoma. Based on patterns 
of gene expression, all five tumors were found to con-
sist of heterogeneous mixtures of individual cells cor-
responding to different glioblastoma subtypes defined 
by The Cancer Genome Atlas. Importantly, cell-to-cell 
variability was also detected in the expression of various 
signaling molecules and cell-surface receptors compris-
ing pathways that may contribute to targeted-therapy 
resistance in glioblastoma. As higher levels of cell-to-cell 
subtype heterogeneity were associated with decreased 
patient survival, previously unrecognized heterogeneity 
may be an important factor contributing to the high mor-
tality rates associated with glioblastoma.

Colon cancer
Unlike many types of human cancer, linear models of 
evolution have been developed for colon cancer, with 
mutations in genes such as adenomatous polyposis coli 
(APC) and tumor protein p53 (TP53) playing critical roles 
in tumor progression. WES performed on 63 single colon 
adenocarcinoma cells revealed two groups of tumor cells 
with distinct genetic profiles [49]. The major subgroup 
of tumor cells was characterized by a high frequency of 

APC and TP53 mutations while in the minor subgroup, 
mutations in the cell division cycle 27 (CDC27) and pol-
yadenylate-binding protein, cytoplasmic, 1 (PABPC1) 
genes were predominant. The authors concluded that this 
tumor was bi-clonal in origin, with each subpopulation 
deriving from separate ancestors; however, this conclu-
sion has been questioned as not all cells in the major pop-
ulation had mutations in APC and TP53 and mutations 
in CDC27 and PABPC1 were present in both groups, 
suggesting possible technical difficulties associated with 
WGA [16]. In a separate study, RNA-seq data gener-
ated on 96 single cells from the HCT116 colon cancer 
cell line were used to assess patterns of gene expression 
and detect enrichment of DNA variants in colon cancer-
related pathways [50]. SNV data from the single isolated 
cells were mostly consistent with results obtained when 
the cell line was sequenced en masse, but single cells dis-
played an array of variants that were masked when many 
cells from the cell line were sequenced together (bulk 
sequencing). This study showed that single-cell RNA-seq 
of colon cancers may reveal cryptic genetic alterations in 
cancer-related genes, enrichment of certain functional 
pathways, and presence of fusion proteins that may play 
important roles in the development of colon cancer.

Urinary system cancers
Bladder cancer accounts for nearly 5% of all new cancer 
cases in the United States and is responsible for approxi-
mately 3% of all cancer deaths. Bladder cancer is marked 
by heterogeneity in the types of carcinomas observed 
in patients and the presence of infiltrating normal cells. 
Single-cell exome sequencing of 66 individual tumor 
cells from a muscle-invasive bladder transitional-cell 
carcinoma revealed that all cells were descended from a 
common ancestral cell, but subsequent genomic evolu-
tion created variability that could partition the cells into 
two distinct groups [51]. The authors hypothesized that 
the bladder cancer cells were subjected to selective pres-
sure and accumulated mutually-exclusive driver muta-
tions within these cell lineages during development. The 
projected timing of key mutations during cancer growth 
suggests that mutations in cancer-associated genes may 
initiate carcinogenesis and lead to genetically-distinct 
cell lineages that influence resistance to treatment.

To evaluate cellular heterogeneity in gene expression 
within a squamous cell carcinoma of the urinary blad-
der, Zhang et  al. subjected 75 individual cancer cells to 
RNA-seq [52]. Cell-to-cell heterogeneity was detected 
for multiple genes in important cancer-related pathways, 
including the mitogen-activated protein kinase (MAPK), 
Janus kinase/signal transducers and activators of tran-
scription (JAK-STAT), Notch, phosphoinositide 3-kinase 
(PI3K), and vascular endothelial growth factor (VEGF) 
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pathways. Because these pathways represent impor-
tant targets for anti-cancer therapeutics, heterogeneity 
in expression may affect tumor response to therapy and 
patient survival.

Renal cell carcinoma accounts for more than 200,000 
new cancer cases and over 100,000 deaths worldwide 
each year. Clear cell renal cell carcinoma (ccRCC), the 
most common form of renal cell carcinoma, is charac-
terized by a relatively low mutation rate with few muta-
tions shared among patients. To investigate intratumor 
heterogeneity at the individual cell level in ccRCC, WES 
was conducted on 20 single ccRCC cells from a 59-year-
old male patient [53]. Phylogenetic analysis suggested 
that progression from normal to cancer cells occurred 
quickly. Although no significant sub-clonal populations 
of cells were detected within the tumor, there were many 
rare mutations, each present in only a few cancer cells. 
These mutations would not have been detected using 
whole-tumor sequencing. This study provided an impor-
tant view of the intratumor genetic landscape of a ccRCC 
carcinoma at the single-cell level and revealed that renal 
carcinomas may be more genetically complex than previ-
ously thought.

To examine transcriptional heterogeneity during 
metastatic progression and the activation of signaling 
pathways influencing drug responsiveness, single-cell 
RNA-seq was performed on a primary ccRCC carci-
noma and a paired lung metastasis following propagation 
in a PDX model [54]. This patient was not responsive 
to sequential therapies, including pazopanib, everoli-
mus, and high-dose interleukin-2. The RNA-seq results 
revealed significant variability in expression and activa-
tion of pathways targeted by therapy, such as the EGFR 
and c-Src proto-oncogene pathways, between the pri-
mary carcinoma and the metastasis, and among indi-
vidual cancer cells within both tumors. Heterogeneity in 
the activation status of the EGFR and Src pathways corre-
sponded to variability in drug sensitivity at the individual 
cell level. High-resolution transcription profiling of single 
cells established the molecular basis for treatment resist-
ance and led the authors to propose that combination 
therapy with afatinib and dasatinib may be a more effec-
tive treatment option than monotherapy for metastatic 
renal cell carcinoma.

Hematopoietic tumors
Hematopoietic and lymphoid tissue malignancies affect 
the blood, bone marrow, and lymphatic system. To fur-
ther examine genomic complexity in hematopoietic can-
cers previously studied by WGS of bulk tumor samples, 
Hughes and colleagues performed targeted sequenc-
ing to genotype more than 1900 SNVs in single can-
cer cells from three patients initially diagnosed with 

myelodysplastic syndrome who progressed to second-
ary acute myeloid leukemia, the most common form of 
acute leukemia in adults [55]. SCS identified genomic 
complexity not evident in the whole-tumor analysis and 
improved the ability to resolve clonal relationships com-
pared to sequence generated from unfractionated tumor 
samples. To delineate the clonal structure and evolu-
tionary history of acute lymphoblastic leukemia (ALL), 
targeted sequencing of a panel of SNVs, deletions, and 
immunoglobulin heavy chain sequences was performed 
on 1479 single cells from six children with pediatric 
ALL [56]. As seen with other types of cancer, ALL car-
cinomas were characterized by distinct clonal popula-
tions of cells where alterations in copy number preceded 
the occurrence of SNVs. Phylogenetic analysis revealed 
that KRAS-associated driver mutations occurred late in 
tumor development and facilitated the expansion of cer-
tain clones, which became dominant but did not com-
pletely outcompete all of the other clones in each patient. 
Separately, Bakker et al. used single-cell WGS to examine 
karyotype dynamics in three children with chromosom-
ally-unstable B cell ALL [57]. Traditional cytogenetics 
conducted at the time of diagnosis characterized the ALL 
carcinomas as displaying different levels (low, interme-
diate, and high) of aneuploidy. SCS identified subpopu-
lations of cells within each tumor that harbored copy 
number alterations not detected in whole-tumor analysis. 
When cells from the ALL tumor with intermediate levels 
of aneuploidy were engrafted into immunodeficient mice, 
changes in copy number were observed, suggesting that 
copy number heterogeneity in individual cells may evolve 
in response to stressors, such as a new microenviron-
ment or exposure to therapy.

Essential thrombocythemia (ET) is one of several mye-
loproliferative neoplasms in which sustained prolifera-
tion of megakaryocytes leads to an excess of circulating 
thrombocytes (platelets). Although more than half of all 
ET patients carry mutations in the Janus kinase 2 (JAK2) 
gene, mutations in other genes are known to affect dis-
ease phenotype and clinical outcome. WES of 58 single 
cancer cells from a JAK2-negative ET patient was used 
to examine clonal composition of the neoplasm and 
identify genes involved in disease progression [58]. The 
authors identified 18 genes hypothesized to play a role in 
tumor development and concluded that the disease was 
monoclonal in origin. However, these conclusions were 
contradicted by phylogenetic analyses, which showed 
large genetic distances between cells, and therefore it is 
unclear if these differences reflect real genomic diversity 
or technical artifact.

SCS has been useful for revealing molecular het-
erogeneity among individual cells of primary carcino-
mas from a variety of human cancers that would not be 
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detectable with bulk tumor sequencing. At the single-cell 
level, most primary tumors are polyclonal due to punc-
tuated clonal evolution where copy number alterations 
serve as founder mutations and additional CNVs and/or 
point mutations occur later in tumor development. These 
subsequent mutations are restricted to subpopulations 
of cells where they contribute to clonal fitness and thus 
influence resistance to treatment and patient survival.

Circulating and disseminated tumor cells
A summary of SCS studies on CTCs and DTCs from a 
variety of human cancers is presented in Table  4. Sub-
stantial evidence suggests that distinct subpopulations 
of stem-like cells mediate many aspects of cancer biol-
ogy, including metastasis and therapeutic resistance [59]. 
CTCs are viable cells that are shed from a primary carci-
noma and circulate throughout the bloodstream, carry-
ing genetic alterations found in the primary tumor [60]. 
The presence and/or abundance of CTCs in whole blood 
has been shown to be an independent predictor of poor 
survival and an unfavorable response to treatment in 
numerous cancer types [61], and the persistence of dis-
seminated cells in bone marrow after adjuvant therapy is 
significantly associated with increased risk for recurrence 
and mortality [62].

Only certain CTCs are believed to be capable of form-
ing successful metastases. Recent evidence suggests that 
some CTCs, referred to as circulating cancer stem cells, 
exhibit a stem-cell-like phenotype and may possess 
metastasis-initiating capabilities associated with resist-
ance to therapy [63, 64]. Because CTCs that display stem 
cell characteristics may initiate successful metastases, it 
is important to characterize these cells, which are eas-
ily accessible in peripheral blood, for their usefulness in 
predicting cancer progression, metastasis, and treatment 
response.

Circulating tumor cells
SCS is a useful technique for improving our under-
standing of clonal evolution in human cancers, as well 
as molecular changes that occur in disseminated cancer 
cells, which may drive metastasis and lead to develop-
ment of therapeutic resistance. Numerous studies have 
shown that mutational profiles identified by NGS may 
be similar in primary carcinomas, metastases, and CTCs 
in patients with a variety of cancer types, but important 
molecular heterogeneity has been detected, suggesting 
potential utility of CTCs in patient care (reviewed in [65, 
66]).

NGS of 68 cancer-associated genes in individual CTCs 
from patients with stage IV colorectal cancer found 
that most mutations, particularly those in driver genes, 
observed in the primary tumor and metastatic deposits 

were also present in CTCs, suggesting that the muta-
tional spectrum of complex tumor genomes can be 
inferred from CTCs [67]. Similarly, WES of single CTCs 
in lung cancer patients detected reproducible CNVs that 
were similar to those in metastatic deposits of the same 
patient [68]. In patients with prostate cancer, 70% (51/73) 
to 86% (197/229) of all mutations observed in individual 
CTCs were also found in the primary tumor and metas-
tasis [69, 70].

SCS has been used to identify within-patient genomic 
heterogeneity among single CTCs isolated from blood of 
breast cancer patients. For example, mutational hetero-
geneity in the TP53 gene, platelet-derived growth factor 
receptor, alpha (PDGFRA), phosphatidylinositol-4,5-bi-
sphosphate 3-kinase, catalytic subunit alpha (PIK3CA), 
and other genes has been observed among individual 
CTCs from women with metastatic breast cancer [71, 
72]. Similarly, the mutational status of TP53 has been 
shown to vary among CTCs in breast cancer patients, 
with some CTCs carrying the same mutation(s) as the 
corresponding primary carcinoma, while other CTCs 
carry different mutations [73].

Mutational heterogeneity present in a primary carci-
noma is often reflected in the genomes of CTCs; how-
ever, further genomic changes that promote successful 
metastasis may occur exclusively in CTCs and DTCs [74]. 
Such heterogeneity at the single-cell level likely reflects 
dynamic and ongoing mutational changes that occur dur-
ing disease progression in a constantly evolving cancer 
genome. Therefore, the genomic signatures of many indi-
vidual CTCs from a cancer patient may be more informa-
tive than traditional biopsies of the primary tumor for 
designing targeted therapies and monitoring therapeutic 
response.

Optimal therapeutic strategies in breast cancer 
patients are highly dependent on the behavior and resil-
ience of CTCs, which may be influenced by patterns 
of gene expression. Similar to genomic heterogeneity, 
cell-to-cell variability in patterns of gene expression 
has been identified among individual CTCs. In women 
initially diagnosed with human epidermal growth fac-
tor receptor 2 (HER2)-negative breast cancer, RNA-
seq of individual CTCs documented the emergence of 
HER2 +  CTCs [75]. The persistence of discrete popu-
lations of HER2+  and HER2 −  CTCs, which have the 
capacity to interconvert spontaneously, may contribute 
to progression of breast cancer and acquisition of drug 
resistance. Similarly, single-cell transcriptome analysis of 
CTCs revealed heterogeneity in the expression of genes 
associated with metastasis and induction of the EMT, 
where epithelial cells transition to a more mesenchymal 
phenotype, which increases invasiveness and resistance 
to apoptosis [76].
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Men with prostate cancer may be initially responsive to 
androgen receptor (AR) inhibitors, but in some patients, 
single-cell RNA-seq of individual CTCs detected het-
erogeneity in the expression of AR gene mutations and 
activation of non-canonical (β-catenin-independent) 
Wnt signaling, which may promote invasiveness and 
malignant progression, thereby contributing to treatment 
failure [77]. In pancreatic ductal adenocarcinoma, RNA-
seq has been used to compare genome-wide expression 
profiles of single cells disaggregated from the primary 
carcinoma with corresponding CTCs in a mouse model 
of pancreatic cancer [78]. Compared with cells from 
the primary tumor, CTCs showed enrichment of some 
genes associated with stem cells and reduced expression 

of epithelial markers (E-cadherin and Mucin 1). Within 
CTCs, a high degree of heterogeneity was evident in the 
expression of mesenchymal transcripts, platelet-derived 
markers, and proliferative gene signatures.

Disseminated tumor cells
Research on the role of DTCs in bone marrow of cancer 
patients has increased in recent years because the dis-
semination of cells from a primary carcinoma is believed 
to be a critical step in the process of disease progres-
sion and formation of distant metastases. The presence 
of single DTCs in bone marrow has been established as 
a strong predictor of distant disease-free survival and 
breast cancer-specific survival in breast cancer patients 

Table 4 Summary of single‑cell sequencing studies of CTCs and DTCs

CTC circulating tumor cell, WES whole-exome sequencing, WGS whole-genome sequencing, CNV copy number variant, SNV single nucleotide variant, INDEL insertion/
deletion polymorphism, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, TP53 tumor protein p53, DTC disseminated tumor cell, RNA-
seq RNA sequencing, HER2 human epidermal growth factor receptor 2, ALK anaplastic lymphoma kinase, LN lymph node

Cell type Tumor type (number of cells, patients) Data type Results Reference

CTCs

Colorectal (37, 6) Targeted sequencing Most mutations in CTCs are present in sub‑clonal popula‑
tions of the primary tumor or metastases, but some muta‑
tions are exclusive to CTCs

[67]

Lung (68, 11) WES/WGS CNVs in CTCs are dissimilar between cancer subtypes; 
patterns of SNVs and INDELs in CTCs change during treat‑
ment, but CNVs remain constant

[68]

Prostate (99, 1) WGS SNVs and structural variations in CTCs are also present in 
primary tumors or metastases

[69]

Prostate (25, 2) WES The majority of mutations in CTCs are also present in the 
primary tumor and metastases

[70]

Breast (14, 4) Targeted sequencing High levels of heterogeneity in CTCs within and between 
patients as well as before and after treatment

[71]

Breast (115, 18) Targeted sequencing In some patients heterogeneity of PIK3CA mutations is 
observed among CTCs and between CTCs and the 
primary tumor

[72]

Breast (11, 2) Targeted sequencing Some CTCs carry the same TP53 mutation(s) as the primary 
carcinoma, other CTCs carry different mutations

[73]

Breast (185, 12) Targeted sequencing CTCs show genetic heterogeneity of PIK3CA mutations over 
time and discordance between DTCs and metastases

[74]

Breast (22, 2) RNA‑seq HER2 + CTCs may arise in HER2‑ breast cancer patients and 
may contribute to progression and drug resistance

[75]

Prostate (77, 13) RNA‑seq Heterogeneity in expression of androgen receptor muta‑
tions between CTCs within patients may influence treat‑
ment response

[77]

DTCs

Breast (24, 1) Targeted sequencing DTCs show genetic discordance of PIK3CA mutations versus 
CTCs and metastases; mutations are stable during cell 
culture

[74]

Breast (2, 2) WGS In one patient, DTC was highly concordant with the non‑
complex primary tumor; DTC from complex primary 
tumor showed greater genetic divergence

[82]

Neuroblastoma (144, 10) Targeted sequencing Mutational status for the ALK gene is concordant between 
the primary tumor and DTCs for all patients

[84]

Breast (63, 6) WGS Some DTCs originate from clones in the primary carcinoma, 
other DTCs arise from LN metastases

[85]
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[79]. Patients with non-metastatic breast cancer remain 
at significant risk of relapse, even after complete surgical 
excision of the primary carcinoma, likely due to the per-
sistence of disseminated cancer cells [80].

Disseminated cancer cells detected in bone marrow of 
patients with breast cancer have been found to express 
proteins characteristic of cancer stem cells [81]. DTCs are 
similar to CTCs in that they arise from sub-clonal popu-
lations of cells in the primary carcinoma and undergo 
further molecular changes after dissemination [82]. Can-
cer biomarkers and genetic variation in both CTCs and 
DTCs may evolve during disease progression, and signifi-
cant molecular discordance with important therapeutic 
implications may develop between the primary tumor 
and disseminated cells [83].

SCS studies of DTCs have been limited, presumably 
because of the invasive surgical procedures needed to 
collect these cells. In one study, Carpenter and colleagues 
isolated 144 disseminated cells from bone marrow of 
patients affected with neuroblastoma [84]. In patients 
carrying a mutation in the anaplastic lymphoma kinase 
(ALK) gene in their primary tumor, single-cell WGA and 
sequencing detected the same mutation in single DTCs 
from bone marrow. Demeulemeester and colleagues 
used SCS to trace the origin of 63 single disseminated 
cells from six non-metastatic breast cancer patients [85]. 
Approximately one-half of the DTCs which morphologi-
cally resembled cancer cells were found to be dissemi-
nated from the primary tumor; however, some of the 
remaining cells displayed normal copy-number profiles, 
while other cells had CNVs that were genetically differ-
ent from the primary tumor. Reconstructing evolution-
ary relationships between the primary tumor and DTC 
genomes showed that some DTCs originated from the 
predominant clone in the primary carcinoma, other 
DTCs arose from less prevalent lineages in the primary 
tumor, and a few DTCs descended from minor clones 
observed in the axillary lymph node metastases.

Single‑cell sequencing in clinical practice
Targeted therapeutics are designed to focus on actionable 
mutations detected in a biopsy of the primary tumor, but 
these “actionable” mutations may no longer drive disease 
progression once tumor cells disseminate from the pri-
mary carcinoma and undergo unique genomic changes. 
The ability of single-cell sequencing to delineate the 
genomics and transcriptomics of circulating and dissemi-
nated cancer cells holds great promise for making mean-
ingful improvements in personalized oncology over the 
next several years. To date, SCS has been used primarily 
in the research setting; however, there may be a number 
of clinical applications, including diagnosis, prognosis, 
treatment decisions, and monitoring [86]. An intriguing 

use of SCS would be early disease diagnosis through the 
analysis of bodily fluids such as blood or urine. Through 
regular noninvasive monitoring of high-risk patients, 
single disseminated cancer cells may be detectable at an 
early stage of disease before a cancerous lesion could be 
visualized with current imaging technologies. Identifica-
tion of clinically-actionable mutations at an early stage 
could lead to targeted treatment before tumor heteroge-
neity and multiple genomically-distinct clones that are 
resistant to therapy can evolve. Additionally, improve-
ments in SCS technologies will enable analyses of small 
tumors which previously were too small to analyze using 
bulk sequencing approaches. As demonstrated by SCS 
of primary carcinomas, single biopsies may fail to ade-
quately account for intratumor heterogeneity. Assess-
ing genomic heterogeneity within the primary tumor or 
among disseminated cells would allow for the calcula-
tion of diversity scores which may be used prognostically, 
with higher intratumor heterogeneity associated with less 
favorable outcomes [65, 87].

SCS may also be used to optimize treatment. The abil-
ity to identify common mutations throughout a carci-
noma could permit use of single agents that target the 
bulk of the tumor, while assaying heterogeneous action-
able mutations could lead to implementing combinato-
rial approaches that target sub-clonal populations of cells 
[86]. For cancer treatment, the most promising clinical 
use of SCS is the analysis of CTCs, which may provide a 
non-invasive method for clinicians to monitor response 
to therapy before tumors become symptomatic or detect-
able through traditional approaches. Serial analysis of 
individual CTCs isolated from blood samples taken over 
the course of treatment may be used to identify new 
mutations that emerge in response to therapy which 
influence disease progression or therapeutic resistance 
[88], enabling oncologists to alter treatment accord-
ingly. Targeted elimination of circulating tumor cells with 
stem-cell-like expression profiles could prevent the colo-
nization of secondary sites and formation of metastases.

Despite the potential utility of SCS in clinical cancer 
care, several current limitations need to be addressed 
before SCS can be used routinely in clinical practice. In 
the clinical environment, cancerous tissues excised from 
the body have traditionally been prepared for patho-
logical examination by fixing the tissue in formalin and 
embedding in paraffin. However, most single-cell isola-
tion and sequencing methods have been designed for 
use with suspensions of live cells acquired from fresh tis-
sues [86]. Although the nuclear membrane is resistant 
to freezing and thawing, allowing individual nuclei to be 
isolated from nuclear suspensions derived from frozen 
tissues for DNA sequencing [89], fresh tissue is currently 
needed for single-cell RNA-seq. To implement SCS in the 
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clinic, new tissue collection and handling protocols will 
have to be established and validated at medical centers 
and treatment facilities. Single-cell WGA and WTA tech-
niques currently being used in the research setting have 
technological limitations, and an important challenge 
to implementing SCS in the clinic is overcoming errors 
that may be introduced by amplifying the minute amount 
of DNA or RNA in a single cell and properly validating 
the sequencing results. Improved technologies as well as 
new computational methods will be needed before SCS 
can reliably distinguish technical errors from true bio-
logical variability and generate valid results for informing 
patient care [7, 90].

Currently, the cost of SCS prohibits large-scale imple-
mentation in the clinical setting, particularly because 
added costs for computational analysis will be incurred 
and assessment of numerous individual cells is often 
necessary. Hundreds of single cells may need to be 
sequenced, depending on a variety of factors, including 
the state of disease progression, tumor heterogeneity, and 
rarity of clinically important clones. Few insurance com-
panies provide coverage for SCS, particularly for cancer 
patients, and until the clinical validity and clinical util-
ity of SCS are unequivocally demonstrated, patients will 
have to pay out of pocket for these services. Large stud-
ies assessing clinical validity and robust decision models 
regarding patient outcomes are needed to influence payer 
coverage decisions regarding SCS [91].

A major obstacle complicating the introduction of 
SCS into the clinical environment is the lack of onsite 
oncologists or physicians who sufficiently understand 
the sequencing results and are able to translate those 
results into clinical action. Questions being asked by 
clinicians include: (1) how to interpret and apply SCS 
results to individual patients, (2) how to translate DNA 
or RNA variation within single cells into definable clini-
cal phenotypes, and (3) how to use SCS results to predict 
patient response to treatment [92]. Despite the growing 
availability of clinically-useful DNA- and RNA-based 
tests, ethical issues of sharing with the patient second-
ary (incidental) findings—genetic alterations associated 
with conditions or diseases unrelated to the patient’s 
present condition—remain unresolved [93]. In addition, 
although the cost of SCS continues to decrease, the time 
required for completing the isolation of single cells, DNA 
amplification, NGS, and data interpretation remains a 
significant obstacle. One recent study examining the 
integration of WGS analysis into cancer care found that 
results were clinically actionable in  ~55  days, consider-
ably longer than the 10- to 14-day time frame that most 
patients and physicians would find acceptable for dis-
eases such as cancer where rapid treatment decisions are 
highly desirable [94].

The Individualized Molecular Pancreatic cancer Ther-
apy (IMPaCT) trial, designed to improve outcomes using 
genomic information to guide treatment decisions for 
patients with advanced pancreatic cancer, found that 
a complex infrastructure and multidisciplinary team 
consisting of a genetic pathologist, oncologist, genetic 
counselor, research coordinator, and project manager 
were necessary to collect and process biospecimens, 
conduct genomic analyses, and return results in a clini-
cally relevant timeframe [95]. The median time from con-
sent to return of validated results was 21.5  days (range 
7–82  days). The trial concluded that current barriers 
to implementing NGS technology in the clinic are sur-
mountable with the appropriate personnel and sufficient 
resources.

Conclusions
Over the next several years, advancements in the isola-
tion of single viable cells, as well as WGA, NGS, and 
computation methods will be needed to improve the clin-
ical utility of SCS [4]. The ability to amplify and sequence 
RNA molecules other than polyadenylated mRNAs, such 
as long non-coding RNAs and micro RNAs, will provide 
valuable information on gene regulation. New methods 
to simultaneously amplify and sequence genomic DNA 
and full-length mRNA from the same cell may provide 
powerful tools for assessing the effects of genomic vari-
ation on gene expression profiles [96, 97]. Likewise, the 
ability to couple genome-wide methylation [98] and/or 
proteomic [99] analysis with single-cell DNA- and RNA-
sequencing from individual cells may reveal mechanisms 
by which genetic and epigenetic modifications regulate 
transcriptional heterogeneity in cancer. Fluidic systems 
to simultaneously isolate and analyze millions of cells 
in parallel may provide a comprehensive view of can-
cer development and response to therapy within each 
patient. Finally, localizing the spatial organization of gene 
and protein expression within a single cell may be key to 
determining the behavior and survival of individual can-
cer cells during therapy [100].

SCS is providing new insight into the biological and 
molecular complexity of cancer, yet despite major recent 
advancements, the extent of genomic and transcriptomic 
heterogeneity at the individual cell level in human cancer 
remains largely uncharacterized. Heterogeneity in cancer 
patients is known to be dynamic and to evolve unpre-
dictably during disease progression, which creates a sig-
nificant challenge for modern cancer treatments. SCS has 
the potential to create a paradigm shift in cancer care to 
precision (personalized) treatment where heterogeneity 
is thoroughly characterized prior to and during treat-
ment. Cancer immunotherapy, in particular, may benefit 
from single-cell methods that define the role of innate 
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heterogeneity in the development of immune resistance 
and monitor the response of individual cancer cells to 
immune-regulatory agents. Integrated SCS approaches 
may provide important new insights into cancer evolu-
tion and unveil new avenues for dissecting the complex 
activation of signaling pathways that cause heterogene-
ous cellular responses during treatment.
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