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Abstract

Extensive genomic and transcriptomic heterogeneity in human cancer often negatively impacts treatment efficacy

and survival, thus posing a significant ongoing challenge for modern treatment regimens. State-of-the-art DNA- and
RNA-sequencing methods now provide high-resolution genomic and gene expression portraits of individual cells,
facilitating the study of complex molecular heterogeneity in cancer. Important developments in single-cell sequenc-
ing (SCS) technologies over the past 5 years provide numerous advantages over traditional sequencing methods for
understanding the complexity of carcinogenesis, but significant hurdles must be overcome before SCS can be clini-
cally useful. In this review, we: (1) highlight current methodologies and recent technological advances for isolating
single cells, single-cell whole-genome and whole-transcriptome amplification using minute amounts of nucleic acids,
and SCS, (2) summarize research investigating molecular heterogeneity at the genomic and transcriptomic levels and
how this heterogeneity affects clonal evolution and metastasis, and (3) discuss the promise for integrating SCS in the

clinical care arena for improved patient care.
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Introduction

The human body is composed of an estimated forty trillion
cells [1]. Cellular diversity is controlled by specific RNAs
and proteins, whose expression is influenced by exogenous
and endogenous signals. While DNA was traditionally
thought to be stable, with individual genomes set at the
time of fertilization, recent evidence demonstrates that
humans are genomic mosaics, comprised of cells that are
genetically distinct even though they were derived from a
single zygote [2]. Cancer is one of the most common forms
of mosaicism in humans, where genetic changes occur in
the cancer genome during tumorigenesis. Genomic het-
erogeneity in cancer is further complicated by the poly-
clonal nature of most carcinomas, with populations of
tumor cells harboring genetic alterations that differ from
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and indicate if changes were made.

the host genome and from other cells within the tumor.
Intratumor heterogeneity can affect all stages of cancer
care from diagnosis through treatment of metastatic dis-
ease. Diagnoses based on a single biopsy will likely under-
estimate the extent of heterogeneity within the tumor and
fail to completely detect all clinically-actionable variants,
leading to the emergence of drug-resistant populations
of cancer cells. Designing therapeutic regimens based
solely on characteristics of the primary tumor often fails
to effectively treat metastases, which may be descended
from minor sub-clones within the primary tumor and/or
have acquired new mutations [3]. Therefore, the ability to
optimize patient care will depend on a thorough charac-
terization of genomic and transcriptional heterogeneity in
cancer at the single-cell level.

Evaluating genomic heterogeneity at the single-cell
level requires overcoming a number of challenges includ-
ing isolation of individual cells, effective amplification
of a single-cell genome to allow for targeted, exome- or
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genome-wide sequencing, and bioinformatics approaches
to discriminate technical artifact from biological dif-
ferences [4]. The advent of next-generation sequencing
(NGS) methods enables researchers to generate genomic,
transcriptomic and/or epigenetic data from a single cell
(Fig. 1). In this review, we describe (1) current single-
cell sequencing (SCS) methodologies and their applica-
tions for investigating the important role of genomic and
transcriptomic heterogeneity in cancer and (2) how SCS
approaches may be incorporated into the clinical arena
for improved patient care.
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Single-cell sequencing technologies

SCS is a relatively new technology. The first single-cell
RNA sequencing (RNA-seq) data, generated from a sin-
gle mouse blastomere, were published in 2009 [5], and
the first protocol to sequence DNA from single cells
was published in 2011 [6]. Generation of whole-genome
sequence (WGS), whole-exome sequence (WES), or
RNA-seq from single cells requires isolation of individ-
ual viable cells or intact nuclei, amplification of minute
amounts of DNA or RNA from the cell, sequencing, and
analysis of the ensuing data. Continuous advancements
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Fig. 1 Applications of single-cell sequencing in cancer research. a Resolving intratumor heterogeneity; b investigating clonal evolution in primary
tumors; € studying invasion in early stage cancers; d tracing metastatic dissemination; e genomic profiling of circulating tumor cells; f investigating
mutation rates and mutator phenotypes; g understanding evolution of resistance to therapy; h defining cancer stem cells and cell hierarchies; and i
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in technology over the past 5 years have led to significant
improvements in genome coverage and sequence quality,
as well as drastic reductions in overall costs.

Isolation of single cells

A summary of methods for isolating single cells is pre-
sented in Fig. 2. Serial dilution provides a simple, low-cost
method for isolating individual cells from abundant cell
populations but is time consuming and requires expertise
[7]. Micromanipulation and laser capture microdissec-
tion (LCM) both rely on visualization of the cells using a
microscope. While LCM has the advantage of preserving
spatial relationships within a tissue specimen, the tissue
must be sectioned, often at thicknesses smaller than the
diameter of single cell, leading to loss of chromosomal
material [8]. Flow-assisted cell sorting and microfluidic
platforms represent high throughput approaches that uti-
lize specific properties of the cells, such as size or expres-
sion of biomarkers, for isolating individual cells from
cellular suspensions of fresh tissue [9]. The approaches
outlined above are sufficient for isolating single cells from
tissue sections or large populations of cells in culture, but
are not effective for isolating rare cells such as circulating
tumor cells (CTCs) in peripheral blood or disseminated
tumor cells (DTCs) in bone marrow.

In contrast to the relatively non-specific methods men-
tioned above, numerous techniques have been developed
for targeting and isolating single rare cancer cells from
large populations of histologically diverse cells such as
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peripheral blood (Fig. 2). The CellSearch™ system is the
only FDA-approved cell isolation and enumeration sys-
tem currently available. An important component of
the system is the CellSearch® Epithelial Cell Kit, which
contains magnetic capture particles with a surface layer
coated with antibodies targeting epithelial markers
including leukocyte common antigen (CD45—), epithelial
cell adhesion molecule (EpCAM+), and cytokeratins 8,
18+, and 19+. Rare CTCs are isolated from whole blood
and enriched by exposing the buffy layer to the capture
particles. During incubation, CTCs bind to the capture
particles, are magnetically separated from unbound cells,
and are then enumerated by fluorescence staining [10].

MagSweeper " is an automated system that also uses
immunomagnetic separation to purify rare cells in cir-
culation. A magnetic rod is robotically swept through a
sample containing labeled cells from peripheral blood to
specifically capture circulating epithelial cells. Sequential
rounds of cell capture-wash-release-recapture result in
an enrichment of epithelial cells by 108-fold. Purified cells
can be individually selected for subsequent biochemical
analysis [11].

The DEP-Array" system combines size and cell-sur-
face expression properties for cell isolation. DEP-Array""
achieves CTC enrichment by density gradient centrifuga-
tion followed by staining with antibodies directed against
CD45— and various cytokeratins. CTCs with the appro-
priate epithelial cell morphology and staining patterns
are then recovered for molecular assessment [12].
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Fig. 2 Single-cell isolation methods. a Methods for isolating single cells from abundant cell populations include: robotic or manual micromanipula-
tion, serial dilution, flow-sorting, microfluidic methods, and laser-capture microdissection; b methods for isolating single cells from rare cell popula-
tions include: CellSearch"™, DEP-Array™, CellCelector™, MagSweeper™, and nanofilters [16]
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CellCelector™ is a technique that uses automated
micromanipulation for isolating individual cells from
dense, single-cell microarrays. A suspension of cells from
culture (or peripheral blood) is deposited on custom-
made arrays containing micro-wells, controlling distribu-
tion and density to deposit one cell in each well. The array
is then screened by a process known as micro-engrav-
ing—the array is covered with a glass slide coated with
mono-clonal antibodies (goat anti-mouse IgA and IgQG)
and incubated. Using a microarray scanner, the glass slide
can be interrogated for antibodies of interest that were
secreted by the cells in the corresponding wells. Areas on
the glass slide serve as a guide to locate matching micro-
wells and individual cells in the wells can be selected by
micromanipulation for subsequent analysis [13].

Because some of these isolation methods rely on cell-
surface markers such as EpCAM and other epithelial pro-
teins, these systems may not detect all rare cancer cells,
including those that have undergone epithelial-to-mesen-
chymal transition (EMT). The CellSieve™ technique uses
size discrimination to separate and isolate cells, and thus
may be useful for capturing CTCs that are frequently
larger than white blood cells [14].

Whole-genome amplification
The minute amount of DNA (~6 pg) and RNA (~10 pg)
isolated from a single diploid cell requires whole-genome
amplification (WGA) or whole-transcriptome amplifica-
tion (WTA) to generate sufficient material for NGS. In
recent years, numerous methods have been developed
to amplify the DNA or RNA in a single cell with a focus
on minimizing technical artifacts, such as preferential
amplification of certain regions and/or allelic loss, and
providing complete coverage of the genome [8, 15-17].
Currently, three main approaches are used for WGA
(Table 1). In the degenerate oligonucleotide-primed poly-
merase chain reaction (DOP-PCR) method, amplification
is initiated with primers that share defined sequences at
the 5’- and 3’-ends but contain six variable nucleotides
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(all possible combinations of A, C, G, and T) near the
3’-end to allow dense, even hybridization to the tem-
plate DNA [18]. During the initial five to eight cycles of
amplification, the defined and variable nucleotides at the
3’-end of the primers bind to the DNA template at many
sites throughout the genome, followed by strand exten-
sion. In the second stage of amplification, the previously
generated amplicons are amplified using primers that
target the common sequence at the 5’-end of the prim-
ers [15] (Fig. 3a). High amplification bias, in which only
certain regions of the genome are preferentially ampli-
fied and thus amenable to large-scale sequencing, results
in relatively low coverage of the genome (~10%), making
DOP-PCR useful for copy-number assessment in single
cells but undesirable for single nucleotide variant (SNV)
detection [16].

Multiple-displacement amplification (MDA) is a non-
PCR based amplification technique that does not require
thermal cycling, in which random hexamer primers are
annealed to denatured DNA from a single cell to synthe-
size new DNA strands [19]. As the polymerase advances,
newly-synthesized strands are displaced from the origi-
nal DNA molecule and serve as templates for further
primer annealing and additional DNA synthesis, result-
ing in a hyper-branched network and exponential ampli-
fication (Fig. 3b). DNA synthesis is normally catalyzed
by $29 DNA polymerase, an isothermal enzyme capa-
ble of generating quality DNA with high coverage of the
genome for use in SCS. MDA works best for mutation
detection but is not sufficient for copy number analysis
due to moderate amplification bias and non-uniform
genome coverage.

The multiple annealing and looping based amplifica-
tion cycles (MALBAC) method utilizes a quasi-linear
pre-amplification step to decrease amplification bias
[20]. An important strategy of the MALBAC method
involves amplification using only the original template
DNA, rather than exponential amplification, by protect-
ing the amplification products (Fig. 3c). Amplification

Table 1 Comparison of whole-genome amplification methods for single-cell DNA sequencing. Adapted from Liang et al. [8]

Method Enzyme used Application

Genome coverage SNV detection

CNV detection Amplification bias

DOP-PCR  Tag DNA polymerase Single nucleus Low (~10%)

sequencing

MDA ©29 DNA polymerase;

Bst DNA polymerase

Single nucleus exome
sequencing

MALBAC  Bst DNA polymerase Single-cell genome/

exome sequencing

Moderate (>70%)

High (>90%)

High false negative and  Useful High (10-10° fold)

false positive rates

Useful but has a high
false negative rate
due to amplification
bias

Not accurate Moderate (3- to 4-fold)

High false positive rate  Accurate Low

due to low fidelity

SNV single nucleotide variant, CNV copy number variant, DOP-PCR degenerate oligonucleotide-primed polymerase chain reaction, MDA multiple-displacement

amplification, MALBAC multiple annealing and looping based amplification cycles
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Fig. 3 Main approaches used for whole-genome amplification of
single cells. a Degenerate Oligonucleotide-primed polymerase chain
reaction (DOP-PCR) uses primers with common sequences at the
5’-and 3’-ends, but six random nucleotides near the 3’-end to allow
hybridization at many sites throughout the genome; b multiple
displacement amplification (MDA) uses ¢29 DNA polymerase and
random primers in a non-PCR based amplification reaction in which
newly-synthesized strands are displaced from the original DNA mole-
cule and serve as templates for additional DNA synthesis, resulting in
a hyper-branched network; ¢ multiple annealing and looping based
amplification cycles (MALBAC) uses random primers with a common
sequence at the 5’-end to amplify only the original template DNA
and semi-amplicons. Full amplicons have complementary ends that
allow the formation of closed-loop structures that prevent further
amplification [15]
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using Bst (Bacillus stearothermophilus) polymerase is
initiated with primers that share a common 27-nucleo-
tide sequence at the 5-end but contain eight variable
nucleotides at the 3’-end to allow random hybridization
to the template DNA. A polymerase with strand displace-
ment activity first synthesizes semi-amplicons of variable
length, which dissociate from the template at high tem-
perature. Amplification of the semi-amplicons gener-
ates full amplicons with complementary ends that allow
the formation of closed-loop structures, which prevent
the full amplicons from being used as template. The full
amplicons can then be exponentially amplified by PCR to
generate microgram quantities of DNA for NGS. MAL-
BAC provides high uniformity in coverage across the
genome (93% coverage of at least 1X at a mean sequenc-
ing depth of 25x for a single human cell) and is useful for
detecting copy number variants (CNVs) in single cells;
however, MALBAC has a high false positive error rate
and is not appropriate for detecting point mutations [8].

Whole-transcriptome amplification

A number of approaches have been developed for WTA
of single cells (Fig. 4; Table 2; reviewed in [8]). The basic
steps include reverse transcription of messenger RNA
(mRNA) to complimentary DNA (cDNA) followed by
c¢DNA amplification via PCR [9]. Tang and colleagues [5]
first described a method for single-cell RNA-seq in which
reverse transcription was performed using an oligo-dT
primer with an anchor sequence, then a poly-A tail was
added to the 3’-end of the first cDNA. The second strand
was synthesized using a different oligo-dT primer with a
different anchor sequence, and the cDNA was amplified
by PCR.

Smart-seq and Smart-seq2 (switching mechanism at
the 5'-end of the RNA transcript) represent variations
of this approach designed to reduce 3’-bias, increase
cDNA yields and the number of full-length transcripts,
and detect alternative splice sites, novel exons, and
genetic variants [21, 22]. These techniques implement a
template-switching step, which increases the number of
transcripts with an intact 5'-end. During first-strand syn-
thesis, the reverse-transcriptase enzyme, isolated from
the Moloney murine leukemia virus, adds extra cytosine
(C) nucleotides to the 5’-end of the cDNA. By adding a
primer containing guanine (G) nucleotides, the enzyme
will switch templates and reverse-transcribe to the end
of the primer, resulting in a full-length cDNA molecule
that contains the complete 5’-end of the mRNA and an
anchor sequence that will serve as a universal priming
site for second-strand synthesis. Smart-seq2 contains



Ellsworth et al. Clin Trans Med (2017) 6:15

Page 6 of 19

Anchor sequence
T —

)

a AAAAA
First strand synthesis ‘

AAAAA

<+
Poly(A)-tailing "

AAAA
Second strand synthesis l

P 444 A —

AAAA TTTrT
Amplification of dsDNA ¥
= —TTTTT AAAAm—
—AAAAS TTTT
TTIT AAAANS—
= AAAA, T

&

Library preparation and sequencing

c AAAAA
First strand synthesis l T7 promoter
AAAAA
< QL PCR primer
Exonuclease I digesting 'v ‘
AAAAA
k- TTTT 'ITIT‘I:'%
Poly(A)-tailing i 3
AAAAA
AAAAATTTT —
AAAAN T
Second strand synthesis ‘ ‘
—TTTE > —TTTTTAAAA AR
AAAAA TTTT AAAAATTTT T w—
Suppressed PCR 3 3
- TTTT AAAA
AAAAA TTTTT S—
- TTTTT AAAAN S—
WEEAAAAA TTTTT —

B

Library preparation and sequencing

Anchor sequence

AAAAN Ty
First strand synthesis ! |
Barcode
GGG AAAAA
: TTTT
Template switching ‘
— GG AAAA
W O TTTT

Pooling ¢cDNA from several samples together and
single-primer PCR amplification
® >

s— O TITT

4

Beads captured and fragmentation

.:—rg(‘, e

—

b

Library preparation and sequencing

d aaasa  Barcode Adapter
T ) i T S ——
First strand synthesis | . ) T7 promotes
Second strand synthesis ‘
= TTTTT : AAA
AAAAA T
In vitro transcription by T7 polymerase
- AAAAJ
T
Fragmentation of RNA
Ligation of 3" adapter
Reverse-transcription, library preparation and sequencing
f —
UMIs labeling ! |
= | e—
- == =
— =
- -
PCR amplification  §
=2 ==
L
| — [
L
—
e = —
s =
Sequencing and analysis ‘
L —
L —
| —
-
-
-
-_——
-  —
[  e—
- [ S
[T -
= =
= =
13 2 6
5 2 3

b B TS Anchor sequence
LNA, locked nucleic acid TITTT

g First strand synthesis '
AAAAA
—GGG & ’
@- TITTT
Template switching ! §
—GGG AAAA
e COC TTTTT
Second strand synthesis |
oo T
Amplification of dsDNA &
GG AAAA Am—
o TTTT
GO AAAAAS—
— OOC TTT

Library preparation and sequencing




Ellsworth et al. Clin Trans Med (2017) 6:15

Page 7 of 19

(See figure on previous page.)

amplification bias [8]

Fig. 4 Main approaches used for whole-transcriptome amplification of single cells. a The Tang method performs reverse transcription of mMRNA

for single-cell RNA-seq using an oligo-dT primer with an anchor sequence, then a poly-A tail is added to the 3/-end of the first cDNA and the
second strand is synthesized using a different oligo-dT primer with a different anchor sequence; b Smart-seq and Smart-seq2 implement a
template-switching step to increase the number of full-length cDNA transcripts with an intact 5/-end; € quartz-seq limits amplification of unwanted
byproducts by removing excess primer with exonuclease | before second-strand synthesis and using suppression PCR to form hairpin structures
that cannot be amplified; d cell expression by linear amplification and sequencing (CEL-Seq) includes a template-switching step and uses molecular
barcodes and pooling of samples from multiple single cells prior to linear amplification; e single-cell tagged reverse transcription (STRT) permits
multiplex sequencing of multiple cells in the same reaction using a template-switching mechanism to simultaneously introduce a molecular
barcode and an upstream primer-binding sequence during reverse transcription; f quantitative single-cell RNA-seq generates full-length transcripts
using template switching and incorporating random UMI (unique molecular identifier) sequences to label individual cONA molecules and eliminate

technological improvements to increase sensitivity, accu-
racy, and the number of full-length transcripts.

Quartz-seq was developed to improve reproduc-
ibility and sensitivity of SCS methods to quantify the
heterogeneity of gene expression between cells. Quartz-
seq focuses on limiting the amplification of unwanted
byproducts by removing excess primer with exonuclease
I before second-strand synthesis, restricting poly-A tail-
ing, and using suppression PCR, which permits short
DNA fragments to form a hairpin structure that cannot
be amplified [23]. Similar to other poly-A tailing methods
for WTA of single cells, Quartz-seq shows a weak 3’-bias
but is capable of detecting differentially expressed genes
between different cell types.

The cell expression by linear amplification and
sequencing (CEL-Seq) method overcomes challenges
posed by the minute amount of RNA in a single cell by
including a template-switching step and using molecular
barcoding (attaching a short unique sequence to template
DNA or RNA molecules to uniquely identify each mole-
cule) and pooling of samples prior to linear amplification
of mRNA in one round of in vitro transcription [24]. Sub-
sequent modifications (CEL-Seq2), including shortening
the CEL-Seq primer, optimizing the conversion of RNA
to dsDNA, and ligation-free library preparation, have
increased the efficiency, sensitivity, and cost-effectiveness
of the method [25]. Despite recent improvements, these

approaches still suffer from 3’-amplification bias, and
therefore may not detect variable transcripts.

Unlike other whole-transcriptome amplification meth-
ods, single-cell tagged reverse transcription (STRT) is a
highly multiplexed method for single-cell RNA-seq that
quantifies gene expression in single cells by sequencing
the 5'-ends of mRNA. STRT uses a template-switching
mechanism to simultaneously introduce a molecular bar-
code and an upstream primer-binding sequence during
reverse transcription, which permits multiplex sequenc-
ing of multiple cells simultaneously. STRT provides the
ability to identify the transcription start site, locate pro-
motor and enhancer elements, and conduct large-scale
quantitative analysis but is not suitable for detecting
alternatively-spliced transcripts [26].

Sequencing considerations

Despite recent progress, SCS techniques currently being
used in research have technological limitations. Ampli-
fied DNA from single cells may be subjected to targeted
sequencing, WES, or WGS. Targeted sequencing is asso-
ciated with a lower false positive rate, with more uni-
form coverage of the targeted areas. In contrast, WES
and WGS provide greater coverage of the genome and
an increased ability to discover mutations; however, as
genome coverage increases so does the false positive rate.
WGS of single cells provides the greatest opportunity to

Table 2 Comparison of single-cell transcriptome sequencing methods. Adapted from Liang et al. [8] and Navin [16]

Method Reverse-transcription enzyme WTA method Reverse-transcript size Position bias
used
Tang's method Reverse transcriptase Poly-A tailing 0.5-3.0 kb 3/-end
Smart-seq/Smart-seq2  M-MLV RT Template-switching; locked nucleic Full-length Low 3’-end
acid in Smart-seq2

Quartz-seq Reverse transcriptase Poly-A tailing; suppression PCR 04-4.0kb 3’-end
CEL-seq/CEL-seq2 In vitro transcription Poly-A tailing; barcoding 3’-end only High 3’-end
STRT Reverse transcriptase Template-switching; barcoding Full-length, only detect 5’-end  5’-end

WTA whole-transcriptome amplification, SMART switching mechanism at the 5’-end of RNA template, M-MLV RT Moloney murine leukemia virus reverse transcriptase,
CEL-Seq cell expression by linear amplification and sequencing, STRT single-cell tagged reverse transcription sequencing
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detect genetic alterations across the genome but at sig-
nificantly increased cost [4].

Data analysis

Single-cell isolation techniques and WGA/WTA may
introduce artifacts that must be considered when analyz-
ing sequencing data. Based on the cell selection approach
utilized, cells may be biased in size, rates of cell division,
or cellular properties. WGA techniques result in low
physical coverage of the genome, allelic dropout (where
one or both alleles at a heterozygous locus fail to amplify
and therefore are not detected), uneven genome cov-
erage, and false-positive and false-negative errors. For
RNA-seq, reverse transcription of mRNA to cDNA fol-
lowed by ¢cDNA amplification via PCR introduces tech-
nical artifact and amplification bias, particularly for
lower-abundance transcripts. In fact, only ~10-20% of
transcripts are reverse transcribed with current methods
and many transcripts are not full-length [9]. Compar-
ing SCS results to bulk tumor sequence can be used to
estimate technical errors; however, this approach may
decrease the ability to detect variants specific to the sin-
gle cells. Incorporating molecular barcodes, also known
as unique molecular indices or UMIs, may prove useful
for improving efficiency and distinguishing true muta-
tions from PCR or sequencing errors [27]. New algo-
rithms and computational methods to address these
limitations are currently being developed and may pro-
vide the necessary informatics infrastructure to accu-
rately and reliably analyze SCS data.

Single-cell sequencing of tumor cells

Cancer stem cells

Normal stem cells are rare, quiescent cells that survive
in an undifferentiated state for extended periods of time
and have the capacity for unlimited self-renewal and the
ability to generate morphologically diverse progeny cells
[28]. Tissue-specific stem cells that reside in differenti-
ated tissues are important in growth and development
because they also have the capacity for self-renewal and
the ability to differentiate into a variety of specific cell
types. Tissue-specific stem cells may accumulate certain
mutations over time that initiate carcinogenesis, caus-
ing them to become cancer stem cells. Additional muta-
tions in cancer stem cells that alter molecular pathways
influencing genome stability, resistance to apoptosis, and
normal growth and differentiation, may occur during
tumorigenesis, leading to substantial genetic and func-
tional diversity among clonal populations of cells within
a primary carcinoma [29, 30]. Although the development
of genetic diversity in cancer stem cells has not been well
defined, SCS is now being used to study cancer stem cells
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to identify mutations in key functional pathways pro-
moting tumorigenesis [31]. Because cancer stem cells
are believed to be responsible for many aspects of can-
cer biology such as tumorigenesis, metastasis, and drug
resistance, eradication of these stem cells has become a
prime objective of modern anti-cancer therapeutics.

The ability to quantify cell-to-cell variation in gene
expression using single-cell RNA-seq is important to
understanding clinical parameters such as a patient’s
response to treatment and the potential for disease recur-
rence. As a result, research on cancer stem cells at the
individual cell level has accelerated in recent years, focus-
ing on unique functional properties, including extensive
cell-to-cell heterogeneity in gene expression and plastic-
ity in the degree of “stemness” [32]. Single-cell transcrip-
tome analysis of cancer stem cells has been difficult due
to their rarity and the small amount of total RNA in a sin-
gle cell; however, recent developments in single-cell isola-
tion, WGA, and RNA-seq discussed above [33] provide
an opportunity to study the transcriptomes of these rare
stem cells and provide insight into the complex nature of
functional heterogeneity at the individual cell level [34].

In breast cancer, single-cell gene expression profiling
has been used to identify regulatory networks influenc-
ing differentiation, stemness, pluripotency, EMT, and
proliferation, which are important for the identification
of rare cell types such as stem cells [35]. Investigating the
potential role of stem cells in the initiation and progres-
sion of breast cancer metastases, Lawson and colleagues
[36] developed a fluorescence-activated cell sorting assay
to identify human metastatic cells from a patient-derived
xenograft (PDX) mouse model. Multiplex analysis
detected heterogeneity in gene expression and revealed
a distinct stem-cell-like gene expression signature in
early stage metastatic breast cancer cells, suggesting that
breast cancer metastases may be initiated by stem-like
cells. Paired-end transcriptome sequencing identified
unique patterns of gene expression in breast cancer stem
cells compared to other breast cancer cell types that may
regulate the effects of oncogenes and tumor suppressor
genes [37].

Using single-cell RNA-seq to profile 430 cells from five
primary glioblastomas, Patel et al. [38] found variability
among cells in patterns of gene expression in pathways
such as oncogenic signaling, proliferation, and immune
response. Importantly, an examination of “stemness”
genes identified a continuous, rather than discrete,
stemness-related gene expression signature among indi-
vidual glioblastoma cells, which suggests that glioblas-
tomas contain primitive populations of stem-like cells
with variable degrees of differentiation and proliferative
capacity.
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Table 3 Summary of single-cell sequencing studies on primary tumors from a variety of human cancers

Tumor Tissue source Data type Results Reference
(number of cells,
patients/cell lines)

Breast
TNBC (200, 2) CNV TNBC displays punctuated clonal evolution where CNVs are shared across  [6]
single cells
TNBC (66, 1), ER + HER2- (113, 1) CNV and SNV TNBC has a higher mutation rate than ER + HER2- tumors or normal cells;  [39]
CNVs are an early event in tumorigenesis
TNBC (1000, 12) CNV Supports theory of punctuated clonal evolution [40]
ER + (332, 2) CNV Supports theory of punctuated clonal evolution [41]
MDA-MB-231 and CN34 cell RNA-seq Rare cell populations with highly variable gene expression differences [42]
lines (44, 2) have increased metastatic capacity and ability to survive treatment
MDA-MB-231 cell line (15, 1) RNA-seq Development of drug-resistance to paclitaxel is associated with unique [43]
mutations; gene expression changes not detectable in bulk tumors
HER2 + (8, 2)® RNA-seq 404 genes differentially expressed in breast cancer stem cells, including 371
CA12 which may be prognostic
Lung
Lung adenocarcinoma PDX RNA-seq Gene expression profiling identifies a subpopulation of PDX cells with [44]
(34, 1) poor prognosis
Lung adenocarcinoma PDX RNA-seq and WES  Identification of a subpopulation of KRAS+/low risk cells that were drug [45]
(34, 1) resistant
LC2/ad and LC2/ad-R lung RNA-seq Increased plasticity in gene expression among cells is associated with [46]
cancer cell lines (336, 7) vandetanib resistance
Brain
EGFR amplified glioblastomas CNV Patterns of EGFR mutations differ among cells; heterogeneity may contrib-  [48]
(50-60, 2) ute to therapy resistance
Glioblastomas (430, 5)° RNA-seq Variable EGFR CNVs and cells reflecting different subtypes are present in [38]
primary glioblastomas
Colon
Colon tumor and normal adja- SNV Different mutational profiles found in two sub-clonal populations of cells  [49]
centcells (63, 1) may suggest bi-clonal origins
HCT116 cell line (96, 1) RNA-seq SCS reveals cryptic mutations not detected in bulk tumor [50]
Bladder
Muscle-invasive bladder SNV Cell-lineage-specific mutations may initiate carcinogenesis and drive [51]
transitional-cell carcinoma cancer progression
(66, 1)
Squamous cell carcinoma of the  RNA-seq Cell-to-cell heterogeneity in the expression of genes within cancer-related [52]
bladder (75, 1) pathways may affect outcomes
Kidney
Clear cell renal cell carcinoma SNV ccRCC more genetically complex than predicted based on whole-tumor ~ [53]
(20, 1) sequencing
ccRCC primary carcinoma and ~ RNA-seq Differential expression of targetable genes between cells supports multi-  [54]
paired metastasis propagated agent treatment strategy
in PDX model (116, 1)
Blood
Secondary AML (36, 3) SNV SCS identifies genomic complexity not seen in whole-tumor analysis and ~ [55]
resolves clonal relationships
Pediatric ALL (1479, 6) SNV CNVs precede somatic mutations; diversity of driver mutations affects [56]
clonal fitness
B-cell ALL (276, 3) CNV CNVs not detected in bulk tumors are observed in single cells; CNVs [57]
develop in response to environmental stressors
JAK2-negative myeloprolifera- SNV Lack of identifiable sub-clones suggests tumor is monoclonal, but large [58]
tive neoplasm (58, 1) genetic distances exist between cells

TNBC triple negative breast cancer, CNV copy number variant, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, SNV single nucleotide variant,
RNA-seq RNA sequencing, PDX patient-derived xenograft, WES whole-exome sequencing KRAS Kirsten rat sarcoma viral oncogene homolog, EGFR epidermal growth
factor receptor, SCS single-cell sequencing, ccRCC clear cell renal cell carcinoma, AML acute myeloid leukemia, ALL acute lymphoblastic leukemia, JAK2 Janus kinase 2

@ These studies investigated transcriptomic differences in breast and glioblastoma stem cells isolated as single cells from the primary carcinomas
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Primary tumors

Breast cancer

A summary of SCS studies on primary tumors from a
variety of human cancers is presented in Table 3. The
first report of SCS in cancer published in 2011 [6] per-
formed copy number evaluation on flow-sorted nuclei
from two triple-negative breast carcinomas. One tumor
was found to be highly mono-genomic and was com-
posed of cells representing a single clonal expansion,
but the other carcinoma was genetically heterogeneous,
containing distinct clonal subpopulations of cells that
were hypothesized to have originated early in tumor
development. Further single-cell studies supported this
concept that CNV tends to occur early in the develop-
ment of breast cancer. Wang and colleagues [39] evalu-
ated nuclei from cells undergoing cell division (G2/M
nuclei) to examine clonal diversity and mutational evo-
lution in two breast cancer patients. No two single cells
from a luminal A or triple negative breast tumor exhib-
ited identical genomic profiles even though the mutation
rate was significantly higher in the triple negative carci-
noma (>13-fold). Alterations in copy number were widely
shared, suggesting they occurred early in carcinogenesis,
while point mutations appeared to evolve gradually over
a longer period of time. A follow-up study using single-
nucleus sequencing of 1000 single cells from 12 patients
with triple-negative breast cancer identified one to three
major clonal subpopulations in each tumor that shared a
common evolutionary lineage and were unlikely to result
from gradual accumulation of CNVs over time [40]. Simi-
larly, in two patients with estrogen receptor (ER)-positive
breast cancer, chromosomal alterations characteristic
of ER+ tumors including duplications of 1q and 8q and
deletion of 11q were shared across most single cells from
both patients, indicating that these events occurred early
in the development of these tumors [41]. Together, the
SCS data suggest that the earliest steps of tumor develop-
ment involve copy number changes that occur in punctu-
ated bursts, but point mutations evolve gradually, driving
clonal expansions and generating extensive clonal diver-
sity within a primary carcinoma.

NGS technology is being used extensively to identify
genetic variability associated with acquired resistance
to chemotherapy, which has become a major barrier to
successful cancer treatment. Large-scale RNA-seq on
single cells from breast cancer cell lines has shown that
cells exhibiting high variability in RNA transcripts, which
was also evident at the protein level, possess increased
metastatic capacity and survival following chemothera-
peutic treatment [42]. Whole-transcriptome sequencing
detected high heterogeneity in gene expression among
individual cells from the MDA-MB-231 metastatic breast
cancer cell line following exposure to paclitaxel (100 nM)
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for five days. Although most cells were killed, a small
number of drug-tolerant cells survived, which expressed
unique RNA variants influencing cell adhesion, cell sur-
face signaling, and microtubule organization/stabili-
zation [43]. These studies demonstrate that molecular
heterogeneity at the single-cell level may have a signifi-
cant impact on patient outcomes and that quantification
of this heterogeneity will be vitally important to success-
ful cancer treatment.

Adenocarcinoma of the lung

Adenocarcinoma of the lung is the most common histo-
logic subtype of lung cancer, accounting for more than
40% of lung cancer incidence. Several studies have per-
formed single-cell RNA-seq on lung cancer patients to
investigate molecular heterogeneity at the single-cell
level. Min et al. [44] examined 34 single cells from a lung
adenocarcinoma PDX model, and after filtering out dif-
ferentially expressed genes associated with xenografting
and cell culture, identified a set of 64 genes associated
with poor prognosis that stratified the adenocarcinoma
cells into two groups. In a separate study, single lung
adenocarcinoma cells from this same PDX were evalu-
ated by RNA-seq and expressed mutation profiling to
study how heterogeneous cell populations respond to
anti-cancer treatments [45]. Combining the status of
the Kirsten rat sarcoma viral oncogene homolog (KRAS)
G12D (35G>A) mutation with the expression profiles
of 69 genes associated with clinical prognosis classi-
fied the adenocarcinoma cells into four groups with dif-
ferent gene expression patterns. One group of cells that
appeared cell-cycle quiescent and exhibited upregula-
tion of ion channel transport genes survived exposure to
chemotherapeutic agents and thus may be responsible
for treatment failure. This study suggests that the actual
cells responsible for drug resistance may be masked when
analyzing large sections of the primary carcinoma, but
single-cell RNA-seq data may be useful for detecting
rare potentially drug-resistant sub-clones. Suzuki and
colleagues conducted single-cell RNA-seq on 336 cells
from seven lung adenocarcinoma cell lines to investigate
how cellular heterogeneity influences drug response [46].
Focusing on the LC2/ad cell line and a derivative cell line
(LC2/ad-R), which has acquired resistance to the multi-
tyrosine kinase inhibitor drug vandetanib, showed that
average gene expression levels changed more in LC2/
ad-R cells than in LC2/ad cells in response to vandetanib
treatment, potentially reflecting an acquired plasticity
in the ability to respond to vandetanib. As seen in other
single-cell studies, the great diversity in gene expression
at the single-cell level, which may serve as a reservoir for
cells to acquire drug resistance, cannot be detected with
bulk tissue sequencing.
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Glioblastoma

Glioblastoma multiforme is the most common brain and
central nervous system malignancy, characterized by a
poor prognosis with exceptionally low overall survival.
Glioblastomas are biologically aggressive carcinomas that
present unique clinical challenges due to rapid growth
rates with widespread invasion throughout the brain and
inherent resistance to traditional as well as targeted ther-
apies [47]. Extensive cellular and molecular heterogeneity
is a common feature of glioblastomas, including mul-
tiple alterations in the epidermal growth factor recep-
tor (EGEFR) gene that may affect treatment response. To
characterize genomic heterogeneity in EGFR-amplified
glioblastomas, Francis et al. conducted single-nucleus
WGS on two glioblastomas with focal amplification of
EGFR [48]. EGFR copy number was observed to be highly
variable between single cells due to varying levels of
EGFR amplification (5-200 copies), EGFRVII truncation
(deletion of exons 14—15), and EGFRVIII deletion (dele-
tion of exons 2-7). These data suggest that heterogene-
ity in the expression of oncogenic EGFR mutations may
contribute to therapy resistance and combining multiple
EGEFR inhibitors that act through different mechanisms
may be required in glioblastoma patients who carry mul-
tiple EGFR variants.

Patel and colleagues used single-cell RNA-seq on 430
cells from five primary glioblastoma neoplasms to sys-
tematically interrogate intratumor heterogeneity [38].
In agreement with the study described above by Fran-
cis et al. [48], several oncogenic variants of EGFR were
detected within a single glioblastoma. Based on patterns
of gene expression, all five tumors were found to con-
sist of heterogeneous mixtures of individual cells cor-
responding to different glioblastoma subtypes defined
by The Cancer Genome Atlas. Importantly, cell-to-cell
variability was also detected in the expression of various
signaling molecules and cell-surface receptors compris-
ing pathways that may contribute to targeted-therapy
resistance in glioblastoma. As higher levels of cell-to-cell
subtype heterogeneity were associated with decreased
patient survival, previously unrecognized heterogeneity
may be an important factor contributing to the high mor-
tality rates associated with glioblastoma.

Colon cancer

Unlike many types of human cancer, linear models of
evolution have been developed for colon cancer, with
mutations in genes such as adenomatous polyposis coli
(APC) and tumor protein p53 (TP53) playing critical roles
in tumor progression. WES performed on 63 single colon
adenocarcinoma cells revealed two groups of tumor cells
with distinct genetic profiles [49]. The major subgroup
of tumor cells was characterized by a high frequency of
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APC and TP53 mutations while in the minor subgroup,
mutations in the cell division cycle 27 (CDC27) and pol-
yadenylate-binding protein, cytoplasmic, 1 (PABPCI)
genes were predominant. The authors concluded that this
tumor was bi-clonal in origin, with each subpopulation
deriving from separate ancestors; however, this conclu-
sion has been questioned as not all cells in the major pop-
ulation had mutations in APC and TP53 and mutations
in CDC27 and PABPCI were present in both groups,
suggesting possible technical difficulties associated with
WGA [16]. In a separate study, RNA-seq data gener-
ated on 96 single cells from the HCT116 colon cancer
cell line were used to assess patterns of gene expression
and detect enrichment of DNA variants in colon cancer-
related pathways [50]. SNV data from the single isolated
cells were mostly consistent with results obtained when
the cell line was sequenced en masse, but single cells dis-
played an array of variants that were masked when many
cells from the cell line were sequenced together (bulk
sequencing). This study showed that single-cell RNA-seq
of colon cancers may reveal cryptic genetic alterations in
cancer-related genes, enrichment of certain functional
pathways, and presence of fusion proteins that may play
important roles in the development of colon cancer.

Urinary system cancers

Bladder cancer accounts for nearly 5% of all new cancer
cases in the United States and is responsible for approxi-
mately 3% of all cancer deaths. Bladder cancer is marked
by heterogeneity in the types of carcinomas observed
in patients and the presence of infiltrating normal cells.
Single-cell exome sequencing of 66 individual tumor
cells from a muscle-invasive bladder transitional-cell
carcinoma revealed that all cells were descended from a
common ancestral cell, but subsequent genomic evolu-
tion created variability that could partition the cells into
two distinct groups [51]. The authors hypothesized that
the bladder cancer cells were subjected to selective pres-
sure and accumulated mutually-exclusive driver muta-
tions within these cell lineages during development. The
projected timing of key mutations during cancer growth
suggests that mutations in cancer-associated genes may
initiate carcinogenesis and lead to genetically-distinct
cell lineages that influence resistance to treatment.

To evaluate cellular heterogeneity in gene expression
within a squamous cell carcinoma of the urinary blad-
der, Zhang et al. subjected 75 individual cancer cells to
RNA-seq [52]. Cell-to-cell heterogeneity was detected
for multiple genes in important cancer-related pathways,
including the mitogen-activated protein kinase (MAPK),
Janus kinase/signal transducers and activators of tran-
scription (JAK-STAT), Notch, phosphoinositide 3-kinase
(PI3K), and vascular endothelial growth factor (VEGF)
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pathways. Because these pathways represent impor-
tant targets for anti-cancer therapeutics, heterogeneity
in expression may affect tumor response to therapy and
patient survival.

Renal cell carcinoma accounts for more than 200,000
new cancer cases and over 100,000 deaths worldwide
each year. Clear cell renal cell carcinoma (ccRCC), the
most common form of renal cell carcinoma, is charac-
terized by a relatively low mutation rate with few muta-
tions shared among patients. To investigate intratumor
heterogeneity at the individual cell level in ccRCC, WES
was conducted on 20 single ccRCC cells from a 59-year-
old male patient [53]. Phylogenetic analysis suggested
that progression from normal to cancer cells occurred
quickly. Although no significant sub-clonal populations
of cells were detected within the tumor, there were many
rare mutations, each present in only a few cancer cells.
These mutations would not have been detected using
whole-tumor sequencing. This study provided an impor-
tant view of the intratumor genetic landscape of a ccRCC
carcinoma at the single-cell level and revealed that renal
carcinomas may be more genetically complex than previ-
ously thought.

To examine transcriptional heterogeneity during
metastatic progression and the activation of signaling
pathways influencing drug responsiveness, single-cell
RNA-seq was performed on a primary ccRCC carci-
noma and a paired lung metastasis following propagation
in a PDX model [54]. This patient was not responsive
to sequential therapies, including pazopanib, everoli-
mus, and high-dose interleukin-2. The RNA-seq results
revealed significant variability in expression and activa-
tion of pathways targeted by therapy, such as the EGFR
and c-Src proto-oncogene pathways, between the pri-
mary carcinoma and the metastasis, and among indi-
vidual cancer cells within both tumors. Heterogeneity in
the activation status of the EGFR and Src pathways corre-
sponded to variability in drug sensitivity at the individual
cell level. High-resolution transcription profiling of single
cells established the molecular basis for treatment resist-
ance and led the authors to propose that combination
therapy with afatinib and dasatinib may be a more effec-
tive treatment option than monotherapy for metastatic
renal cell carcinoma.

Hematopoietic tumors

Hematopoietic and lymphoid tissue malignancies affect
the blood, bone marrow, and lymphatic system. To fur-
ther examine genomic complexity in hematopoietic can-
cers previously studied by WGS of bulk tumor samples,
Hughes and colleagues performed targeted sequenc-
ing to genotype more than 1900 SNVs in single can-
cer cells from three patients initially diagnosed with
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myelodysplastic syndrome who progressed to second-
ary acute myeloid leukemia, the most common form of
acute leukemia in adults [55]. SCS identified genomic
complexity not evident in the whole-tumor analysis and
improved the ability to resolve clonal relationships com-
pared to sequence generated from unfractionated tumor
samples. To delineate the clonal structure and evolu-
tionary history of acute lymphoblastic leukemia (ALL),
targeted sequencing of a panel of SNVs, deletions, and
immunoglobulin heavy chain sequences was performed
on 1479 single cells from six children with pediatric
ALL [56]. As seen with other types of cancer, ALL car-
cinomas were characterized by distinct clonal popula-
tions of cells where alterations in copy number preceded
the occurrence of SNVs. Phylogenetic analysis revealed
that KRAS-associated driver mutations occurred late in
tumor development and facilitated the expansion of cer-
tain clones, which became dominant but did not com-
pletely outcompete all of the other clones in each patient.
Separately, Bakker et al. used single-cell WGS to examine
karyotype dynamics in three children with chromosom-
ally-unstable B cell ALL [57]. Traditional cytogenetics
conducted at the time of diagnosis characterized the ALL
carcinomas as displaying different levels (low, interme-
diate, and high) of aneuploidy. SCS identified subpopu-
lations of cells within each tumor that harbored copy
number alterations not detected in whole-tumor analysis.
When cells from the ALL tumor with intermediate levels
of aneuploidy were engrafted into immunodeficient mice,
changes in copy number were observed, suggesting that
copy number heterogeneity in individual cells may evolve
in response to stressors, such as a new microenviron-
ment or exposure to therapy.

Essential thrombocythemia (ET) is one of several mye-
loproliferative neoplasms in which sustained prolifera-
tion of megakaryocytes leads to an excess of circulating
thrombocytes (platelets). Although more than half of all
ET patients carry mutations in the Janus kinase 2 (JAK2)
gene, mutations in other genes are known to affect dis-
ease phenotype and clinical outcome. WES of 58 single
cancer cells from a JAK2-negative ET patient was used
to examine clonal composition of the neoplasm and
identify genes involved in disease progression [58]. The
authors identified 18 genes hypothesized to play a role in
tumor development and concluded that the disease was
monoclonal in origin. However, these conclusions were
contradicted by phylogenetic analyses, which showed
large genetic distances between cells, and therefore it is
unclear if these differences reflect real genomic diversity
or technical artifact.

SCS has been useful for revealing molecular het-
erogeneity among individual cells of primary carcino-
mas from a variety of human cancers that would not be
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detectable with bulk tumor sequencing. At the single-cell
level, most primary tumors are polyclonal due to punc-
tuated clonal evolution where copy number alterations
serve as founder mutations and additional CNVs and/or
point mutations occur later in tumor development. These
subsequent mutations are restricted to subpopulations
of cells where they contribute to clonal fitness and thus
influence resistance to treatment and patient survival.

Circulating and disseminated tumor cells

A summary of SCS studies on CTCs and DTCs from a
variety of human cancers is presented in Table 4. Sub-
stantial evidence suggests that distinct subpopulations
of stem-like cells mediate many aspects of cancer biol-
ogy, including metastasis and therapeutic resistance [59].
CTCs are viable cells that are shed from a primary carci-
noma and circulate throughout the bloodstream, carry-
ing genetic alterations found in the primary tumor [60].
The presence and/or abundance of CTCs in whole blood
has been shown to be an independent predictor of poor
survival and an unfavorable response to treatment in
numerous cancer types [61], and the persistence of dis-
seminated cells in bone marrow after adjuvant therapy is
significantly associated with increased risk for recurrence
and mortality [62].

Only certain CTCs are believed to be capable of form-
ing successful metastases. Recent evidence suggests that
some CTCs, referred to as circulating cancer stem cells,
exhibit a stem-cell-like phenotype and may possess
metastasis-initiating capabilities associated with resist-
ance to therapy [63, 64]. Because CTCs that display stem
cell characteristics may initiate successful metastases, it
is important to characterize these cells, which are eas-
ily accessible in peripheral blood, for their usefulness in
predicting cancer progression, metastasis, and treatment
response.

Circulating tumor cells

SCS is a useful technique for improving our under-
standing of clonal evolution in human cancers, as well
as molecular changes that occur in disseminated cancer
cells, which may drive metastasis and lead to develop-
ment of therapeutic resistance. Numerous studies have
shown that mutational profiles identified by NGS may
be similar in primary carcinomas, metastases, and CTCs
in patients with a variety of cancer types, but important
molecular heterogeneity has been detected, suggesting
potential utility of CTCs in patient care (reviewed in [65,
66)).

NGS of 68 cancer-associated genes in individual CTCs
from patients with stage IV colorectal cancer found
that most mutations, particularly those in driver genes,
observed in the primary tumor and metastatic deposits
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were also present in CTCs, suggesting that the muta-
tional spectrum of complex tumor genomes can be
inferred from CTCs [67]. Similarly, WES of single CTCs
in lung cancer patients detected reproducible CNVs that
were similar to those in metastatic deposits of the same
patient [68]. In patients with prostate cancer, 70% (51/73)
to 86% (197/229) of all mutations observed in individual
CTCs were also found in the primary tumor and metas-
tasis [69, 70].

SCS has been used to identify within-patient genomic
heterogeneity among single CTCs isolated from blood of
breast cancer patients. For example, mutational hetero-
geneity in the TP53 gene, platelet-derived growth factor
receptor, alpha (PDGFRA), phosphatidylinositol-4,5-bi-
sphosphate 3-kinase, catalytic subunit alpha (PIK3CA),
and other genes has been observed among individual
CTCs from women with metastatic breast cancer [71,
72]. Similarly, the mutational status of TP53 has been
shown to vary among CTCs in breast cancer patients,
with some CTCs carrying the same mutation(s) as the
corresponding primary carcinoma, while other CTCs
carry different mutations [73].

Mutational heterogeneity present in a primary carci-
noma is often reflected in the genomes of CTCs; how-
ever, further genomic changes that promote successful
metastasis may occur exclusively in CTCs and DTCs [74].
Such heterogeneity at the single-cell level likely reflects
dynamic and ongoing mutational changes that occur dur-
ing disease progression in a constantly evolving cancer
genome. Therefore, the genomic signatures of many indi-
vidual CTCs from a cancer patient may be more informa-
tive than traditional biopsies of the primary tumor for
designing targeted therapies and monitoring therapeutic
response.

Optimal therapeutic strategies in breast cancer
patients are highly dependent on the behavior and resil-
ience of CTCs, which may be influenced by patterns
of gene expression. Similar to genomic heterogeneity,
cell-to-cell variability in patterns of gene expression
has been identified among individual CTCs. In women
initially diagnosed with human epidermal growth fac-
tor receptor 2 (HER2)-negative breast cancer, RNA-
seq of individual CTCs documented the emergence of
HER2 4+ CTCs [75]. The persistence of discrete popu-
lations of HER2+ and HER2 — CTCs, which have the
capacity to interconvert spontaneously, may contribute
to progression of breast cancer and acquisition of drug
resistance. Similarly, single-cell transcriptome analysis of
CTCs revealed heterogeneity in the expression of genes
associated with metastasis and induction of the EMT,
where epithelial cells transition to a more mesenchymal
phenotype, which increases invasiveness and resistance
to apoptosis [76].
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Table 4 Summary of single-cell sequencing studies of CTCs and DTCs
Celltype Tumor type (number of cells, patients) Data type Results Reference
CTCs
Colorectal (37, 6) Targeted sequencing Most mutations in CTCs are present in sub-clonal popula- [67]
tions of the primary tumor or metastases, but some muta-
tions are exclusive to CTCs
Lung (68, 11) WES/WGS CNVs in CTCs are dissimilar between cancer subtypes; [68]
patterns of SNVs and INDELs in CTCs change during treat-
ment, but CNVs remain constant
Prostate (99, 1) WGS SNVs and structural variations in CTCs are also present in [69]
primary tumors or metastases
Prostate (25, 2) WES The majority of mutations in CTCs are also present in the [70]
primary tumor and metastases
Breast (14, 4) Targeted sequencing High levels of heterogeneity in CTCs within and between [71]
patients as well as before and after treatment
Breast (115, 18) Targeted sequencing In some patients heterogeneity of PIK3CA mutations is [72]
observed among CTCs and between CTCs and the
primary tumor
Breast (11, 2) Targeted sequencing Some CTCs carry the same TP53 mutation(s) as the primary ~ [73]
carcinoma, other CTCs carry different mutations
Breast (185, 12) Targeted sequencing CTCs show genetic heterogeneity of PIK3CA mutations over  [74]
time and discordance between DTCs and metastases
Breast (22, 2) RNA-seq HER2 + CTCs may arise in HER2- breast cancer patientsand  [75]
may contribute to progression and drug resistance
Prostate (77, 13) RNA-seq Heterogeneity in expression of androgen receptor muta- [77]
tions between CTCs within patients may influence treat-
ment response
DTCs

Breast (24, 1)

Breast (2, 2) WGS

Neuroblastoma (144, 10)

Breast (63, 6) WGS

Targeted sequencing

Targeted sequencing

DTCs show genetic discordance of PIK3CA mutations versus — [74]
CTCs and metastases; mutations are stable during cell
culture

In one patient, DTC was highly concordant with the non- (82]
complex primary tumor; DTC from complex primary
tumor showed greater genetic divergence

Mutational status for the ALK gene is concordant between  [84]
the primary tumor and DTCs for all patients

Some DTCs originate from clones in the primary carcinoma,  [85]
other DTCs arise from LN metastases

CTC circulating tumor cell, WES whole-exome sequencing, WGS whole-genome sequencing, CNV copy number variant, SNV single nucleotide variant, INDEL insertion/
deletion polymorphism, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, TP53 tumor protein p53, DTC disseminated tumor cell, RNA-
seq RNA sequencing, HER2 human epidermal growth factor receptor 2, ALK anaplastic lymphoma kinase, LN lymph node

Men with prostate cancer may be initially responsive to
androgen receptor (AR) inhibitors, but in some patients,
single-cell RNA-seq of individual CTCs detected het-
erogeneity in the expression of AR gene mutations and
activation of non-canonical (B-catenin-independent)
Wnt signaling, which may promote invasiveness and
malignant progression, thereby contributing to treatment
failure [77]. In pancreatic ductal adenocarcinoma, RNA-
seq has been used to compare genome-wide expression
profiles of single cells disaggregated from the primary
carcinoma with corresponding CTCs in a mouse model
of pancreatic cancer [78]. Compared with cells from
the primary tumor, CTCs showed enrichment of some
genes associated with stem cells and reduced expression

of epithelial markers (E-cadherin and Mucin 1). Within
CTCs, a high degree of heterogeneity was evident in the
expression of mesenchymal transcripts, platelet-derived
markers, and proliferative gene signatures.

Disseminated tumor cells

Research on the role of DTCs in bone marrow of cancer
patients has increased in recent years because the dis-
semination of cells from a primary carcinoma is believed
to be a critical step in the process of disease progres-
sion and formation of distant metastases. The presence
of single DTCs in bone marrow has been established as
a strong predictor of distant disease-free survival and
breast cancer-specific survival in breast cancer patients
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[79]. Patients with non-metastatic breast cancer remain
at significant risk of relapse, even after complete surgical
excision of the primary carcinoma, likely due to the per-
sistence of disseminated cancer cells [80].

Disseminated cancer cells detected in bone marrow of
patients with breast cancer have been found to express
proteins characteristic of cancer stem cells [81]. DTCs are
similar to CTCs in that they arise from sub-clonal popu-
lations of cells in the primary carcinoma and undergo
further molecular changes after dissemination [82]. Can-
cer biomarkers and genetic variation in both CTCs and
DTCs may evolve during disease progression, and signifi-
cant molecular discordance with important therapeutic
implications may develop between the primary tumor
and disseminated cells [83].

SCS studies of DTCs have been limited, presumably
because of the invasive surgical procedures needed to
collect these cells. In one study, Carpenter and colleagues
isolated 144 disseminated cells from bone marrow of
patients affected with neuroblastoma [84]. In patients
carrying a mutation in the anaplastic lymphoma kinase
(ALK) gene in their primary tumor, single-cell WGA and
sequencing detected the same mutation in single DTCs
from bone marrow. Demeulemeester and colleagues
used SCS to trace the origin of 63 single disseminated
cells from six non-metastatic breast cancer patients [85].
Approximately one-half of the DTCs which morphologi-
cally resembled cancer cells were found to be dissemi-
nated from the primary tumor; however, some of the
remaining cells displayed normal copy-number profiles,
while other cells had CNVs that were genetically differ-
ent from the primary tumor. Reconstructing evolution-
ary relationships between the primary tumor and DTC
genomes showed that some DTCs originated from the
predominant clone in the primary carcinoma, other
DTCs arose from less prevalent lineages in the primary
tumor, and a few DTCs descended from minor clones
observed in the axillary lymph node metastases.

Single-cell sequencing in clinical practice

Targeted therapeutics are designed to focus on actionable
mutations detected in a biopsy of the primary tumor, but
these “actionable” mutations may no longer drive disease
progression once tumor cells disseminate from the pri-
mary carcinoma and undergo unique genomic changes.
The ability of single-cell sequencing to delineate the
genomics and transcriptomics of circulating and dissemi-
nated cancer cells holds great promise for making mean-
ingful improvements in personalized oncology over the
next several years. To date, SCS has been used primarily
in the research setting; however, there may be a number
of clinical applications, including diagnosis, prognosis,
treatment decisions, and monitoring [86]. An intriguing
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use of SCS would be early disease diagnosis through the
analysis of bodily fluids such as blood or urine. Through
regular noninvasive monitoring of high-risk patients,
single disseminated cancer cells may be detectable at an
early stage of disease before a cancerous lesion could be
visualized with current imaging technologies. Identifica-
tion of clinically-actionable mutations at an early stage
could lead to targeted treatment before tumor heteroge-
neity and multiple genomically-distinct clones that are
resistant to therapy can evolve. Additionally, improve-
ments in SCS technologies will enable analyses of small
tumors which previously were too small to analyze using
bulk sequencing approaches. As demonstrated by SCS
of primary carcinomas, single biopsies may fail to ade-
quately account for intratumor heterogeneity. Assess-
ing genomic heterogeneity within the primary tumor or
among disseminated cells would allow for the calcula-
tion of diversity scores which may be used prognostically,
with higher intratumor heterogeneity associated with less
favorable outcomes [65, 87].

SCS may also be used to optimize treatment. The abil-
ity to identify common mutations throughout a carci-
noma could permit use of single agents that target the
bulk of the tumor, while assaying heterogeneous action-
able mutations could lead to implementing combinato-
rial approaches that target sub-clonal populations of cells
[86]. For cancer treatment, the most promising clinical
use of SCS is the analysis of CTCs, which may provide a
non-invasive method for clinicians to monitor response
to therapy before tumors become symptomatic or detect-
able through traditional approaches. Serial analysis of
individual CTCs isolated from blood samples taken over
the course of treatment may be used to identify new
mutations that emerge in response to therapy which
influence disease progression or therapeutic resistance
[88], enabling oncologists to alter treatment accord-
ingly. Targeted elimination of circulating tumor cells with
stem-cell-like expression profiles could prevent the colo-
nization of secondary sites and formation of metastases.

Despite the potential utility of SCS in clinical cancer
care, several current limitations need to be addressed
before SCS can be used routinely in clinical practice. In
the clinical environment, cancerous tissues excised from
the body have traditionally been prepared for patho-
logical examination by fixing the tissue in formalin and
embedding in paraffin. However, most single-cell isola-
tion and sequencing methods have been designed for
use with suspensions of live cells acquired from fresh tis-
sues [86]. Although the nuclear membrane is resistant
to freezing and thawing, allowing individual nuclei to be
isolated from nuclear suspensions derived from frozen
tissues for DNA sequencing [89], fresh tissue is currently
needed for single-cell RNA-seq. To implement SCS in the
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clinic, new tissue collection and handling protocols will
have to be established and validated at medical centers
and treatment facilities. Single-cell WGA and WTA tech-
niques currently being used in the research setting have
technological limitations, and an important challenge
to implementing SCS in the clinic is overcoming errors
that may be introduced by amplifying the minute amount
of DNA or RNA in a single cell and properly validating
the sequencing results. Improved technologies as well as
new computational methods will be needed before SCS
can reliably distinguish technical errors from true bio-
logical variability and generate valid results for informing
patient care [7, 90].

Currently, the cost of SCS prohibits large-scale imple-
mentation in the clinical setting, particularly because
added costs for computational analysis will be incurred
and assessment of numerous individual cells is often
necessary. Hundreds of single cells may need to be
sequenced, depending on a variety of factors, including
the state of disease progression, tumor heterogeneity, and
rarity of clinically important clones. Few insurance com-
panies provide coverage for SCS, particularly for cancer
patients, and until the clinical validity and clinical util-
ity of SCS are unequivocally demonstrated, patients will
have to pay out of pocket for these services. Large stud-
ies assessing clinical validity and robust decision models
regarding patient outcomes are needed to influence payer
coverage decisions regarding SCS [91].

A major obstacle complicating the introduction of
SCS into the clinical environment is the lack of onsite
oncologists or physicians who sufficiently understand
the sequencing results and are able to translate those
results into clinical action. Questions being asked by
clinicians include: (1) how to interpret and apply SCS
results to individual patients, (2) how to translate DNA
or RNA variation within single cells into definable clini-
cal phenotypes, and (3) how to use SCS results to predict
patient response to treatment [92]. Despite the growing
availability of clinically-useful DNA- and RNA-based
tests, ethical issues of sharing with the patient second-
ary (incidental) findings—genetic alterations associated
with conditions or diseases unrelated to the patient’s
present condition—remain unresolved [93]. In addition,
although the cost of SCS continues to decrease, the time
required for completing the isolation of single cells, DNA
amplification, NGS, and data interpretation remains a
significant obstacle. One recent study examining the
integration of WGS analysis into cancer care found that
results were clinically actionable in ~55 days, consider-
ably longer than the 10- to 14-day time frame that most
patients and physicians would find acceptable for dis-
eases such as cancer where rapid treatment decisions are

highly desirable [94].
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The Individualized Molecular Pancreatic cancer Ther-
apy (IMPaCT) trial, designed to improve outcomes using
genomic information to guide treatment decisions for
patients with advanced pancreatic cancer, found that
a complex infrastructure and multidisciplinary team
consisting of a genetic pathologist, oncologist, genetic
counselor, research coordinator, and project manager
were necessary to collect and process biospecimens,
conduct genomic analyses, and return results in a clini-
cally relevant timeframe [95]. The median time from con-
sent to return of validated results was 21.5 days (range
7-82 days). The trial concluded that current barriers
to implementing NGS technology in the clinic are sur-
mountable with the appropriate personnel and sufficient
resources.

Conclusions

Over the next several years, advancements in the isola-
tion of single viable cells, as well as WGA, NGS, and
computation methods will be needed to improve the clin-
ical utility of SCS [4]. The ability to amplify and sequence
RNA molecules other than polyadenylated mRNAs, such
as long non-coding RNAs and micro RNAs, will provide
valuable information on gene regulation. New methods
to simultaneously amplify and sequence genomic DNA
and full-length mRNA from the same cell may provide
powerful tools for assessing the effects of genomic vari-
ation on gene expression profiles [96, 97]. Likewise, the
ability to couple genome-wide methylation [98] and/or
proteomic [99] analysis with single-cell DNA- and RNA-
sequencing from individual cells may reveal mechanisms
by which genetic and epigenetic modifications regulate
transcriptional heterogeneity in cancer. Fluidic systems
to simultaneously isolate and analyze millions of cells
in parallel may provide a comprehensive view of can-
cer development and response to therapy within each
patient. Finally, localizing the spatial organization of gene
and protein expression within a single cell may be key to
determining the behavior and survival of individual can-
cer cells during therapy [100].

SCS is providing new insight into the biological and
molecular complexity of cancer, yet despite major recent
advancements, the extent of genomic and transcriptomic
heterogeneity at the individual cell level in human cancer
remains largely uncharacterized. Heterogeneity in cancer
patients is known to be dynamic and to evolve unpre-
dictably during disease progression, which creates a sig-
nificant challenge for modern cancer treatments. SCS has
the potential to create a paradigm shift in cancer care to
precision (personalized) treatment where heterogeneity
is thoroughly characterized prior to and during treat-
ment. Cancer immunotherapy, in particular, may benefit
from single-cell methods that define the role of innate
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heterogeneity in the development of immune resistance
and monitor the response of individual cancer cells to
immune-regulatory agents. Integrated SCS approaches
may provide important new insights into cancer evolu-
tion and unveil new avenues for dissecting the complex
activation of signaling pathways that cause heterogene-
ous cellular responses during treatment.
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