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Short‑term exposure to antibiotics begets 
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Abstract 

Background  Antibiotic exposure can occur in medical settings and from environmental sources. Long-term effects 
of brief antibiotic exposure in early life are largely unknown.

Results  Post a short-term treatment by ceftriaxone to C57BL/6 mice in early life, a 14-month observation 
was performed using 16S rRNA gene-sequencing technique, metabolomics analysis, and metagenomics analysis 
on the effects of ceftriaxone exposure. Firstly, the results showed that antibiotic pre-treatment significantly disturbed 
gut microbial α and β diversities (P < 0.05). Both Chao1 indices and Shannon indices manifested recovery trends 
over time, but they didn’t entirely recover to the baseline of control throughout the experiment. Secondly, antibiotic 
pre-treatment reduced the complexity of gut molecular ecological networks (MENs). Various network parameters 
were affected and manifested recovery trends over time with different degrees, such as nodes (P < 0.001, R2 = 0.6563), 
links (P < 0.01, R2 = 0.4543), number of modules (P = 0.0672, R2 = 0.2523), relative modularity (P = 0.6714, R2 = 0.0155), 
number of keystones (P = 0.1003, R2 = 0.2090), robustness_random (P = 0.79, R2 = 0.0063), and vulnerability (P = 0.0528, 
R2 = 0.28). The network parameters didn’t entirely recover. Antibiotic exposure obviously reduced the number of key 
species in gut MENs. Interestingly, new keystones appeared during the recovery process of network complexity. 
Changes in network stability might be caused by variations in network complexity, which supports the ecological 
theory that complexity begets stability. Besides, the metabolism profiles of the antibiotic group and control were 
significantly different. Correlation analysis showed that antibiotic-induced differences in gut microbial metabolism 
were related to MEN changes. Antibiotic exposure also caused long-term effects on gut microbial functional networks 
in mice.

Conclusions  These results suggest that short-term antibiotic exposure in early life will cause long-term negative 
impacts on gut microbial diversity, MENs, and microbial metabolism. Therefore, great concern should be raised 
about children’s brief exposure to antibiotics if the results observed in mice are applicable to humans.
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Introduction
Antibiotics have saved many lives of patients who would 
have otherwise died from infections. It is therefore not 
surprising that antibiotics are one of the most commonly 
prescribed medicines to patients with infectious diseases 
[1], including infants and children. In addition, antibiotics 
are commonly used in pet animals and animal husbandry 
for prophylactic and therapeutic reasons and also as 
growth promoters [2]. They are also applied as pesticides 
in agriculture [3, 4]. However, the extensive use of antibi-
otics has led to their regular and repeated release into the 
environment. An inevitable negative impact of antibiotic 
use is the emergence and dissemination of drug-resistant 
bacteria and resistance genes [2]. Antimicrobial resist-
ance is a serious worldwide problem for both public and 
animal health [5, 6]. Antibiotic resistance has now been 
escalated by major world health organizations to one of 
the top health challenges facing the twenty-first century 
[7]. It had been demonstrated that farms using antimi-
crobial growth promotants (AGPs) had more resistant 
bacteria in the gut floras of the farm workers and farm 
animals than in those on farms not using AGPs [7]. Food 
may act as a vector for the transmission of resistant bac-
teria and resistance genes to humans [8], since food is 
easily contaminated by resistant bacteria and resistance 
genes in several ways, such as during animal slaugh-
ter or food processing. When the contaminated food is 
ingested, the bacteria may colonize humans or transfer 
resistance material to other bacteria belonging to the 
endogenous human flora, leading to negative effects. For 
instance, it has been shown that pork and poultry meat 
can both be sources of transfer of resistant strains and 
genes to humans [8, 9].

One of the main promoting factors for antimicrobial 
resistance is the antibiotic use for human health and 
problems with sanitation [10]. Hospitals are a major 
source for the release and spread of antibiotic-resistant 
bacteria in the environment. Great concerns have been 
raised because hospital effluent is generally discharged 
untreated into the main wastewater system and eventu-
ally into the environment, which may lead to antibiotic 
pollution. Besides, a close correlation between antibiotic 
use and the development of individual and community-
level bacterial resistance has been verified [11].

Antibiotics are administered to over 10% of European 
children yearly [12] and are one of the most commonly 
used drugs in Chinese children. However, great concerns 
have been raised regarding the negative impacts of anti-
biotic exposure on human health, since researches have 
shown that antibiotic use is associated with gut microbial 
dysbiosis, asthma, inflammatory bowel disease (IBD), 
allergy, obesity, and diabetes [13]. Gut microbiota plays 
important roles in regulating the human immune system, 

in metabolism, and in hormone secretion and responses 
[14, 15]. It has been well-documented that antibiotic use 
is related to the disorder of the gut microbiome, which 
may cause various diseases [13]. This is particularly 
noticeable in children, as their gut microbiome is more 
susceptible to the effects of antibiotics. In fact, it has 
been demonstrated that children’s exposure to antibi-
otics is related to an increased risk for excessive weight 
gain, asthma, allergies, and autoimmune diseases [16, 
17]. Besides, since animal models have verified that gut 
microbiota plays a role in the development of brain struc-
ture and function, great concerns have also been raised 
about the potential adverse impacts of antibiotics on 
child brain development [18, 19]. Besides antibiotic expo-
sure from medical settings, antibiotics from environ-
mental sources are also an exposure risk (as mentioned 
above) [20].

Studies have shown that the overuse and misuse of 
antibiotics in animal husbandry and medicine have 
increased the abundance of antibiotic resistance bacteria 
and genes in human-associated environments [11]. Many 
researches have focused on antibiotic resistance, whereas 
investigating the long-term negative effects of antibiotic 
exposure in early life is also an important topic. Although 
it has been shown that even brief antibiotic exposure can 
cause long-term effects on microbiota composition, little 
is known about the following points: (1) the long-term 
effects of antibiotic exposure in early life on gut microbial 
metabolism; (2) whether and how antibiotic exposure 
in early life exhibits long-term effects on the ecological 
networks in gut microbial communities; (3) whether net-
work complexity in gut microbiota is related to network 
stability.

In this study, to investigate whether and how early-life 
antibiotic exposure exhibits long-term effects on the eco-
logical networks and metabolism of the gut microbiota, 
we conducted a longitudinal study spanning 14  months 
to examine the temporal dynamics of gut microbial net-
works and fecal microbial metabolism post a short-term 
oral administration of antibiotics in C57BL/6 mice with 
8  weeks of age (Fig.  1). The results may provide a deep 
insight into the long-term negative effects of antibiotic 
exposure in early life and provide guidance for treatment 
of disorders and diseases caused by antibiotic exposure.

Materials and methods
Animal experiment
This work received approval for research ethics from the 
Animal Care and Use Committee of the Laboratory Ani-
mal Science Institute of Guangdong Medical University 
(Additional file  1). Male C57BL/6 mice (approximately 
16 g) at 4 weeks of age (SPF grade) were purchased from 
the Guangdong Medical Experimental Animal Center. 
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The mice were treated humanely with efforts to mini-
mize suffering. A schematic overview of the experimental 
design is shown in Fig. 1. A total of 48 mice were adap-
tively fed for 4 weeks prior to experiment treatment in 8 
static microisolator cages supplemented with autoclaved 
padding under conditions of 22 ℃, 40–70% humidity, and 
a 12/12-h light/dark cycle. Then, the mice were randomly 
divided into two groups (antibiotic group (named group 
A); and control (named group C)), with 24 mice in each 
group (9 cages per group; 2–3 mice per cage; the mice 
had their own number and were kept in fixed cages to 
avoid intra-group and inter-group mixing). Mice in group 
A were continuously orally administered with 0.2 mL of 
ceftriaxone (400 mg/mL) [21–23] for 8 days, twice a day 
with an interval of 8 h between intragastric administra-
tions. Mice in group C were treated with sterile water by 
gavage in the same manner. After treatment, the mice 
were kept in their previous cages. Fecal samples from the 
mice were collected in the following 14 months. Food and 
water were provided to the mice ad  libitum throughout 

the experiment. Fecal pellets from mice were collected 
at least once every 2 weeks during the experiment. Feces 
from the mice were collected under aseptic conditions, 
immediately snap-frozen, and stored at − 80 ℃. The feces 
were used for microbial diversity analysis (samples from 
each month of the 1st–14th months), metabolomics anal-
ysis, and metagenomics analysis (samples from the 12th 
month). Fecal samples from 0.5 to 12th months (0.5, 1, 
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 7.5, 8, 8.5, 9, 10, 11, 
and 12 months) were used for the metabolomics analysis. 
Besides, the weight of the mice was measured during the 
whole experiment.

Genomic DNA extraction, PCR, and Illumina sequencing
Genomic DNA from each feces sample was extracted 
with the PowerSoil® DNA isolation kit (MoBio Labora-
tories, Carlsbad, CA, USA) according to the directions of 
manufacturers. After DNA quality verification, the V4-V5 
region of the 16S rRNA gene was PCR amplified using 
primers 515F (5′-GTG​CCA​GCMGCC​GCG​GTAA-3′) 

Fig. 1  Schematic overview of the experimental design. N represents the sample size. PE means the paired-end sequencing mode. SPF means 
specific pathogen-free. Fecal samples from the 1st–14th months post the cessation of antibiotic treatment were used for 16S rRNA gene 
sequencing. Fecal samples from the 12th month and 0.5–12th months were detected by metagenomics analysis and metabolomics analysis, 
respectively
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and 907R (5′-CCG​TCA​ATTCMTTT​RAG​TTT-3′). The 
primers were provided by Invitrogen (Carlsbad, CA, 
USA). PCR reaction mixtures contained 1  μL of each 
primer (10  μM), 25  μL of 2 × Premix Taq (Takara Bio-
technology, Dalian Co., Ltd., Dalian, China), 3 μL of DNA 
(20 ng/μL), and sterile ddH2O to a total volume of 50 μL. 
PCR was carried out by the BioRad S1000 (Bio-Rad Labo-
ratory, Hercules, CA, USA) using the following proce-
dures: 94 ℃ for 5 min; 30 cycles of 94 ℃ for 30 s, 52 ℃ 
for 30 s, and 72 ℃ for 30 s; and 72 ℃ for 10 min. Tripli-
cate reactions were performed for each sample, and the 
products were mixed, followed by purification using the 
EZNA Gel Extraction Kit (Omega Bio-Tek, Norcross, 
GA, USA). Sequencing libraries were prepared with the 
NEBNext® Ultra™ DNA Library Prep Kit for Illumina® 
(New England Biolabs, MA, USA) following the manu-
facturer’s directions. Paired-end sequencing (PE250) for 
220 samples was performed using the Illumina Novaseq 
6000 platform (Guangdong Magigene Biotechnology Co., 
Ltd., Guangzhou, China).

Analysis of 16S rRNA gene‑sequencing data
The obtained raw reads were processed by QIIME 2 (ver-
sion 2021.2) [24]. After importing the raw data, the for-
ward and reverse reads were truncated at 228 bases and 
215 bases, respectively. Denoising and sequence combi-
nation were carried out with the DADA2 plugin [25], and 
sequences with a base quality score > 20 were retained. 
Taxonomic classification was performed using the Naïve 
Bayes classifier trained in the SILVA database. Unusual 
amplicon sequence variants (ASVs) with extremely low 
abundance were discarded, including the feature with 
a sum frequency of less than 10 at each time point and 
the feature appeared in less than 3 samples. Unclassi-
fied and contaminated ASVs were also filtered. Feature 
table, representative sequences, and species annotation 
were correspondingly combined. A total of 17,509,264 
high-quality sequences were obtained. Rarefaction 
curves were analyzed. The feature table was rarefied at 
a depth of 37,800 sequences per sample. On the basis 
of the combined data, α- and β-diversity analyses were 
performed. Alluvial diagrams were created to visualize 
species composition across time. In β-diversity analysis, 
analysis of similarity (ANOSIM), multivariate analysis of 
variance (Adonis), and a multiple response permutation 
procedure (MRPP) were performed. Principal coordi-
nate analysis (PCoA) and visualization were performed 
by the ggplot2 package based on the Bray–Curtis dis-
tance. Species difference analysis at the genus level was 
performed using the ALDEx2 tool. Data statistical analy-
sis and result visualization were carried out using the R 
package (version 4.0.2) and GraphPad Prism 8 software. 

Besides, the functional potential of microbial communi-
ties was predicted based on the KEGG database using the 
Tax4fun2 in R package. Metabolic pathways with statis-
tical differences were analyzed and visualized using the 
STAMP software.

Construction of molecular ecological networks (MENs)
MEN analysis was based on the data of 16S rRNA gene 
sequencing. The MEN analysis was performed according 
to the methods previously described [26, 27]. MENs were 
constructed based on Pearson correlations of log-trans-
formed ASV abundances, followed by a random matrix 
theory (RMT-)-based method, determining the corre-
lation cut-off threshold [28]. The RMT was suitable for 
investigating the behaviors of various systems and MEN 
construction [29]. The RMT-based network method 
manifested obvious advantages as previously described 
[26]. For instance, this approach possessed a firm theo-
retical basis, since it was on the basis of two universal 
laws of RMT [26]. It can avoid arbitrary cut-off deter-
mination, which is a serious flaw in association network 
construction. Using the RMT-based network method can 
reduce the uncertainty in network construction and com-
parison [26]. The analysis tool of the RMT-based network 
method is called Molecular Ecological Network Analysis 
Pipeline (MENAP), which is usable from the Institute 
for Environmental Genomics, University of Oklahoma 
(http://​ieg4.​rccc.​ou.​edu/​MENA/). To ensure the reli-
ability of correlation analysis in this study, only the ASVs 
present at least in half of the samples were used for cor-
relation calculation.

Analysis of MEN parameters
The analysis methods of various network parameters 
referred to the approaches previously described in detail 
[26, 27]. The MEN indices were analyzed via the MENAP 
pipeline. The analyzed parameters included nodes, links, 
average degree (average K), average clustering coefficient 
(average CC), connectedness (Con), average path dis-
tance (GD), positive links, positive/negative ratios, num-
ber of modules, number of small modules, number of 
large modules, number of nodes in large modules, rela-
tive modularity (RM), number of keystones, vulnerability, 
and robustness. Connectors, module hubs, and network 
hubs were regarded as keystones [30]. To examine how 
each network parameter changed with time, regression 
analysis was performed between each network param-
eter and time (in months). Vulnerability and robust-
ness were applied to characterize the stability of MENs. 
Robustness is the proportion of the remaining species 
in a network post random or targeted node removal [26, 
31]. To simulate random species removal, 50% of nodes 
were randomly removed (robustness_random_removal). 

http://ieg4.rccc.ou.edu/MENA/
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To simulate targeted removal, all module hubs were 
removed (robustness_targeted_removal). The proportion 
of residue nodes was regarded as the network’s robust-
ness. The vulnerability of a node was used to determine 
the relative contribution of the node to the global effi-
ciency [26]. Efficiency in ecological networks can indi-
cate the speed of information transmitted to parts or the 
whole network.

Preparation of fecal samples for metabolomics analysis
Fresh fecal samples (50 mg each) were placed in 1.5 mL 
centrifuge tubes. Eight samples were analyzed for each 
group at each sampling time. A total of 300 μL of purified 
water was added to every tube, followed by ultrasonic 
extraction for 5 min and vortex for 30 s. Then, the tubes 
were subjected to centrifugation (at 4 ℃) at 13,000 rpm 
for 15 min. Two hundred microliters of supernatant was 
pipetted. After discarding the residual water in the cen-
trifuge tubes, 300  μL of methanol was added to every 
tube for ultrasonic extraction for 5  min, followed by 
vortex for 30  s. The tubes were subjected to centrifuga-
tion again (at 4 ℃) at 13,000 rpm for 15 min. Thereafter, 
200 μL of supernatant was pipetted and combined with 
the previous supernatant in an injection vial, followed 
by evaporation dryness using nitrogen. After adding 
80  μL of methoxyamine hydrochloride pyridine solu-
tion (20  mg/mL), the mixture was placed in an oven at 
80 ℃ for 30 min. After natural cooling, 100 μL of BSTFA-
TMCS was added, followed by a reaction in the oven at 
70 ℃ for 2 h. Then, 150 μL of n-heptane solution contain-
ing 0.1 g/L n-docosane as internal standard was applied 
to terminate the reaction, followed by centrifugation at 
13,000 rpm for 5 min. The resulting supernatant was used 
for GC–MS metabolomics analysis. Quality control (QC) 
sample was prepared by mixing an equal volume (50 μL) 
of the extract from every fecal sample. Then, the mixture 
(the same volume as that of other samples) served as the 
QC and was operated in the same way as other samples.

Acquisition of GC–MS data
The following procedure was performed according to 
the methods previously described [32], with some modi-
fications. The samples were analyzed via the Gas Chro-
matography Mass Spectrometer (7890B/5975A GC–MS 
System, Agilent, CA, USA). A DB-5MS UI capillary col-
umn coated with 5% phenyl methyl silox (Agilent J & W 
Scientific, Folsom, CA, USA) was used in the GC. One 
microliter of the samples was injected into the instru-
ment at a split ratio of 10:1. Helium was used for carrier 
gas with a constant flow rate of 1 mL/min. The tempera-
tures of injection, transfer line, ion source, and quad-
rupole were set at 280  ℃, 280  ℃, 230  ℃, and 150  ℃, 
respectively. The initial temperature program was set as 

isothermal heating (70 ℃) for 2 min, followed by increas-
ing to 300 ℃ at a rate of 10 ℃/min. The final temperature 
was kept for 5  min. The solvent was delayed for 4  min. 
Electron impact ion source (EI) was employed with an 
electron energy of 70 eV. The full scan mode (SCAN) was 
used for data acquisition with a mass scanning range of 
50–650 m/z.

Analysis of GC–MS‑based metabolomics data
The GC–MS data in [.D] format were transformed into 
“.abf” format with the AbfConvert (AnalysisBaseFileCon-
verter tool). The retention index for all the compounds 
present in the metabolomic profile was calculated. The 
calculation was performed based on a calibration file, 
containing retention time and retention index values of 
selected 13 compounds (Fames) present in every sample. 
Then, the data were preprocessed, cleaned, deconvoluted, 
and aligned via the Automated Mass Spectral Decon-
volution and Identification System (AMDIS, National 
Institute of Standards and Technology, USA) interface 
to match against the Mass Spectral and Retention Time 
Index (RI) library in the Fiehnlib Metabolome Database. 
Metabolites were further analyzed by comparing frag-
mentation patterns present in the Fiehnlib database. Peak 
seeking and quantification of selective ion traces were 
performed via the AMDIS. Generally, if a compound had 
an AMDIS match factor over 70%, a probability score 
larger than 20%, and a matching RI to a known com-
pound, it was considered “probable”. The data, includ-
ing metabolite names, the specific peak index (retention 
time), and peak areas, were imported into R software 
(version 4.0.2) for internal standard normalization. QC 
was corrected using the RSC algorithm. Missing values 
were supplemented using the Random Forest algorithm, 
and the data were log2 transformed.

Bioinformatics analysis of metabolomics data
After the raw data were pretreated, OPLS-DA was 
performed using the ropls package in R software 
(version 4.0.2). Values of variable importance in the pro-
jection (VIP) were obtained. Data from QC samples were 
removed, followed by a comparison between groups. 
The t-test was adopted to determine statistical signifi-
cance between the two groups. The criteria “fold change 
(FC) > 1, VIP > 1, and P < 0.05” were used to screen up-
regulated differential metabolites. FC < 1, VIP > 1, and 
P < 0.05 were used to identify down-regulated differential 
metabolites. The differential metabolites were used for 
matching KEGG ID by the MetaboAnalyst 4.0 (https://​
www.​metab​oanal​yst.​ca/). Then, enrichment analysis 
was carried out in the KEGG database (organism group: 
bacteria). Visualization of differential metabolites and 
differential metabolic pathways was performed using R 

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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software (version 4.0.2). In addition, correlation analysis 
was carried out to examine the relation between network 
parameters and differential metabolic pathways.

Metagenomics analysis
Genomic DNA from each feces sample in the 12th 
month was extracted using the ALFA-SEQ Advanced 
Soil DNA Kit (mCHIP BioTech Co., Ltd., Guangzhou, 
China) according to the directions of manufacturers. 
Following the detection of quantity and purity, the DNA 
sample was mixed with fragmentation buffer and sub-
jected to random interruption using the ultrasonic cell 
disruptor. Then, sequencing libraries were constructed, 
followed by quality detection. The Illumina HiSeq 2500 
platform was used for metagenomic sequencing (PE150). 
After base calling, the sequencing data were trans-
formed into raw reads in the FASTQ files. The sequenc-
ing raw data were subjected to quality control using the 
Trimmomactic software [33]. Clean data were aligned 
to the host genome sequences using the BWA software 
(v0.7.17; -k 30; other parameters were default) [34] and 
filtered to exclude the reads from the mice. The remain-
ing clean reads were de novo assembled using the MEG-
AHIT (https://​github.​com/​voutcn/​megah​it; k-min 35, 
k-max 95, k-step 20). Residual reads in each sample were 
mixed and also assembled. After the assembly, scaffolds 
were obtained. Scaftigs were obtained by trimming the 
sequences containing N in the scaffolds. The scaftigs with 
lengths over 500  bp were retained for further analysis. 
Prodigal [35] was adopted to predict the open reading 
frame (ORF). Gene clustering and elimination of redun-
dancy were performed using Mmseqs [36]. A non-redun-
dant gene catalog (Unigene) was obtained post selecting 
the longest sequence in each cluster as the representative 
sequence. Clean reads were aligned to the gene catalog 
using BBMap [37], followed by calculating the abun-
dance of each Unigene in each sample. Unigenes in the 
non-redundant gene catalog were aligned to the NCBI-
NR database for species annotation. MetaPhlAn2 [38] 
was also used for species annotation. Then, the results of 
species composition and abundance in each taxonomic 
hierarchy were obtained based on the species annotation 
and gene abundance table. The predicted gene sequences 
were aligned to the KEGG database for function annota-
tion. The enrichment of KEGG pathways for each sample 
was analyzed. The Wilcoxon rank-sum test or t-test was 
adopted to analyze the differences between groups. Com-
plexHeatmap in the R package (version 4.2.1) was used 
for heatmap visualization.

Functional network analysis
Functional network analysis was based on the data of 16S 
rRNA gene sequencing and metagenomic sequencing, 

respectively. For the former analysis, metabolic pathways 
were predicted based on the KEGG database and the 
Tax4fun2 in R package. Pearson correlation coefficients 
between pathways were calculated, and functional net-
works were constructed using pathways and the correla-
tion as nodes and links, respectively. Core subnetworks 
were extracted using the MCODE plugin (degree cutoff: 
2; K-core: 2; Max. depth: 100) in the Cytoscape software 
[39]. Finally, the networks were subjected to visualiza-
tion using the Cytoscape. Functional network analysis 
of metagenomic sequencing data was based on KEGG 
annotation results. Pearson correlation coefficients 
between proteins/enzymes or pathways at the level_3 
categories were calculated. Functional networks, unless 
specifically stated, were constructed using pathways and 
the correlation as nodes and edges (links), respectively. 
Core subnetworks were extracted using the MCODE 
plugin (degree cutoff: 2; K-core: 3; Max. depth: 100) in 
the Cytoscape. Network visualization was also performed 
using the Cytoscape.

Results and discussion
Effects of antibiotic exposure on the weight and gut 
microbial diversity in mice
As shown in Supplementary Figure S1, most time the 
average weight of mice in the antibiotic group seemed 
smaller than that of the control, whereas only days 0, 
105, and 120 after the cessation of  antibiotic treatment 
showed statistical differences. Interestingly, the weight 
of mice in the antibiotic group was somewhat greater 
than that of the control at the endpoint of 8-day antibi-
otic treatment (day 0). In terms of these data, it was hard 
to explain the underlying mechanisms of weight changes 
related to short-term exposure to ceftriaxone.

The rarefaction curves in microbial diversity analy-
sis are shown in Supplementary Figure S2, indicating 
enough sequencing depth. We used linear regression 
analysis to reveal the changes of three α-diversity indices 
across time (14 months). In the first few months, Chao1 
indices and Shannon indices were significantly lower in 
the antibiotic group (Fig.  2a, c), indicating that antibi-
otic treatment resulted in reduced gut microbial diver-
sity. In the antibiotic group Chao1 index and Shannon 
index showed an overall increasing trend over time, sug-
gesting that the gut microbial diversity gradually recov-
ered over time after cessation of antibiotic use. Both the 
Chao1 indices and Shannon indices from the antibiotic 
group in the 11th, 12th, and 13th months approached 
those of the control group. However, the diversity didn’t 
entirely recover, since the Chao1 indices between the 
two groups were still significantly different (P < 0.05) 
in the 14th month. Although the difference in Shan-
non indices between the two groups in the 14th month 

https://github.com/voutcn/megahit
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was not statistically significant, a minor difference was 
observed. The Dominance indices in the first 3 months 
of the ceftriaxone group were greater than those of the 
control, indicating that some microorganisms exhib-
ited dominance following antibiotic treatment. At the 
phylum level, Bacteroidota was obviously dominant 

in the first 3  months in the antibiotic group relative to 
the control (Supplementary Figure S3). Proteobacteria 
and Desulfobacterota were dominant in the 1st and 2nd 
months. At the genus level, Muribaculaceae was obvi-
ously dominant in the first 3  months in the antibiotic 
group. It has been demonstrated that Proteobacteria 

Fig. 2  Results of α- and β-diversity analyses. The data were from 16S rRNA gene sequencing. M is short for month. Chao1 index, Dominance 
index, and Shannon index are shown in a, b, and c, respectively. Normality testing was performed using the Shapiro–Wilk test. For α-diversity, 
the nonparametric test was adopted due to that some samples were not in accordance with normal distribution. Wilcoxon test was performed 
for the comparison between the antibiotic group and control. Red and blue dotted lines indicate the regression of the antibiotic group 
and control, respectively. The corresponding R2 and P values are shown. Each number around the broken lines denotes the P value of statistical 
analysis between two groups at each time point. d Heatmaps showing the relative magnitude of α-diversity indices between antibiotic 
group (A) and control (C). The values are represented by logFC (FC = A/C). The right half part of d shows the results of regression analysis (for 
the antibiotic group) with α-diversity indices against time. Connections between red nodes indicate that the index increases over time (positive), 
while connections between blue nodes represent that the index decreases with time (negative). e PCoA analysis. The Bray–Curtis distance was used 
for β-diversity analysis. The P values were produced from Adonis analysis. The data on ASV abundances were used for the PCoA analysis. *P < 0.05; 
**P < 0.01; ***P < 0.001
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is a microbial signature of dysbiosis in gut microbiota 
and that during the process of gut microbial dysbiosis, 
the adaptation of Proteobacteria will enhance, which 
makes them dominant [40]. Species difference analysis 
using the ALDEx2 tool showed that at the genus level, 
the 1st, 2nd, 3rd, and 7th months contained differen-
tial species between two groups (Supplementary Figure 
S4). Enterococcus was enriched in the antibiotic group 
in the 1st and 2nd months. Enterococcus, which belongs 
to opportunistic pathogens, can cause infections, such 
as urinary tract infections, bacteremia, and endocarditis 
[41]. Since antibiotic-resistant bacteria might multiply, 
antibiotic-induced reduction in microbial diversity did 
not necessarily mean a reduction in bacteria load [42]. 
On the whole, the Dominance index in the antibiotic 
group decreased with time (Fig. 2b, d), also manifesting 
a recovery trend to the level of control.

The Bray–Curtis distance was adopted to analyze 
β-diversity. The data on ASV abundances were used for 
the PCoA analysis. The results showed that samples from 
the 1st–5th, 7th, 9th, 10th, and 12th months were sig-
nificantly separated (P < 0.05), while the 6th, 8th, 13th, 
and 14th months had more overlapped samples (Fig. 2e). 
Three non-parametric dissimilarity analyses (ANOSIM, 
Adonis, and MRPP) demonstrated that significant dif-
ferences in microbial diversities were observed between 
antibiotic group and control, in particular in the first few 
months (Table S1).

It has been demonstrated that even a brief course 
of antibiotics can dramatically reduce gut microbial 
diversity [43], manifesting long-term negative impacts 
[44]. Perturbation (e.g., by antibiotics) to gut micro-
biota can shift the microbiome from its original equi-
librium to another state [45, 46]. In this study, it was 
uncertain whether the mice’s gut microbiome in the 
antibiotic group had reached a new balanced state since 
the diversity in the last few months still exhibited fluc-
tuations. It could be seen from Fig.  2a that the Chao1 
index of the antibiotic group in the 14th month was 
lower than that of the control (P < 0.05). Studies showed 
that reduced diversity in gut microbiota may favor the 
colonization and overgrowth of pathogenic microor-
ganisms [45]. The observed dominance of Proteobac-
teria and Enterococcus in our research was consistent 
with these studies.

Collectively, α- and β-diversity analyses suggested the 
following points: (1) ceftriaxone treatment in early life 
significantly reduced the microbial diversity in the gut of 
C57BL/6 mice in the first few months; (2) the gut micro-
biome manifested a recovery trend post the cessation 
of treatment, but the trend seemed somewhat unstable, 
implying that the negative impacts of ceftriaxone expo-
sure were long-lasting.

Effects of antibiotic exposure on gut molecular ecological 
networks (MENs)
In ecosystems, different species are interconnected, 
involving complicated ecological relationships, such as 
commensalism, mutualism, neutralism, amensalism, 
competition, predation, and parasitism. These association 
networks in microbial ecology are typically recognized as 
MENs, with species as nodes and their relationships as 
links [47]. We constructed 28 time-series MENs (empiri-
cal networks; Fig. 3 and Table S2) based on Pearson cor-
relations of log-transformed amplicon sequence variant 
(ASV) abundances, followed by a random matrix theory-
based method [28], providing a threshold for network 
construction. The empirical MENs exhibited obvious dif-
ferences from random MENs (Table S3) and had scale-
free characteristics (R2 = 0.515–0.946). The empirical 
MENs manifested small-world features with short geo-
desic distances (the average shortest path between two 
nodes) of 3.813–7.771 (Table S2), which allowed the 
effects of a perturbation to distribute quickly through the 
whole network, rendering the entire system efficient [26]. 
It could be seen from Fig. 3 that in the first few months, 
the MENs of the ceftriaxone group were obviously sim-
pler than those of control, indicating that antibiotic expo-
sure reduced the network complexity of gut microbiota. 
Nevertheless, the network complexity showed a recovery 
trend over time with fluctuations.

To further examine whether and how antibiotic expo-
sure affected the network complexity of gut microbiota, 
various network topological parameters were regressed 
against time. On the whole, network size (total number 
of nodes; P < 0.001, R2 = 0.6563; Fig.  4a) and network 
connectivity (total number of links; P < 0.01, R2 = 0.4543; 
Fig.  4b) increased across time in antibiotic group 
(Fig. 4m), while the variation trend in control group was 
not obvious. Nodes in MENs represent species. Figure 4a 
showed that in the first few months, the number of nodes 
in the ceftriaxone group was obviously less than that of 
control, thereafter it increased over time, approaching 
that of control. But in the 14th month obvious differ-
ence between the two groups still appeared. Therefore, 
the changing trend of nodes in the antibiotic group was 
consistent with that of Chao1 indices. The difference in 
average path distance (GD) between the two groups was 
not obvious (Fig.  4c). The average connectivity (average 
links per node; average K) in the 1st and 2nd months of 
the ceftriaxone group was larger than that of the control, 
followed by an obvious downtrend until the 7th month 
(Fig.  4d). Thereafter, variations of average K in the  two 
groups exhibited similar trend with fluctuations. The 
connectedness (Con) in several months of ceftriaxone 
group was obviously lower than that of control, though 
the overall trend of Con in regression analysis was similar 
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between the two groups (Fig. 4e). Interestingly, the aver-
age clustering coefficient (the extent to which nodes are 
clustered, average CC) in the first 4 months of the ceftri-
axone group was higher than that of the control (Fig. 4f ). 
Nevertheless, it manifested an overall downtrend, which 
was contrary to the average CC in control group.

Positive correlations between nodes generally indicate 
cooperative connections, such as commensalism, mutu-
alism, syntrophic interactions, and shared environmental 
requirements [26]. Negative associations between nodes 
represent competition for limiting resources, amensal-
ism, predation, parasitism, etc. It has been demonstrated 
that the positive/negative (P/N) ratio (the ratio of the 
number of positive links to the number of negative links) 
can reflect the balance between promoting and inhibiting 
interactions among microbial species in gut microbiota 
and that the P/N ratio may be one of the most critical 
changes in a disordered microbiome [48]. The P/N ratio 
was much larger in diseased networks, whereas more 
negative links appeared in healthy microbial networks 
[48]. It has been shown that cooperation reduces the sta-
bility of the microbiome, whereas competition increases 
the stability [49, 50]. Networks with mutually beneficial 
and competitive associations are more robust and stable 
[31]. In this study, although the overall variation trend 

of positive links was similar between the two groups as 
shown by regression analysis (Fig.  4g), obvious differ-
ences were observed in the 1st, 4th, 5th, 8th, 9th, 10th, 
and 13th months. The positive associations and P/N ratio 
(Fig. 4h) of the ceftriaxone group in the 1st month were 
obviously higher than those of the control, indicating that 
antibiotic exposure enhanced positive associations in 
the gut MENs, which might result in less robust and less 
stable networks in the gut microbiome. Thereafter, the 
P/N ratio exhibited a recovery trend, yet obvious differ-
ences were observed in the 4th, 5th, 9th, 13th, and 14th 
months.

Changes in network structure can further lead to varia-
tions in network organizational principles, such as mod-
ularity. Modularity reflects the extent to which a network 
is compartmentalized into different modules, in which 
the nodes within a module closely connect with each 
other but are less associated with nodes from other mod-
ules [26]. A network is considered to have good modular-
ity when the modularity value is greater than 0.4. Module 
can be categorized into small modules (< 5 nodes) and 
large modules (≥ 5 nodes) [26]. All the networks we con-
structed had good modularity (modularity was between 
0.594 and 0.848; Table S2). The number of modules in 
the first 3 months of the antibiotic group was obviously 

Fig. 3  Visualization of MENs. MENs were constructed based on Pearson correlations of log-transformed ASV abundances. A and C represent 
the antibiotic group and control, respectively. M is short for month. Large modules (≥ 5 nodes) are indicated by different colors, and small modules 
(< 5 nodes) are shown in grey. Details of network topological parameters are shown in Table S2
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Fig. 4  Visualization of network parameters. A and C represent antibiotic group and control, respectively. M is short for month. Detailed parameters 
of network indices are shown in Table S4. Network parameters were regressed against time. R2 and P values from regression analysis are shown. 
Detailed information on regression analysis is shown in Table S5. In a–k, red and blue dotted lines indicate the regression of the antibiotic group 
and control, respectively. h P/N means positive/negative. k Robustness determined as the proportion of taxa remained with 50% of nodes were 
randomly removed from each of the MENs. l Robustness was determined as the proportion of taxa remained with all module hubs removed 
from each of the MENs. m Heatmaps showing the relative magnitude of network indices between antibiotic group (A) and control (C). The 
values are represented by logFC (FC = A/C). The right half part of m shows the results of regression analysis (for the antibiotic group) with various 
indices against time. Connections between red nodes indicate that indices increase over time (positive), while connections between blue nodes 
represent that indices decrease with time (negative). For statistical analysis, normality testing was performed using the Shapiro–Wilk test. The data 
for robustness analysis were in accordance with normal distribution. Thus, P values of robustness_random were calculated using t-test. *P < 0.05; 
**P < 0.01; ***P < 0.001
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less than that of the control (Fig. 5a and Supplementary 
Figure S5) but with an overall increasing trend over time 
(R2 = 0.2523, P = 0.0672). The number of modules in the 
antibiotic group gradually recovered to be consistent 
with the control across time, though in the 8th, 10th, and 
12th months, the differences were obviously observed. It 
suggested that there were some fluctuations during the 
recovery process. The number of small modules in the 
first 3 months of the antibiotic group was obviously less 
than that of control. It had an overall increasing trend, 
recovering to approach the baseline of the  control over 
time, but the obvious difference still appeared in the 14th 
month (Fig. 5b). The number of large modules in the first 
5 months of the antibiotic group was obviously less than 
that of control (Fig. 5c). In the 6th, 7th, 9th, 10th and 11th 
months the number of large modules in the antibiotic 
group approached that of control. However, the recovery 

trend was unstable, since the number of large modules 
in the antibiotic group was still obviously less than that 
of control in the 8th, 12th, 13th, and 14th months. Simi-
larly, the number of nodes in large modules of the anti-
biotic group exhibited a recovery trend post-cessation of 
treatment, whereas obvious differences between the two 
groups reappeared in the 14th month (Fig. 5d). The abun-
dance proportions of bacterial species in each module 
and the bacteria correlations within and among modules 
were shown in Supplementary Figure S5. Besides affect-
ing the number of modules, antibiotic exposure also led 
to an obvious alteration of bacterial composition and 
their associations in MEN modules, though the com-
position exhibited a slight recovery trend in the last few 
months.

Since network size and connectivity vary among differ-
ent MENs, relative modularity (RM) is more meaningful 

Fig. 5  Module indices and correlations between relative modularity (RM) and other network parameters. A and C represent the antibiotic group 
and control, respectively. a–e Module parameters were regressed against time. R2 and P values from regression analysis are shown. Red and blue 
dotted lines indicate the regression of the antibiotic group and control, respectively. f–k Red solid line and blue dashed line represent the antibiotic 
group and control, respectively. The Spearman correlation coefficients (r) are shown for the antibiotic group and control in corresponding colors. 
*P < 0.05; **P < 0.01; ***P < 0.001
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for comparing module structure among different net-
works [26]. Interestingly, RM in the first 3  months of 
the antibiotic group was obviously higher than that of 
the control (Fig.  5e). Thereafter, RM between the  two 
groups in the 4th, 5th, 6th, 7th, 11th, 12th, and 13th 
months was similar, respectively, while obvious dif-
ferences were observed in the 8th, 9th, 10th, and 14th 
months, respectively. The Spearman correlation analysis 
showed that both the RM in the ceftriaxone group and 
control increased with links, average K, average CC, and 
Con, respectively (Fig. 5f, h, i, and j). Interestingly, RM in 
the control group was positively correlated with nodes, 
but in the ceftriaxone group, it exhibited a negative cor-
relation (Fig. 5g). Both the RM in the ceftriaxone group 
and control decreased with GD (Fig.  5k). These results 
suggested that the relationships between RM and some 
parameters of network structure were overall similar 
between the ceftriaxone group and control, though some 
differences existed.

The changed network complexity may lead to changes 
in the role of specific species within the network. Spe-
cies that play key roles in shaping network structure are 
regarded as keystone nodes [30, 51]. Regression analysis 
showed that the number of keystones in the antibiotic 
group manifested an overall increasing trend (Fig.  4i). 
The trend seemed to recover to the baseline of control 
over time, though fluctuations in some months occurred. 
Specifically, the numbers of keystones of the antibiotic 
group in the 1st–7th months were obviously less than 
those of control, indicating that antibiotic use obvi-
ously reduced the number of key species in gut MENs. 
The numbers of keystones in the 8th, 9th, 10th, and 12th 
months were similar between the two groups. But obvi-
ous fluctuations appeared in the 11th, 13th, and 14th 
months. In addition, the keystones-affiliated taxa in the 
1st–13th months were entirely different between the two 
groups, and only one keystone was shared in the 14th 
month (Table S6). These results suggested that keystones 
were obviously different between the ceftriaxone group 
and the control and that new keystones appeared in the 
antibiotic group during the recovery process of network 
complexity. The observed differences in keystones might 
be a critical promoting factor in shaping different micro-
bial network structures between the two groups.

Network vulnerability (the maximum decrease in net-
work efficiency when deleting a single node from the 
network) of the ceftriaxone group was higher than that 
of control in most months, in particular in the first few 
months, as well as the 9th and 14th months (Fig. 4j). Both 
the network vulnerability in these two groups manifested 
decreasing trend over time. Robustness (the resistance to 
node loss) on the basis of random species loss (robust-
ness_random) exhibited obvious differences between the 

two groups in the 1st, 3rd, 4th, 5th, 7th, 9th, 10th, 11th, 
13th, and 14th months (Fig.  4k, m). Robustness based 
on targeted removal of keystones (robustness_targeted) 
exhibited fluctuations of up and down from the 1st to 
8th months in the ceftriaxone group (lower than that of 
control in some months), thereafter it maintained at lev-
els similar to that of control (Fig. 4l). Collectively, these 
results suggested that antibiotic exposure reduced gut 
MEN stability in the first few months, followed by recov-
ery trend though it didn’t entirely recover to the level of 
control.

In summary, most network parameters, including 
nodes, links, average K, average CC, number of mod-
ules, number of small modules, number of large modules, 
number of nodes in large modules, RM, number of key-
stones, positive links, P/N ratio, robustness, and vulner-
ability, were obviously different between two groups in 
the first few months. The results suggested that ceftriax-
one exposure markedly changed the gut MENs, including 
network complexity and network stability. As time went 
on, the network parameters showed an overall recovery 
trend, whereas they didn’t entirely recover to the baseline 
of control, suggesting that the negative impacts of ceftri-
axone use in early life on the gut MENs were long-lasting. 
It should be noted that the microbial diversity, network 
complexity, and network stability were not maintained to 
certain levels in the 14-month time series in the control 
group, with fluctuations over time. This phenomenon 
was consistent with reported viewpoints that the gut 
microbial diversity changed with age [42] and that char-
acteristics of MENs are dynamic over time [26].

Relationship between MEN complexity and stability
Whether and how MEN complexity affects ecosystem 
stability has been a controversial question for many years 
[31, 52–56], which remains understudied in the areas of 
microbial ecology [26]. Researchers found that network 
stability in grassland soil microbial communities under 
warming strongly correlated with network complexity, 
which was consistent with the central ecological belief 
that complexity leads to stability [26]. Nevertheless, this 
observed phenomenon might not be necessarily appli-
cable to other ecosystems since controversial results 
regarding the relations between network stability and 
complexity have been reported [31, 55, 56]. To determine 
whether and how MEN complexity in gut microbiota 
under antibiotic challenge affects network stability, cor-
relation analysis was performed between the parameters 
of network complexity and stability (Fig.  6 and Table 
S7). Significant correlations were observed in antibiotic 
group between various complexity parameters and net-
work stability, while the correlations with statistical sig-
nificance in the control group were relatively less. Both 
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the network robustness based on random species loss 
(“robustness_random”) in the antibiotic group (r = 0.88) 
and the control (r = 0.66) were positively correlated with 
positive links. Robustness based on targeted removal of 
keystones (“robustness_target”) in the antibiotic group 
was positively correlated with links, nodes, Con, nodes 
in large modules, and the number of keystones, respec-
tively. However, no correlation with statistical signifi-
cance regarding “robustness_target” in the control group 
was found. Vulnerability in the antibiotic group was 
negatively correlated with links, nodes, nodes in large 
modules, and the number of keystones, respectively. Vul-
nerability in the control group was negatively correlated 

with links, average K, Con, and relative modularity, 
respectively. These results suggested the following points. 
On one hand, network complexity is related to network 
stability in the gut microbial community, whether it is 
under antibiotic exposure or not. On the other hand, 
since the correlations between MEN complexity and 
stability, as well as the measurements of complexity and 
stability, were significantly different between the two 
groups, it was plausible that antibiotic-induced changes 
in gut MEN complexity affected the network stability. 
These results also supported the ecological theory that 
complexity begets stability [57].

Fig. 6  Correlations between network complexity and stability. Correlations with statistical significance (P < 0.05) are shown, with orange grids 
indicating positive correlations and green grids indicating negative correlations. Numbers inside the grids represent corresponding correlation 
coefficients. Correlations with no statistical significance are indicated by grey. Detailed information about the correlations is shown in Table S7
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Effects of antibiotic exposure on gut microbial metabolism
Metabolomics analysis showed that numerous metabo-
lites with significant differences between the antibiotic 
group and the control were identified, with variations of 
relative content over time (Supplementary Figure S6). 
In each month the number of metabolites detected, the 
number of up- and down-regulated metabolites in the 
antibiotic group, and the number of annotated pathways 
were shown in Table S8. The orthogonal to partial least 
squares discriminant analysis (OPLS-DA) also indicated 
that metabolites between the two groups were signifi-
cantly different (Supplementary Figure S7). At most time 
points the differences between two groups are larger than 
that within a single group. Figure  7 showed the main 
metabolic pathways with significant differences between 
the two groups, of which pathways related to amino acid 
metabolism (15 pathways) were the most significantly 
affected by antibiotic exposure. The results also showed 
that some pathways displayed significant differences 
between the two groups at most time points, suggest-
ing that the post-antibiotic effect on these pathways was 
long-lasting. For instance, “biosynthesis of amino acids” 
displayed significant differences between the two groups 
at 18 time points (18/20; a total of 20 time points were 
detected). There were six pathways related to carbohy-
drate metabolism with significant differences between 
the two groups. Many other metabolic pathways, such 
as pathways related to lipid metabolism and nucleotide 
metabolism, also exhibited significant differences. Car-
bohydrate metabolism, amino acid metabolism, and 
lipid metabolism are three main material metabolisms. 
Nucleotide metabolism that involves genetic information 
transmission, such as DNA synthesis and RNA synthe-
sis, is also vitally important to organisms. These results 
suggested the following points: (1) ceftriaxone exposure 
significantly impacted the metabolisms of the murine 
intestinal microbiota, which might lead to the occurrence 
of metabolic diseases if the observed results were appli-
cable to humans; (2) the post-antibiotic effect on some 
gut microbial metabolic pathways was long-lasting.

Relationship between gut MENs and metabolome 
following antibiotic exposure
To determine the relation between MENs and metabo-
lome, correlation analysis was carried out between vari-
ous network parameters and the metabolic pathways 
with significant differences between the ceftriaxone 
group and control. There were 48 and 49 correlations 
with statistical significance in the ceftriaxone group and 
control, respectively (Supplementary Figure S8). In the 
ceftriaxone group, 21 pathways contained statistically 
significant correlations with network parameters. Among 
these metabolic pathways, there were 7 pathways with 

significant correlations related to amino acid metabolism, 
including “valine, leucine, and isoleucine biosynthesis”, 
“phenylalanine, tyrosine, and tryptophan biosynthesis”, 
“valine, leucine, and isoleucine degradation”, “phenyla-
lanine metabolism”, “tyrosine metabolism”, “taurine and 
hypotaurine metabolism”, and “glycine, serine, and threo-
nine metabolism”. “Valine, leucine, and isoleucine bio-
synthesis” was positively correlated with total nodes and 
robustness_target, respectively, and was negatively corre-
lated with average CC, robustness_random, and vulner-
ability, respectively. There was one pathway (galactose 
metabolism) with statistical significance related to car-
bohydrate metabolism and one pathway (biosynthesis 
of unsaturated fatty acids) related to lipid metabolism. 
In the control group (Supplementary Figure S8b), 33 
pathways contained statistically significant correlations 
with network parameters. Among these metabolic path-
ways, there were 7 pathways with significant correlations 
related to amino acid metabolism, including “valine, 
leucine, and isoleucine biosynthesis”, “biosynthesis of 
amino acids”, “phenylalanine, tyrosine, and tryptophan 
biosynthesis”, “valine, leucine, and isoleucine degrada-
tion”, “glycine, serine, and threonine metabolism”, “lysine 
degradation”, and “cysteine and methionine metabolism”. 
“Valine, leucine, and isoleucine biosynthesis” was posi-
tively correlated with average CC and robustness_ran-
dom, respectively, and was negatively correlated with 
the number of keystones. There were 7 pathways related 
to carbohydrate metabolism and one pathway (glyc-
erolipid metabolism) related to lipid metabolism. Obvi-
ously, the correlations between network parameters and 
metabolic pathways in the two groups were different. 
On one hand, there was a difference in the number and 
type of metabolic pathways with statistical significance in 
the correlation analysis. On the other hand, for the same 
metabolic pathway, network parameters from the two 
groups correlated with the pathway with statistical signif-
icances were almost different. Collectively, these results 
suggested that the antibiotic exposure-induced changes 
of metabolic pathways (in particular the ones related to 
amino acid metabolism) in gut microbiota were related 
to the variations of MENs, though their causal relation 
remained to be investigated.

Post‑antibiotic effect on gut microbial metabolic function
To further study the post-antibiotic effect, gut microbial 
metabolic function was predicted based on the 16S rRNA 
gene-sequencing data. Besides, metagenomics analysis 
was performed. In terms of the number of pathways with 
significant differences (corrected P value < 0.05) between 
the two groups, the 1st month (118 pathways) was the 
largest (Table S9). The number displayed a decreas-
ing trend in the following several months, then with 
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Fig. 7  Metabolic pathways with significant differences in metabolome analysis. The horizontal direction on the bottom indicates the sampling 
time. M is short for month. Samples from a total of 20 time points were used for metabolomics analysis. The enriched pathways were produced 
by annotation of differential metabolites in the KEGG database (organism group: bacteria). Pathways with differential metabolites contained 
in over 60% of time points (i.e., > 12 time points) are shown. The heatmap colors were generated from the GeneRatio. The GeneRatio was the ratio 
of the number of metabolites enriched in a specific pathway to the total number of metabolites in this pathway, with + /– values to discriminate 
the upregulation in the antibiotic group (red) and control (blue), respectively. The first line marked by “Down” indicates the number of metabolic 
pathways (blue; with significance) enriched by metabolites with higher abundances in the control group at each time point. The last line marked 
by “Up” indicates the number of metabolic pathways (red; with significance) enriched by metabolites with higher abundances in the antibiotic 
group. The rightmost column of grids marked by “corr” indicates the correlation between GeneRatio values and sampling time, with red and blue 
representing positive and negative correlations, respectively. In some months, some differential metabolites are not contained in specific metabolic 
pathways, which are represented by white grids. In other grids, red and blue indicate that the differential metabolites were in higher abundance 
in the antibiotic group and control, respectively. *P < 0.05; **P < 0.01
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fluctuation, and finally it  was still greater than zero. It 
suggested that in the 14th month, there were still differ-
ences in microbial metabolic pathways between the two 
groups. More specifically, the number of dominant path-
ways in the control group in the 1st month was 80, which 
was much greater than that of the antibiotic group, sug-
gesting that many pathways had been impaired by antibi-
otic exposure. The number in the control group displayed 
a decreasing trend in the following several months, then 
with fluctuation, and finally it was still greater than that 
of the antibiotic group in the last 3  months (Table S9). 
Most pathways with significant differences were crucial 
to bacterial survival and physiological functions. Obvi-
ously, antibiotic exposure has made the gut microbiota 
more vulnerable. The variation trend of the number of 
metabolic pathways with significant differences was simi-
lar to that of microbial network parameters. For instance, 
the values of network vulnerability in the antibiotic group 
in the first few months were greater than those of control 
(Fig. 4j), suggesting that antibiotic exposure made the gut 
microbial network more vulnerable or less stable. After-
ward, the vulnerability displayed a recovery trend with 
fluctuation in the level of control. But it did not entirely 
recover. These results further indicated that the changes 
in gut microbial metabolism following antibiotic expo-
sure were related to MEN variations.

As shown in Supplementary Figure S9, in the 1st month 
eight dominant pathways related to antibiotic biosynthe-
sis were found in the control group, whereas only two 
pathways were dominant in the antibiotic group. Com-
petition increases microbial network stability, whereas 
cooperation reduces the stability [49, 50]. Some bacteria 
can secrete antibiotics to inhibit other microorganisms, 
which is a phenomenon of competition. The less domi-
nant pathways related to antibiotic biosynthesis in the 
antibiotic group might beget reduced competition, which 
might reduce the microbial network stability. Indeed, the 
gut microbial network stability was markedly weakened 
post-antibiotic exposure (Fig. 4). Afterward, the network 
stability exhibited a recovery trend with fluctuations, 
but it did not entirely recover to the level of control. The 
change trend of dominant pathways related to antibiotic 
biosynthesis (Table S9) was similar to that of the network 
stability.

“Xenobiotics biodegradation and metabolism” was 
dominant in the antibiotic group in the 1st, 9th, 11th, 
and 12th months post-antibiotic exposure (Supplemen-
tary Figure S10). Metagenomic sequencing data also 
showed that this pathway was dominant in the antibi-
otic group in the 12th month after the cessation of anti-
biotic exposure (Fig.  8a). More specifically, there were 
6, 6, and 8 dominant pathways related to the degrada-
tion of organic toxicants in the antibiotic group in the 

Fig. 8  Abundance analysis of metabolic pathways between the antibiotic group and control based on metagenomic sequencing data. The data 
were from metagenomic analysis of feces samples in the 12th month after the cessation of antibiotic exposure. The data were filtered to exclude 
the reads from the mice. The heatmap was produced using the ComplexHeatmap in R package (version 4.2.1). The horizontal columns on the left 
side of each figure display the relative abundance between the two groups. A and C represent the antibiotic group and control, respectively. 
FC represents the ratio of abundance (A/C). a The KEGG pathways were from the level_2 category. b The KEGG pathways were from the level_3 
category. Pathways ranking in the top 35 in average abundance were shown in each figure, excluding the pathways not associated with microbes
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1st, 9th, and 11th months, respectively (Supplementary 
Figure S9 and Table S9), while the number of dominant 
pathways in the control was 1, 1, and 2, respectively. 
The relative dominance trend (Table S9) was similar to 
the changing trend of microbial network parameters 
(Fig. 4). Generally, antibiotic treatment was a stress for 
gut bacteria. The stress might have caused stress reac-
tions in a portion of bacteria, which made them resist-
ant to external harmful factors. Thus, we observed the 
phenomenon that in the 1st month post-antibiotic 
exposure more dominant pathways related to the deg-
radation of organic toxicants were in the antibiotic 
group (relative to control). The recurrence of the phe-
nomenon in the 9th and 11th months might be caused 
by the long-term post-antibiotic effect, as we observed 
a similar effect on the microbial network. Addition-
ally, “quorum sensing” (QS) was dominant in the 1st 
and 12th months in the antibiotic group (Supplemen-
tary Figure S9). There was no difference between the 
two groups in other months. Increasing evidence 
shows that QS can enhance the stress response in bac-
teria [58]. QS is an important dependent pathway for 
bacterial communication [59]. The inter-species and 
inter-kingdom communication mediated by QS could 
shape the gut microbial community. Besides, it has 
been demonstrated that QS plays an important role in 
alleviating dysbiosis of the gut microbiota caused by 
antibiotic exposure in mice [60]. It was therefore not 
surprising that the enrichment of QS in the antibiotic 
group in the 1st month post-antibiotic treatment was 
observed in the present study. The enriched QS could 
play a role in the stress response to antibiotic expo-
sure. The microbial network parameters (Figs. 4 and 5) 
showed that there was still slight fluctuation in the 12th 
month, displaying the long-term post-antibiotic effect. 
Since the microbial network involved inter-species and 
inter-kingdom communication, it was plausible that the 
recurrence of QS enrichment in the antibiotic group 
in the 12th month might be induced by the long-term 
post-antibiotic effect. Indeed, metagenomic sequenc-
ing data also showed that QS was relatively dominant in 
the antibiotic group in the 12th month (Fig. 8b).

As shown in Supplementary Figure S9, “beta-lactam 
resistance” was enriched in the antibiotic group in the 
9th month, and “vancomycin resistance” was dominant 
in the 9th and 11th months. Ceftriaxone belongs to 
beta-lactam antibiotics. Metagenomic sequencing data 
showed that “beta-lactam resistance” was relatively dom-
inant in the antibiotic group in the 12th month (Fig. 8b). 
These results suggest that there is still a risk of develop-
ing antimicrobial drug resistance even after a brief cef-
triaxone exposure in early life. Interestingly, pathways 

belonging to “drug resistance: antineoplastic” in the anti-
biotic group were weakened in the 1st, 8th, 9th, and 11th 
months, respectively (Table S9). These pathways included 
“platinum drug resistance” and “antifolate resistance”. It 
had been recently demonstrated that some gut microor-
ganisms could overcome resistance to antitumor drugs 
[61]. It was plausible that ceftriaxone exposure might 
result in the relative enrichment of some microorgan-
isms, and accordingly their roles in overcoming antitu-
mor drug resistance displayed.

Changes in functional networks caused by antibiotic effect
A total of 28 time-series functional networks (Supple-
mentary Figure S11  and Table S10) were constructed 
based on 16S rRNA gene-sequencing data. As shown in 
Table S11, the number of network clusters in the anti-
biotic group was greater than that of control in the 1st, 
2nd, 6th, 7th, 8th, 9th, 10th, 11th, and 13th months, 
respectively. We compared the pathway composition 
of clusters (ranking in  the top 3 with a score) between 
the  two groups in each month and found that in most 
comparisons the number of shared pathways between 
two clusters from the two groups was small (Table S12), 
indicating the difference in pathway composition of 
clusters between the two groups. It could be seen from 
Table S11 and Figure S11 that most clusters from the two 
groups contained different numbers of nodes or links, 
indicating the difference in the topology structure of 
functional networks. Additionally, we constructed func-
tional networks (Supplementary Figure S12  and Table 
S13) based on metagenomic sequencing data from the 
12th-month samples. The number of network clusters 
in the antibiotic group was smaller than that of the con-
trol (Table S14), which was consistent with the func-
tional network result (the 12th month; Table S11) based 
on the 16S rRNA gene-sequencing data. Some clusters 
from the two groups also contained different numbers 
of nodes or edges (links). Analysis of shared pathways 
between arbitrary two clusters (ranking in the top 3) 
from the two groups showed that there were differences 
in pathway composition among the clusters (Table S15). 
Thus, the topological structure of functional networks 
from the antibiotic group and control group was obvi-
ously different (Supplementary Figure S13). Collectively, 
these results suggested that ceftriaxone treatment caused 
changes in functional networks, including the variations 
of network topology, the number of network clusters, 
and the pathway composition of clusters. The ceftriaxone 
effect on gut microbial functional networks in C57BL/6 
mice was long-lasting.
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Epilogue
Microorganisms in gut microbiota are interconnected, 
with complicated associations that can be represented 
by MENs [47]. Gut microbial dysbiosis may lead to the 
occurrence of various diseases, such as metabolic dis-
eases [42]. Antibiotic exposure is not uncommon, which 
can be found in medical settings and from environmen-
tal sources. Thus, great concern should be raised about 
antibiotic exposure. Since this study showed that the 
antibiotic exposure-induced changes of gut MENs were 
long-lasting and that the MEN variations were associated 
with microbial metabolism changes, we propose that res-
toration of the gut MENs is critically important for the 
treatment of disorders and diseases caused by antibiotic 
exposure, such as metabolic diseases.

Ceftriaxone, a β-lactam antibiotic with compara-
ble activities against medically important pathogens, 
belongs to third-generation cephalosporins and is com-
monly applied to clinical practice [62]. Ceftriaxone-
induced intestinal dysbacteriosis is a focus of research 
and a growing health concern [63]. In terms of applica-
tion, ceftriaxone can be administrated via intraperito-
neal injection [64], gavage [21], subcutaneous injection 
[65], intravenous injection [66], aerosol inhalation deliv-
ery [67], and intramuscular injection [68], among which 
intravenous injection and intramuscular injection are 
two typical administration methods in clinical treat-
ment. In this study, we adopted gavage administration 
referring to the practice of many researchers who admin-
istered ceftriaxone orally to mouse models [21–23]. Cef-
triaxone, soluble in water, is not easily absorbed by the 
intestine. Gavage administration of ceftriaxone to mice 
contributes to observing the drug’s direct impacts on the 
gut microbiota. A prospective cohort study, using differ-
ent methods of antibiotic administration, and using dif-
ferent antibiotics can be conducted for further studying 
the effects of antibiotics on the molecular ecological net-
works and metabolism in gut microbiota. Results from 
these researches might provide more new discoveries and 
provide more guidance for antibiotic use.

Conclusion
In summary, this study provides new and deep insights 
into the long-term effects of brief antibiotic exposure in 
early life on mice’s gut microbial diversity, MENs, and 
metabolism. Antibiotic use in early life caused signifi-
cant changes in microbial diversity, metabolism as well 
as MEN complexity and stability. Changes in network 
complexity have affected network stability. Antibiotic-
induced differences in gut microbial metabolism were 
related to MEN variations. Post cessation of antibiotic 
treatment, the microbial diversity and MENs exhibited 

a recovery trend, but they didn’t entirely recover to the 
levels of control, suggesting that the negative impacts of 
antibiotics on gut microbial diversity and MENs were 
long-lasting. Antibiotic treatment also caused long-term 
effects on gut microbial functional networks in mice. 
Therefore, great concern should be raised about chil-
dren’s brief exposure to antibiotics if the results observed 
in mice are applicable to humans.
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Additional file 1. Research ethics approval.

Additional file 2: Supplementary Figure S1. Weight changes of mice 
over time. Triangles and solid dots indicate the mean weight of mice. A 
and C represent antibiotic group and control, respectively. The middle of 
boxplot represents median; the top and the bottom of a box represent 
upper quartile and lower quartile, respectively; bars at the top and the 
bottom show the maximum and minimum, respectively, after excluding 
the abnormal values. Antibiotic group and control are shown in red and 
blue, respectively. Hollow circles indicate the abnormal values. Day 0 
means the endpoint of 8-day antibiotic treatment. For statistical analysis, 
normality test and homogeneity test of variance were performed. If it 
met the parameter test conditions, t-test was performed; otherwise, the 
Wilcoxon rank sum test was carried out. *P < 0.05 indicates statistic differ-
ence. Figure S2. Rarefaction curves in microbial diversity analysis. A and C 
represent antibiotic group and control, respectively. M is short for month. 
Figure S3. Alluvial diagrams of species composition across time. The data 
are from 16S rRNA gene sequencing. A and C represent antibiotic group 
and control, respectively. The figures were produced using the R package 
(version 4.1.2). Each column indicates species composition proportion. 
In b the top 20 genera with relative abundance are shown. Other genera 
not ranking in the top 20 are combined and named as “other”. Figure S4. 
Species difference analysis at the genus level using the ALDEx2 tool. The 
data are from 16S rRNA gene sequencing. A and C represent antibiotic 
group and control, respectively. M is short for month. The screening 
criteria of differential species are as follows: absolute value of “Effect” > 1; 
FDR < 0.05. Only the 1st (a), 2nd (b), 3rd (c), and 7th (d) months contain 
differential species at the genus level. Figure S5. Visualization of network 
modules. The data analysis is based on 16S rRNA gene sequencing. A 
and C represent antibiotic group and control, respectively. M is short for 
month. The number of modules, nodes, links, and positive links are shown. 
The left side of each panel shows the schematic diagram of each module, 
while the right side (pie chart) shows the microbial composition (at the 
phylum level) of each corresponding module. Pie charts show the mod-
ules with > 10 nodes. Nodes with different colors in the modules represent 
different microbes at the phylum level. Module hubs and connectors are 
shown in the modules. Green line and yellow line indicate positive and 
negative associations, respectively. Figure S6. Differential metabolites 
identified by metabolomics analysis. Horizontal direction indicates sam-
pling time. M is short for month. FC is short for fold change (A/C, where 
A and C represent antibiotic group and control, respectively). Grids from 
the last column indicate the correlation between FC values of differential 
metabolites and sampling time, with red and blue representing posi-
tive and negative correlations, respectively. In other grids, red and blue 
indicate the differential metabolite with higher abundance in antibiotic 
group and control, respectively. The Arabic numbers in the first (marked 
by “Up”) and last (marked by “Down”) lines represent the number of 
up-regulated and down-regulated metabolites at each time point, respec-
tively. *P < 0.05; **P < 0.01. Figure S7. Differential analysis of metabolites 
between ceftriaxone group and control. The analysis was performed using 
the orthogonal to partial least squares discriminant analysis (OPLS-DA). 
a Samples from antibiotic group and control are represented by red and 
blue, respectively. Horizontal direction indicates the differences between 
groups, and longitudinal direction represents the differences within a 

https://doi.org/10.1186/s40168-024-01795-z
https://doi.org/10.1186/s40168-024-01795-z


Page 19 of 21Hong et al. Microbiome           (2024) 12:80 	

Additional file 16: Table S8. The number of identified metabolites and 
pathways in metabolomics analysis.

Additional file 17: Table S9. The discussed pathways with significant 
difference between two groups.

Additional file 18: Table S10. Detailed information of functional net-
works based on the 16S rRNA gene-sequencing data.

Additional file 19: Table S11. Statistics of functional networks based on 
16S rRNA gene-sequencing data.

Additional file 20: Table S12. Shared pathways between two clusters 
from antibiotic group and control.

Additional file 21: Table S13. Detailed information of functional net-
works based on the metagenomic sequencing data.

Additional file 22: Table S14. Statistics of functional networks based on 
metagenomic sequencing data.

Additional file 23: Table S15. Shared pathways between two clusters from 
antibiotic group and control based on metagenomic sequencing data.
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single group. b r < 0 indicates that the difference between groups is less 
than the difference within a single group; r > 0 indicates that the differ-
ence between groups is larger than the difference within a single group.

Additional file 3: Supplementary Figure S8. Correlations between 
network parameters and metabolic pathways with significant differences. 
The network parameters are from the data of microbial MENs. Correla-
tions for antibiotic group and control are shown in a and b, respectively. 
The enriched pathways were produced by annotation of differential 
metabolites in the KEGG database (organism group: bacteria). The correla-
tions were carried out between –lg(P value of pathway enrichment) and 
network parameters, generating correlation coefficients and correspond-
ing P values. Red and blue represent positive and negative correlations, 
respectively. avgK, average K; avgCC, average clustering coefficient; Con, 
connectedness; GD, average path distance. *P < 0.05; **P < 0.01.

Additional file 4: Supplementary Figure S9. Metabolic function 
prediction on KEGG level_3 category based on the data of 16S rRNA gene 
sequencing. The metabolic function potential of microbial communities 
was predicted using the Tax4fun2 in R package and the STAMP software. A 
and C represent antibiotic group and control, respectively. 1M means the 
1st month, and so on. Pathways with corrected P values less than or equal 
to 0.05 are shown.

Additional file 5: Supplementary Figure S10. Metabolic function predic-
tion on KEGG level_2 category based on the data of 16S rRNA gene sequenc-
ing. A and C represent antibiotic group and control, respectively. 1M means 
the 1st month, and so on. Pathways with corrected P values less than or 
equal to 0.05 are shown. There is not any pathway with significant difference 
in the 5th or 10th month.

Additional file 6: Supplementary Figure S11. Functional networks based 
on the 16S rRNA gene-sequencing data. A and C represent antibiotic group 
and control, respectively. Pathways and the correlation between pathways 
are represented by nodes and links, respectively. In each subfigure different 
subnetworks are represented by different colors. Yet, it does not mean that 
in groups A and C the same colour indicate the same subnetwork. The 
unclustered pathways are displayed in the grid layout.

Additional file 7: Supplementary Figure S12. Functional networks 
based on metagenomic sequencing data from the 12th month samples. 
A and C represent antibiotic group and control, respectively. Pathways 
and the correlation between pathways are represented by nodes and 
edges, respectively. The metabolic pathways were annotated at the level_3 
categories in the KEGG database. In each subfigure different subnetworks 
are represented by different colors. Yet, it does not mean that in groups 
A and C the same colour indicate the same subnetwork. The unclustered 
pathways are displayed in the grid layout.

Additional file 8: Supplementary Figure S13. Functional networks con-
structed using KO number (protein/enzyme) and the correlation between 
KO as nodes and edges (links), respectively. The networks were constructed 
based on metagenomic sequencing data. Core subnetworks were extracted 
mainly based on the following parameters: degree cutoff 2; K-core 5; Max. 
depth 100. A and C represent antibiotic group and control, respectively. In 
each subfigure different subnetworks are represented by different colors.

Additional file 9: Table S1. Dissimilarity comparison of microbial diversi-
ties between antibiotic group and control.

Additional file 10: Table S2. Parameters of empirical networks.

Additional file 11: Table S3. Comparisons between empirical MENs and 
random MENs.

Additional file 12: Table S4. Detailed information of network indices for 
plotting of heatmap.

Additional file 13: Table S5. Regression analysis of network indices 
against time.

Additional file 14: Table S6. Keystones in antibiotic group and control in 
each month.

Additional file 15: Table S7. Detailed information of correlations 
between network complexity and stability.
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