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Abstract 

Background  Oral squamous cell carcinoma (SCC) is associated with oral microbial dysbiosis. In this unique study, we 
compared pre- to post-treatment salivary microbiome in patients with SCC by 16S rRNA gene sequencing and exam‑
ined how microbiome changes correlated with the expression of an anti-microbial protein.

Results  Treatment of SCC was associated with a reduction in overall bacterial richness and diversity. There were 
significant changes in the microbial community structure, including a decrease in the abundance of Porphyromon-
aceae and Prevotellaceae and an increase in Lactobacillaceae. There were also significant changes in the microbial 
community structure before and after treatment with chemoradiotherapy, but not with surgery alone. In patients 
treated with chemoradiotherapy alone, several bacterial populations were differentially abundant between respond‑
ers and non-responders before and after therapy. Microbiome changes were associated with a change in the expres‑
sion of DMBT1, an anti-microbial protein in human saliva. Additionally, we found that salivary DMBT1, which increases 
after treatment, could serve as a post-treatment salivary biomarker that links to microbial changes. Specifically, post-
treatment increases in human salivary DMBT1 correlated with increased abundance of Gemella spp., Pasteurellaceae 
spp., Lactobacillus spp., and Oribacterium spp. This is the first longitudinal study to investigate treatment-associated 
changes (chemoradiotherapy and surgery) in the oral microbiome in patients with SCC along with changes in expres‑
sion of an anti-microbial protein in saliva.

Conclusions  The composition of the oral microbiota may predict treatment responses; salivary DMBT1 may have 
a role in modulating the oral microbiome in patients with SCC.
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Graphical Abstract
After completion of treatment, 6 months after diagnosis, patients had a less diverse and less rich oral microbiome. Lep-
totrichia was a highly prevalent bacteria genus associated with disease. Expression of DMBT1 was higher after treat‑
ment and associated with microbiome changes, the most prominent genus being Gemella

Background
In the human body, there is approximately one micro-
bial cell for every human cell [1–3]. The majority of 
microbiota exist along the epithelial lining of the gas-
trointestinal tract, including the oral cavity, and play 
important roles in promoting health and disease. Mul-
tiple epidemiologic studies identified bacteria asso-
ciated with cancer development, progression, and 
response to treatment, suggesting that the microbi-
ome can present diagnostic and prognostic biomark-
ers [4]. For example, patients with colorectal cancer 
have an altered gut microbiota compared to that of 
healthy controls [5]. Both human and mouse studies 
also demonstrated that gut bacterial composition can 
impact response to chemotherapy and immune check-
point inhibitors; in melanoma, commensal bacteria 
enhanced the anti-tumor efficacy of PD-L1 checkpoint 
blockade [4]. In particular, Bifidobacterium spp., Bac-
teroides thetaiotaomicron, and B. fragilis increased 
CTLA-4 response in animal studies [6, 7]. Moreover, 
several bacteria are associated with the anti-tumor 
effect of PD-1/PD-L1 inhibitors, among them Akker-
mansia, Faecalibacterium, Clostridiales, and Bifido-
bacterium spp [4, 8, 9]. When colonized in germ-free 
mice, bacterial strains that enhanced IFNγ production 
significantly improved response to immune check-
point inhibitors and activation of the T cell response 
[10]. Consistent with a potential role for the gut micro-
biota in modulating treatment responses, germ-free 
and antibiotic-treated mice have inferior responses 

to cancer therapy [7, 11, 12]. Transplantation of fecal 
microbiota from responders to immune checkpoint 
inhibitors to tumor-bearing germ-free mice enhanced 
responses to immune checkpoint therapy [13–15]. 
Fecal microbiome transplantation also reversed non-
responsiveness to immune checkpoint inhibitors in 
patients with melanoma [16, 17].

The involvement of the microbiome in carcinogenesis 
and response to treatment at other sites in the gastro-
intestinal tract, such as the oral cavity, remains under-
studied [18]. Almost all head and neck cancers are 
derived from the mucosal epithelial lining of the oral 
cavity, oropharynx, hypopharynx, or larynx. Squamous 
cell carcinoma (SCC), the most common head and 
neck cancer, is the sixth most prevalent cancer world-
wide with an incidence of about 600,000 new cases 
each year [19]. SCC is associated with dysbiosis [2], 
which is an imbalance in the oral microbiome due to 
poor oral health [20–22]. More than 700 microbial spe-
cies, including commensal and opportunistic bacteria, 
comprise the oral microbiome [23]. Multiple studies 
have tried to associate specific bacteria and commu-
nity compositions with SCC to determine causality. 
Most studies have examined microbial differences 
between SCC patients and a healthy control group to 
identify microbial signatures specific for SCC. These 
studies showed an increase in Fusobacterium, Prevo-
tella, and Gemella species and a decrease in Streptococ-
cus and Rothia species in SCC [1, 24]. However, due to 
inter-individual heterogeneity and lack of longitudinal 
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studies examining changes in the oral microbiome 
within an individual, identification of specific microbes 
that may be associated with tumor progression or treat-
ment response has been a challenge [22, 25].

Depending on the stage of the disease, patients with 
SCC are treated with surgery, chemotherapy, and radia-
tion [26]. However, even after appropriate treatment, 
patients with SCC have an extremely high recurrence 
rate that contributes to poor survival [27]. Nearly half 
of all patients treated for SCC develop recurrent or new 
tumors [27, 28], but repeated tissue biopsies are highly 
invasive. Therefore, there is a desperate need to improve 
the prediction of treatment responses. Identifying oral 
microbial biomarkers that can predict SCC progression 
and/or treatment responses may significantly improve 
patient outcomes.

Since saliva is easy to collect and exhibits disease-
related changes, multiple studies have explored its 
diagnostic value. Cross-sectional studies comparing 
pre-treatment saliva from patients with and without 
cancer, including SCC and breast cancer, identified can-
cer-related changes [29–35]. There are several challenges 
in comparing samples across patients including physi-
ologic and biologic variances [36]. Evaluation of longitu-
dinal samples in a high-risk population could circumvent 
some of these variances and be highly informative [37, 
38]. Longitudinal studies are fewer than cross-sectional 
studies likely because conventional radiation, used pre-
viously to treat SCC, destroys salivary glands, thereby 
causing xerostomia. Newer therapies, such as intensity-
modulated radiotherapy (IMRT), preserve salivary gland 
function and salivary flow; consequently, potential bio-
markers can be assayed over time [39]. For example, in 
SCC, saliva exhibits changes in protein expression after 
treatment of SCC [37, 38].

Due to previous challenges with saliva recovery after 
treatment of SCC, only a few studies have investigated 
changes in the salivary microbiome after treatment. 
Those who had surgery showed a prevalence in the sali-
vary microbiome of Streptococcus anginosus, Abiotrophia 
defectiva, and Fusobacterium nucleatum at baseline [40]. 
In an independent study, Capnocytophaga and Leptotri-
chia were decreased at 6 months post-surgery [41]. In a 

cohort of patients who received chemotherapy, the non-
responder group was associated with Fusobacterium and 
Mycoplasma [42].

Mucosal surfaces have diverse mechanisms to tar-
get non-homeostasis-related microorganisms. Deleted 
in malignant brain tumors 1 (DMBT1), which is highly 
secreted in saliva, is one such protein with a significant 
function in epithelial equilibrium, inflammation, innate 
immunity, and more recently, in the cancer microenvi-
ronment [43–45]. In the fluid phase, including saliva, 
DMBT1 interacts with several bacterial and viral organ-
isms, mainly agglutinating them to facilitate disposal [43, 
44]. DMBT1 also interacts with endogenous ligands, like 
complement pathway components, IgA, lactoferrin, and 
surfactant proteins [43, 44].

To date, there has been no longitudinal investigation of 
the salivary microbiome in a large cohort of SCC patients 
who underwent cancer therapy, including IMRT with and 
without chemotherapy. We present what we believe is 
the first study of its kind: a longitudinal investigation of 
the salivary microbiome in SCC patients before and after 
treatment of their SCC with comparisons that consider 
a response to chemoradiotherapy, and changes in the 
expression of an anti-bacterial protein in saliva. We cor-
relate SCC-related changes in the expression of DMBT1 
in saliva with changes in microbiome composition.

Results
Longitudinal analysis of salivary microbiome
Figure  1A is a schematic of the entire study workflow 
including sample collection, analysis, and main compari-
sons. We investigated changes in the oral microbiome from 
pre- to post-treatment saliva collected from patients with 
SCC at diagnosis and 6 months later (0 and 6 months), to 
identify changes that occurred soon after completion of 
therapy. Initial treatment consisted of chemoradiother-
apy, chemotherapy, radiotherapy, and surgery (Table  1). 
Non-metric multidimensional scaling (NMDS) analysis 
demonstrated a significant difference in microbial commu-
nity structure between 0 and 6 months (Fig. 1B). In addi-
tion, both microbial richness and diversity were reduced 
in post-treatment samples (Fig.  1C, D). There was also a 
noticeable increase in the phylum Firmicutes (p < 0.0001) 

Fig. 1  Oral microbiome decreases in diversity and richness after treatment of SCC. A Workflow schematic of the entire study, including the sample 
collection, main methods, and comparisons. B Nonmetric multidimensional scaling (NMDS) ordination based on θYC distances for patients 
pre- and post-treatment. Diversity (C) and richness (D) of the salivary microbiome at time 0 (pre-treatment) versus 6 months (post-treatment). E 
Relative abundance of different phyla at 0 and 6 months. F Bacterial family members that are > 0.1% in relative abundance and significantly different 
between pre- and post-treatment saliva (adjusted p < 0.05). G Volcano plot indicating significantly different OTUs between 0 and 6 months based 
on ALDEx2 analysis (adjusted p < 0.05). H Most differentially abundant PICRUSt-predicted KEGG pathways between pre- and post-treatment groups 
based on LEfSe analysis (LDA cutoff of 2.5). *p < 0.05, ***p < 0.001, and ****p < 0.0001

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Table 1  Demographics and clinical characteristics (Figs. 1, 2 and 3)

Variable 0-month 
cohort 
N = 106

6-month 
cohort 
N = 72

Chemorad paired 0- 
and 6-month cohort 
n = 33

Surgery paired 0- 
and 6-month cohort 
n = 15

All HNSCC n = 109

Age Years 58.5 (9.5) 57.3 (9.6) 59.8 (8.4) 53.1 (9.0) 58.3 (10.0)

Gender Male 82 (77%) 54 (75%) 25 (76%) 11 (73%) 85 (78%)

Female 24 18 8 4 24

Clinical Stage 0/1 13 8 - 7 13

2 9 7 1 - 9

3 16 12 5 3 17

4 68 (64%) 45 (63%) 27 (82%) 5 (33%) 70 (64%)

T stage T1 32 23 6 11 33

T2 25 19 11 1 26

T3 18 12 7 2 18

T4 28 16 8 1 29

X 3 2 1 - 3

N stage N0 40 26 3 11 40

N1 8 5 3 - 10

N2 53 39 27 4 54

N3 5 2 - - 5

M stage M1 1 1 - 1 1

Disease Site Larynx 26 13 4 3 26

Oral Cavity 21 17 1 7 22

Oropharynx 53 38 27 5 55

Nasopharynx 1 1 - - 1

Hypopharynx 2 2 - - 2

Unknown primary 3 1 1 - 3

Initial Treatment Chemoradiotherapy 50 33 33 - 52

Chemotherapy 2 1 - - 2

Radiotherapy 7 4 - - 7

Surgery 43 30 - 15 44

Unknown 4 4 - - 4

ACE Comorbidities 
Score

None 31 23 10 4 32

Mild 52 32 17 8 54

Moderate 16 12 5 3 16

Severe 7 5 1 - 7

BMI Underweight (< 18.5) 3 2 - - 3

Normal (15.5–24.9) 31 19 6 6 32

Overweight (25–29.9) 41 30 15 6 42

Obese (30 +) 31 21 12 3 32

HPV status (among 
OP only)

Positive 42 (79%) 31 (82%) 22 (81%) 3 (60%) 44 (80%)

Drinker Never 5 4 1 1 5

Current 77 56 25 12 80

Former 
(quit > 12 months)

24 12 7 2 24

Smoker (cigarettes) Never 26 19 7 4 27

Current 46 36 14 9 47

Former 
(quit > 12 months)

34 17 12 2 35
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and decrease in phyla Bacteroidetes (p < 0.0001), Fusobac-
teria (p < 0.001), and Proteobacteria (p < 0.001) after treat-
ment (Fig. 1E). Among bacterial families that were at least 
0.1% in relative abundance, there were significant decreases 
in Bacteroidales_unclassified, Burkholderiaceae, Erysip-
elotrichaceae, Flavobacteriaceae, Lachnospiraceae, Neis-
seriaceae, Lactobacillales_unclassified, Leptotrichaceae, 
Prevotellaceae, Pasteurellaceae, Peptostreptococcaceae, and 
Porphyromonadaceae, and noticeable increases in Bifido-
bacteriaceae, Lactobacillaceae, and Pseudomonadaceae 
(Fig. 1F). There were several OTUs that were significantly 
decreased after treatment including unclassified Pasteur-
ellaceae spp. (OTU0006), Porphyromonas (OTU0028), 
Leptotrichia (OTU0026), Prevotella (OTU0018), Leptotri-
chia (OTU0030), Oribacterium (OTU0046), Neisseria 
(OTU0009), unclassified Bacteroidales spp. (OTU0035), 
Leptotrichia (OTU0075), Prevotella (OTU0029), Capnocy-
tophaga (OTU0043), Lachnoanaerobaculum (OTU0045), 
unclassified Flavobacteriaceae spp. (OTU0064), unclas-
sified Lactobacillales spp. (OTU0013), and Prevotella 
(OTU0002) (Fig.  1G, ALDEx2 method with Benjamini–
Hochberg adjusted p-value and Supplementary Fig.  1A). 
There were only two OTUs from this analysis that were sig-
nificantly increased after treatment, that being Streptococ-
cus (OTU0024) and Lactobacillus (OTU0025).

Some of these were also found to be most differen-
tially abundant between 0 and 6  months by Linear dis-
criminant analysis Effect Size (LEfSe) analysis, although 
additional OTUs were found to be associated with base-
line samples, including Actinomyces (OTU0007) and 
Prevotella (OTU0010), or enriched in post-treatment 

samples, including Lactobacillus (OTU0011), Prevotella 
(OTU0019), Lactobacillus (OTU0020), and Pseudomonas 
(OTU0066) (Supplementary Fig.  1B). Altogether, these 
studies show that the salivary microbiome changes after 
treatment of SCC.

The oral microbiome also participates in the host meta-
bolic system, maintaining host immune system homeo-
stasis and protecting against pathogen colonization [46, 
47]. Therefore, Phylogenetic Investigation of Communi-
ties by Reconstruction of Unobserved States (PICRUSt) 
analysis was used to infer functional categories associ-
ated with taxonomy composition, and predicted path-
ways were classified using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database. Interestingly, bio-
functional pathways that were enriched in SCC patients 
before treatment were related to membrane and intracel-
lular structural molecules and lipopolysaccharide biosyn-
thesis, which may reflect bacterial pathogenicity, toxicity, 
and anti-microbial resistance (Fig.  1H, red bars). After 
treatment, there was an enrichment of pathways related 
to transporters, phosphotransferase system (PTS), and 
sugar metabolism (Fig. 1H, blue bars).

Salivary microbiome profiles associated with surgery alone 
or chemoradiotherapy
Radiotherapy, surgery, chemoradiotherapy, and chemo-
therapy are treatment options for SCC [28]. Since the 
microbiome can influence treatment responses [14], we 
investigated microbial changes associated with either 
chemoradiotherapy (Fig.  2) or surgery (Fig.  3) in saliva 
using matched samples collected at time 0 and 6 months 

Table 1  (continued)

Variable 0-month 
cohort 
N = 106

6-month 
cohort 
N = 72

Chemorad paired 0- 
and 6-month cohort 
n = 33

Surgery paired 0- 
and 6-month cohort 
n = 15

All HNSCC n = 109

First Recurrence 
Pattern

Persistent Disease 3 2 0 1 3

Locoregional 7 4 1 2 8

Distant 6 4 3 - 6

Locoregional + Distant 6 6 4 - 6

(See figure on next page.)
Fig. 2  Significant changes in microbiome after chemoradiotherapy. A NMDS ordination plot showing community structure differences 
(β-diversity), diversity (B), and richness (C) of chemoradiotherapy-treated SCC patients at 0 and 6 months. D Relative abundance of bacteria 
at the phylum level. E Bacterial families that are > 0.1% in abundance and significantly different (adjusted p < 0.05) before and after 
chemoradiotherapy. F Differentially abundant OTUs at 0 and 6 months post-chemoradiotherapy based on ALDEx2 data analysis (adjusted p < 0.05). 
G Relative abundance of significantly different OTUs identified by ALDEx2 and LEfSe analysis. H PICRUSt-predicted KEGG pathways that are most 
differentially abundant between pre- and post-chemoradiotherapy samples based on LEfSe analysis (LDA cutoff of 2.5) *p < 0.05, ***p < 0.001, 
and ****p < 0.0001
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Fig. 2  (See legend on previous page.)



Page 8 of 23Medeiros et al. Microbiome          (2023) 11:268 

from SCC patients. Patients who underwent surgery fol-
lowed by adjuvant radiation, surgery followed by chem-
oradiation or who received only radiotherapy or only 
chemotherapy were excluded due to small sample sizes 
(< 12/group).

Patients who had undergone chemoradiotherapy with 
matched time 0- and 6-month samples (n = 33) exhib-
ited a significant difference in microbial community 
structure at 6  months compared to time 0 before ini-
tiation of treatment (Fig.  2A). No significant change in 

diversity was noted (Fig. 2B) although richness decreased 
after treatment (Fig.  2C). At the phylum level, there 
was an increase in the relative abundance of Firmicutes 
(p < 0.0001) and decrease in the relative abundance of 
Bacteroidetes (p < 0.0001) and Proteobacteria (p < 0.05) 
(Fig.  2D). In addition, of the families that were > 0.1% 
in abundance, there was a significant decrease in 
Prevotellaceae, Pasteurellaceae, Neisseriaceae, Lep-
totrichiaceae, and Lachnospiraceae and increase in Lac-
tobacillaceae and Pseudomonadaceae families after 

Fig. 3  Significant change in the richness of the salivary microbiome after surgery alone. A β-diversity shown by NMDS plot, (B) diversity, and (C) 
richness of the salivary microbiome at 0 and 6 months in SCC patients treated with surgery alone. D Relative abundance of salivary bacteria at 0 
and 6 months at the phylum level. E Most differentially abundant OTUs between pre- and post-surgery salivary microbiomes based on LEfSe 
analysis and (F) their relative abundances. G Most differentially abundant PICRUSt-predicted KEGG pathways before and after surgery. *p < 0.05
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chemoradiation (Fig. 2E). OTUs associated with pre- and 
post-treatment were further identified by ALDEx2 [48]. 
Specifically, there were significant increases in Lactoba-
cillus (OTU0025) and decreases in unclassified Pasteur-
ellaceae spp. (OTU0006), Bacteriodales (OTU0035), 
Porphyromonas (OTU0028), Leptotrichia (OTU0026), 
and Prevotella (OTU0002) (Fig.  2F, G). Some of these 
OTUs were also identified as differentially abundant 
before and after chemoradiotherapy by LEfSe analy-
sis (Supplementary Fig.  2). PICRUSt analysis showed a 
higher pre-treatment association of pathways involved in 
membrane and intracellular structural molecules, energy 
metabolism, bacterial secretion system, and bacterial 
motility proteins; increased representation of pathways 
involved in transporters and phenylalanine, tyrosine, and 
tryptophan biosynthesis was associated with post-treat-
ment (Fig.  2H). Together, these studies showed that the 
salivary microbiome changes after treatment of SCC with 
chemoradiotherapy.

For patients treated with surgery alone (n = 15), no signifi-
cant differences were noted in overall community structure 
(Fig. 3A) and diversity (Fig. 3B). Interestingly, richness was 
significantly reduced at 6 months (Fig. 3C). Although there 
were no significant differences in relative abundance on 
phyla (Fig. 3D) or family level (data not shown) before and 
after surgery, LEfSe analysis showed pre-treatment predom-
inance of unclassified Lactobacillales spp. (OTU0013), Lep-
totrichia (OTU0106), unclassified Flavobacteriaceae spp. 
(OTU0064), and Veillonella (OTU0185) and Pseudomonas 
(OTU0066) after treatment (Fig. 3E, F).

KEGG pathways that correlated with treatment based 
on PICRUSt and LEfSe analysis showed increased rep-
resentation of pathways related to genetic information 
processing, such as translation (i.e., ribosome), lipopoly-
saccharide biosynthesis, and DNA replication prior to 
surgery and pathways involving amino acid metabolism 
(D-Alanine) after treatment (Fig. 3G).

Changes in salivary microbiota associated with response 
to chemoradiotherapy
Chemoradiotherapy is often given definitively in lieu of 
surgery, and therefore identifying biomarkers indicative 
of response has significant clinical implications. Saliva 
samples collected from patients pre- (n = 50) and post-
chemoradiotherapy (n = 33) were used to identify poten-
tial microbial biomarkers associated with response to 
chemoradiotherapy. Patients were deemed non-respond-
ers if any recurrence (local or metastatic) occurred within 
the follow-up period (n = 11) whereas responders were 
considered disease-free until the time of longest follow-
up (up to ~ 5 years, n = 39 (Table 2).

At baseline (0  months), θYC distances between bac-
terial communities revealed a significant difference 
in overall bacterial profile (Fig.  4A) but no difference 
in diversity (Fig.  4B) and richness (Fig.  4C), between 
responders and non-responders. Both responders and 
non-responders had similar relative abundances of bac-
teria belonging to the different phyla prior to starting 
chemoradiotherapy (Fig.  4D). Additionally, there were 
no significant differences in the relative abundance of 
any of the observed bacterial families that are greater 
than 0.1% in abundance within the saliva between non-
responders and responders (data not shown), including 
families that have been previously associated with oral 
cancer [49] such as Porphyromonadaceae, Prevotel-
laceae, Streptococcaceae, or Fusobacteriaceae (Fig.  4E). 
Although ALDEx2 analysis did not predict any OTUs 
at baseline that were significantly associated with treat-
ment response, LEfSe analysis of baseline salivary 
samples showed a significant association between non-
responders and Prevotella (OTU0029) (Fig. 4F), whereas 
unclassified Pasteurellaceae spp. (OTU0006), Veillonella 
(OTU0017), Leptotrichia (OTU0030), Corynebacte-
rium (OTU0062), and Lautropia (OTU0092) were more 
abundant in responders (Fig. 4G). PICRUSt analysis did 
not reveal any predicted functional pathways associated 
with response or recurrence (data not shown).

When comparing the salivary microbiota between avail-
able non-responders (n = 8) and responders (n = 25) after 
completion of treatment at 6 months from baseline, there 
was a higher significant difference (p = 0.006) in the over-
all community structure based on θYC distances (Fig. 5A), 
but no differences in overall diversity (Fig.  5B) or rich-
ness (Fig. 5C). Both responders and non-responders also 
had similar abundances of bacteria in the Firmicutes, 
Bacteroidetes, and Fusobacteria phyla post-treatment 
(Fig. 5D), and as with pre-treatment salivary microbiota in 
responders versus non-responders, there were no signifi-
cant differences in the relative abundance of the different 
bacterial families that are typically associated with oral 
cancer dysbiosis, including Porphyromonadaceae, Prevo-
tellaceae, or Fusobacteriaceae. However, a significant 
decrease in Streptococcaceae was observed (Fig.  5E and 
data not shown). LEfSe analysis of post-treatment samples 
showed a significant association between responders and 
the relative abundance of Veillonella (OTU0001), Strep-
tococcus (OTU0004), Rothia (OTU0015 and OTU0016), 
Gemella (OTU0014), Atopobium (OTU0021), and Actino-
myces (OTU0023) (Fig. 5F, G).

Since microbial metabolites can affect response 
to therapy [50], PICRUSt was performed to pre-
dict functional pathways inferred from 16  s rRNA 
sequences that could potentially be associated with 
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response. Unlike pre-treatment samples that showed 
no difference in predicted metabolic pathways between 
responders and non-responders (data not shown), post-
treatment samples showed that responders had an 
increased representation of pathways associated with 
amino acid biosynthesis and metabolism (Fig.  5H). 
Non-responders, on the other hand, had an increase in 
multiple pathways involved in sugar metabolism, tyros-
ine metabolism, and as well as in fatty acid biosynthesis 
(Fig. 5H).

SCC downregulates DMBT1 in saliva
We previously demonstrated that DMBT1, an anti-
microbial protein, is downregulated in SCC and is associ-
ated with increased invasive capacity and poor prognosis 
[44]. DMBT1 is strongly expressed in the salivary gland 
and constitutes up to 10% of secreted protein in saliva 
[43, 51–53]. To determine whether the expression of 
DMBT1 in saliva from SCC patients changed with treat-
ment, immunoblot analysis (Fig.  6A) was performed on 
a subset of patients (Table  3). Immunoblot analysis of 

Table 2  Demographics distribution by chemoradiotherapy response (Figs. 4 and 5)

Variable Responders (n = 39) Non-responders (n = 11)
n or mean (std) n or mean (std) p value

Age Years 58.5 (7.6) 61.7 (9.9) 0.26

Gender Male 32 8 0.49

Female 7 3

Clinical stage 0/1 - - 0.34

2 1 1

3 3 2

4 35 8

T stage T1 5 1 0.95

T2 11 4

T3 9 2

T4 13 4

X 1 -

N stage N0 3 3 0.31

N1 3 1

N2 31 7

N3 2 -

Disease site Larynx 7 3 0.21

Oral cavity - 1

Oropharynx 31 7

Unknown primary 1 -

ACE comorbidities Score None 12 3 0.79

Mild 20 5

Moderate 6 2

Severe 1 1

BMI Normal (15.5–24.9) 7 4 0.34

Overweight (25–29.9) 18 5

Obese (30 +) 14 2

HPV status Negative 7 6 0.04

Positive 29 4

Unknown 3 1

Drinker Never - 1 0.16

Current 28 7

Former (quit > 12 months) 11 3

Smoker (cigarettes) Never 11 - 0.14

Current 16 6

Former (quit > 12 months) 12 5
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Fig. 4  Prevotella is associated with non-responders to chemoradiotherapy at baseline. A β-diversity shown by NMDS plot, (B) diversity, and (C) 
richness of the salivary microbiome sampled before treatment in SCC patients that were responders (R) (i.e., no local or distant recurrences) 
versus non-responders (NR) to chemoradiotherapy. D Relative abundance of salivary bacteria at the phylum level between responders 
and non-responders at baseline. E Relative abundance of the bacterial families Porphyromonadaceae, Prevotellaceae, Streptococcocaceae, 
and Fusobacteriaceae. F LEfSe analysis showing the most differentially abundant OTUs at baseline between responders versus non-responders 
and (G) their relative abundances
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saliva samples from 48 patients with SCC revealed low 
DMBT1 expression prior to treatment and significantly 
increased levels at 6 (2.1 fold average) and 12  months 
(1.9 fold) after treatment, compared with baseline in 

volume-normalized samples (Fig.  6B, D). Similar find-
ings were observed by ELISA (Fig. 6C, E) on saliva sam-
ples from a subset (n = 28) of the 48 patients screened 
by immunoblot analysis. These data show that DMBT1 

Fig. 5  Microbiome differences between responders and non-responders to chemoradiotherapy at 6 months. A NMDS plot comparing 
responders (R) vs non-responders (NR) after treatment. Diversity (B) and Richness (C) plots. D Phylogenetic composition at the phylum level 
in saliva samples based on treatment response after chemoradiotherapy. E Relative abundance of Porphyromonadaceae, Prevotellaceae, 
Streptococcaceae, and Fusobacteriaceae. F LEfSe analysis identifying the most differentially abundant OTUs between responders and non-responders 
after chemoradiotherapy. G Relative abundance of OTUs as identified by LEfSe (LDA > 3.5). H Most differentially abundant PICRUSt-predicted KEGG 
pathways in the salivary microbiome of responders and non-responders after chemoradiotherapy. *p < 0.05
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expression is increased after treatment of SCC regardless 
of treatment regimen.

To directly investigate the extent to which SCC modu-
lates DMBT1 secretion in saliva, UM-SCC-1 cells were 
injected subcutaneously into mice, and DMBT1 was 
quantified in saliva from adult mice at two time points 
(Fig.  7A). DMBT1 was normalized to saliva volume to 
accommodate variations in secretion between mice. 
Starting 10 days after injection, tumor size was measured 
and tumor volume calculated (Fig.  7B). The presence 

of SCC was verified by hematoxylin–eosin stain and 
cytokeratin immunohistochemistry (Fig. 7C). There was 
a significant decrease in DMBT1 secretion in adult mice 
with tumors (paired t test, p = 0.03) whereas DMBT1 
secretion in control mice was not significantly differ-
ent between the two time points (p = 0.82) (Fig.  7D, E). 
The interaction term for group x time in a linear mixed 
model for this experiment trended toward significance 
(p=0.11). Together both human and mouse saliva studies 
show that SCC suppresses DMBT1 expression in saliva.

Fig. 6  DMBT1 secretion is suppressed in saliva from untreated SCC patients. DMBT1 levels were analyzed at baseline and 6 and 12 months 
for each patient. A Representative immunoblots of DMBT1 in saliva samples normalized to sample volume. B, C Log-transformed values. P values 
were determined using linear mixed models with compound symmetric variance structure assumed and baseline as a reference category. B 
Densitometric quantification of immunoblot data normalized to sample volume. C DMBT1 levels in saliva samples as determined by ELISA. D, E 
Each DMBT1 measure from immunoblot and ELISA quantification, respectively, was log-transformed
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DMBT1 levels in saliva correlate with specific bacterial 
populations
In human saliva samples (Fig.  6), we applied a Pearson 
correlation model to investigate the relationship between 
DMBT1 protein expression with the composition of the 
salivary microbiome pre- and post-treatment (Fig.  8). 
Lower levels of DMBT1 at pre-treatment correlated with 
higher relative abundance of Solobacterium (OTU0065), 
an unclassified Lachnospiraceae (OTU0072), and an 
unclassified Candidatus Saccharibacteria spp. (OTU0205) 
and lower relative abundance of Treponema (OTU0153 
and OTU0980), Streptococcus (OTU0284), and Prevotella 
(OTU496). Post-treatment, high DMBT1 levels negatively 
correlated with the abundance of Actinomyces (OTU0023 
and OTU0143), Eikenella (OTU0091), Capnocytophaga 
(OTU0043 and OTU0071), Lactobacillus (OTU0131), and 
Streptococcus (OTU0024 and OTU0624) whereas there 
was a positive correlation between DMBT1 expression 
and the abundance of an unclassified Firmicutes member 
(OTU0146), unclassified Comamonadaceae (OTU0355), 
unclassified Lachnospiraceae (OTU0072), Prevotella 
(OTU0087), and Stomatobaculum (OTU0080) (Fig. 8). We 
also analyzed correlations between changes in DMBT1 
expression with time and changes in OTU abundance. 
Interestingly, increased DMBT1 expression in saliva 
after treatment correlated with an increase in the abun-
dance of Gemella (OTU0014), which was also enriched in 
responders to chemoradiotherapy at 6  months (Fig.  5G), 
unclassified Pasteurellaceae spp. (OTU0006), enriched in 
responders at 0 months, Lactobacillus (OTU0025), Megas-
phaera (OTU0012), and Oribacterium (OTU0046) (Fig. 8).

Together these findings show that changes in the oral 
microbiome in patients with SCC are associated with 
changes in the expression of the salivary anti-microbial 
protein DMBT1.

Discussion
This is the first longitudinal study to investigate treatment-
associated changes in the salivary microbiome in patients 
with SCC and associate these findings with changes in 
the expression of an anti-microbial protein in the saliva. 

Table 3  Demographics distribution for DMBT1 expression study 
(Fig. 6)

Variable DMBT1 
expression 
cohort
n = 48

Age Years 57.0 (9.4)

Gender Male 40 (83%)

Female 8

Clinical stage 0/1 1

2 3

3 5

4 36 (75%)

Unknown 3

T stage T1 7

T2 20 (41%)

T3 5

T4 13

Unknown 3

N stage N0 8

N1 5

N2 30 (62%)

N3 5

Disease site Larynx 6

Oral cavity 8

Oropharynx 29 (60%)

Nasopharynx 1

Hypopharynx 1

Unknown primary 3

Initial treatment Chemoradiation 31 (64%)

Chemo alone 1

Radiation alone 1

Surgery 12

unknown 3

ACE comorbidities score None 14

Mild 24 (50%)

Moderate 5

Severe 2

Unknown 3

BMI Underweight (< 18.5) 1

Normal (15.5–24.9) 9

Overweight (25–29.9) 21 (44%)

Obese (30 +) 14

Unknown 3

HPV status Positive 28 (58%)

Negative 17

Unknown 3

Drinker Never 1

Current 37

Former (quit > 12 months) 7

Unknown 3

Table 3  (continued)

Variable DMBT1 
expression 
cohort
n = 48

Smoker (cigarettes) Never 13

Current 17

Former (quit > 12 months) 15

Unknown 3
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Fig. 7  Salivary DMBT1 is reduced in mice after tumor development. A Schematic showing the timing of saliva collection. UM-SCC-1 cells 
or matrigel (control) were injected subcutaneously into athymic nude mice and whole stimulated saliva was collected. B Tumor volume 
was measured for 60 days. C Representative tumor section stained with hematoxylin–eosin and cytokeratin antibody. Scale bar = 500 µm 
in the left panel and 200 µm in the right panel. D Densitometric quantification of immunoblot data normalized to saliva volume collected at two 
time points (S1 and S2) in each adult mouse and differences tested by paired t test. E Each DMBT1 measure from immunoblot quantification 
was log-transformed



Page 16 of 23Medeiros et al. Microbiome          (2023) 11:268 

Patients treated for SCC are at continued risk for recurrent 
or new tumors. Consequently, these patients are moni-
tored for prolonged periods. Unfortunately, some of the 
treatment-induced changes in the oral mucosa are clini-
cally indistinguishable from erythroplakias, a clinical phe-
notype of SCC. Repeated biopsies are not a feasible option. 
Consequently, saliva is very appealing in the pursuit of 
prognostic biomarkers because it is non-invasive, and sam-
pling and processing are simpler compared to biopsy and 
histopathology. Saliva is comprised of a variety of factors 
that could give rise to prognostic biomarkers, including 
metabolites, nucleic acids, hormones, antibodies, growth 
factors, antimicrobial factors, and other proteins [54]. 
Notably, saliva allows for sampling of the oral microbiome. 
As the composition of the oral microbiota can vary by site 
within the oral cavity [55], the salivary microbiome may 
provide a good representation of microbial populations 
found throughout the oral cavity. Therefore, saliva collec-
tion is a potentially valuable tool in identifying microbial 
biomarkers of SCC and treatment responses.

SCC develops when transformed cells from pre-can-
cerous epithelium destroy the basement membrane and 
invade the underlying stroma, from where these cells can 
spread to adjacent and distant sites [56]. The microenvi-
ronment modulates both SCC progression and treatment 

resistance [57]. The salivary microbiome in SCC is poorly 
understood. Although multiple studies compared the 
oral microbiome in SCC with that in healthy or oral 
disease-related states and showed differences in micro-
bial composition within the saliva, changes in the sali-
vary microbiome of oral cancer patients with time and 
with treatment (chemoradiotherapy) are a more recent 
area of interest [42]. Longitudinal collection allows each 
individual to serve as their own control, thereby limit-
ing variations due to inter-individual heterogeneity that 
would occur with a comparison of SCC and normal con-
trol samples. We observed an overall decrease in rich-
ness and modulation of specific bacterial populations 
with treatment, including an increase in Lactobacillaceae 
and Bifidobacteriaceae families, and a decrease in Por-
phyromonadaceae and Prevotellaceae post-treatment. 
Importantly, our study suggests that there are specific 
bacteria that either at the start or after completion of 
treatment are associated with response and recurrence. 
Moreover, a pilot proteomic analysis (data not shown) 
of saliva samples from our cohort of SCC patients pre- 
and post-treatment revealed significant upregulation 
of DMBT1 after treatment. In the present study, we 
validated this interesting finding and observed that the 
increase in salivary DMBT1 was correlated with a rise 

Fig. 8  Downregulation of DMBT1 in saliva is associated with microbiome changes. Linear regression showing OTUs that correlate with DMBT1 
expression at pre- (0 months), post-treatment (6 months), and difference in expression between post- to pre-treatment (Δ). Orange and green 
indicate negative and positive correlation directions, respectively. Circle size represents the correlation magnitude



Page 17 of 23Medeiros et al. Microbiome          (2023) 11:268 	

in certain bacterial populations within the saliva, includ-
ing Gemella, Lactobacillus, Megasphaera, and Oribacte-
rium. Our study showing microbiome changes between 
pre- and post-treatment saliva from patients with SCC 
supports the development of oral microbiome markers of 
SCC to assess response to treatment.

Bacterial sequencing studies have revealed that cer-
tain cancers are associated with dysbiosis, an imbal-
ance in microbial diversity and community stability [3]. 
Studies using germ-free mice transplanted with cancer-
associated gut microbiotas have provided evidence that 
dysbiosis can directly contribute to the development of 
cancer [58]. Microbial-induced mechanisms are consist-
ent with the hallmarks of cancer [59] and include tumor-
promoting inflammation, immune evasion, proliferative 
signaling, and genome instability [1]. The impact of the 
salivary microbiome on the pathogenesis of SCC is rela-
tively under-explored. Studies comparing microbial com-
position in the saliva of patients with SCC have generally 
been small, but have nonetheless demonstrated differ-
ences between healthy and SCC-associated microbiotas 
[40]. Although a consistent SCC-associated microbial 
signature has not been identified likely due to small sam-
ple sizes and heterogeneity of patient populations, these 
studies have shown increased levels of bacteria belong-
ing to Prevotella, Fusobacterium, and Porphyromonas in 
the SCC group [49]. Differences in microbial composi-
tion have also been demonstrated by analyzing SCC ver-
sus contralateral normal tissue sections from the same 
patient using a paired approach [60]. In both discovery 
and validation cohorts, there was a decrease in Strep-
tococcus and Rothia species in cancer tissue compared 
to the contralateral normal control. Shin et  al. (2017) 
compared primary tumor tissue, metastatic tissue, and 
normal tissue within the same patient and found simi-
lar results, notably an increase in Fusobacterium and a 
decrease in Streptococcus in cancer versus control [61]. 
In a cohort of patients with tongue SCC, Michikawa et al. 
showed that Fusobacterium is increased at the tumor 
site compared to adjacent normal tissue which had high 
Streptococcus and Rothia [62]. However, whether these 
changes directly contribute to the development of SCC 
is unknown. Besides the use of gnotobiotic models to 
demonstrate causality, normalization of the microbiota 
with curative treatments would be suggestive of a role for 
dysbiosis in disease pathogenesis. Guerrero-Preston et al. 
compared the salivary microbiome composition between 
SCC patients before and after surgical resection [63]. In 
this longitudinal study on 11 patients, they noted a reduc-
tion in alpha diversity (species richness) after surgery, 
but an increase in alpha diversity in patients with tumor 
recurrence. Lactobacillus and Veillonella increased after 
treatment although the small sample size precluded 

definitive conclusions. In contrast, a recent study showed 
a decrease in alpha diversity after treatment [40].

In the present study, we were able to analyze changes 
in the composition of the salivary microbiota between 
0 and 6 months. Besides a reduction in overall richness, 
we observed notable increases in relative abundance in 
the families Lactobacillaceae and Bifidobacteriaceae and 
decreased abundance of families including Porphyromon-
adaceae, Prevotellaceae, Neisseriaceae, and Leptotrichi-
aceae. Some of these changes are consistent with other 
studies showing the enrichment of Porphyromonadaceae, 
Prevotella, and Fusobacteria and the depletion of Neisse-
riaceae in oral cancers [64–67]. Whether these bacterial 
populations are involved in cancer progression or main-
tenance of oral health remains to be determined.

Some commensal microbes affect the efficacy of 
chemotherapy. For example, E. coli interferes with the 
efficacy of gemcitabine and CB1954, inducing tumor 
resistance and cytotoxicity, respectively [68]. Gam-
maproteobacteria in human pancreatic ductal adeno-
carcinoma can metabolize gemcitabine, conferring 
tumor resistance to treatment that can be reverted with 
antibiotic therapy [68]. In contrast, drugs like cyclo-
phosphamide and oxaliplatin have decreased efficacy in 
germ-free or antibiotic-mediated microbiome-depleted 
mice [69]. How commensal bacteria regulate treatment 
responses remains to be fully elucidated, but includes 
upregulation of cytokines with anti-tumor activity in 
myeloid-derived cells and promotion of CD8 T cell 
infiltration and activation [11, 70]. Definitive chemora-
diotherapy is typically used in the treatment of locally 
advanced oral cancers with curative intent although 
recurrences are common. Thus, identifying biomarkers 
either prior to therapy or after completion of therapy 
that are predictive of response can have significant 
clinical implications and can be used to guide treat-
ment. In the current study, at baseline prior to therapy 
and 6  months after chemoradiation, there was a sig-
nificantly different microbiome composition between 
responders and non-responders, but no significant 
variation in diversity or richness. We also found OTUs 
at the start and end of treatment that correlated with 
response or recurrence. Interestingly, we identified an 
OTU within the genera Prevotella (OTU0029) that was 
associated with recurrence (i.e., non-responders) at the 
start of treatment and depleted after cancer therapy at 
6 months, suggesting a potential role for this bacterial 
population in tumor progression. However, it should 
be noted that many of the OTUs identified as signifi-
cantly different by LEfSe analysis were not consistently 
identified using ALDex2, which may be largely due to 
the differences in data pre-processing, normalization, 
and testing methods used in different methods [71]. 
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Additional studies with a larger cohort of patients will 
be needed to evaluate microbial biomarkers within the 
saliva with prognostic significance.

Functional prediction of pathways that may be dif-
ferentially represented by salivary communities before 
and after treatment revealed that microbial func-
tions involved in lipopolysaccharide biosynthesis were 
enriched before treatment. Interestingly, two OTUs 
(Leptotrichia OTU0026 and Capnocytophaga OTU 
0043) were negatively correlated with DMBT1 expres-
sion and both were high before treatment in patients. 
Both belong to genera that have lipopolysaccharide 
activities, which can be associated with cancer detec-
tion or progression [72, 73]. Lipopolysaccharide also 
activates Toll-like receptor 4 (TLR4), which is over-
expressed in oral cancers and has been linked to oral 
carcinogenesis [74]. PICRUSt analysis also correlated 
two pathways related to amino acid metabolism with 
treatment response at 6  months, namely, phenylala-
nine, tyrosine, and tryptophan biosynthesis as well as 
valine, leucine, and isoleucine biosynthesis. Interest-
ingly, these pathways were also previously associated 
with healthy individuals when compared with head and 
neck cancer patients [75].

A possible limitation of our study is the lack of long-
term follow-up data. Almost half of SCC recur within 
5  years, but due to the low number of recurrences 
at the 6-month period when microbiome sequenc-
ing data were analyzed, the relationship between the 
microbiome and tumor recurrence could not be fully 
investigated. A limitation of 16S rRNA sequencing 
and analysis of OTUs is that species-level informa-
tion is difficult to obtain. Future studies using shotgun 
metagenomic sequencing will be informative in deter-
mining specific bacterial species and functions that are 
associated with treatment responses.

DMBT1, also known as salivary agglutinin, binds and 
neutralizes bacteria and viruses and activates the com-
plement system [76, 77]. DMBT1 is a glycoprotein with a 
significant role in mucosal immunity. Recently, our group 
demonstrated suppression of DMBT1 in SCC with a crit-
ical role in invasion [44, 45]. In the present study, DMBT1 
expression is low in saliva from patients with SCC and 
increases after treatment. It is primarily expressed in 
the epithelium and in secretions such as saliva, although 
some studies report DMBT1 in non-mucosal tissues 
including tooth surfaces [43, 78–80]. Given the variabil-
ity in DMBT1 localization, it is possible that in different 
locations (soluble versus membrane), DMBT1 has spe-
cific functions.

The change in expression of salivary DMBT1 with 
accompanying changes in the microbiome suggests 
the possibility that DMBT1 may be important in 

modulating the oral microbiome and/or the tumor 
microenvironment to maintain homeostasis and resist 
carcinogenesis and tumor progression.

Conclusion
This is the first longitudinal study to investigate treat-
ment-associated differences in the oral microbiome in 
patients with SCC and associate them with changes 
in the expression of DMBT1. Our findings support 
the development of salivary biomarkers of SCC and 
microbiome biomarkers to predict response to treat-
ment. Future studies should be directed toward can-
didate microbial species that are associated with 
response, such as Gemella spp. and Leptotrichia spp., 
including characterization of their effects in response 
to treatment in SCC and identification of underlying 
mechanisms.

Methods
Patient population and sample collection
Saliva samples were obtained from the University of 
Michigan Head and Neck Cancer Specialized Pro-
gram of Research Excellence/Head and Neck Oncology 
Program (HNSPORE/HNOP) prospective epidemiol-
ogy project. IRB approval and patient consent were 
obtained prior to saliva collection. Amongst 109 
patients with SCC used for microbiome analysis, 50 
patients were treated with chemoradiotherapy with 
available time 0 samples and 33 of those had available 
paired samples (baseline and 6  months post-treat-
ment). Fifteen surgically treated patients had paired 
samples for pre- and post-treatment microbiome anal-
ysis (Table 1). The disease site in the chemoradiother-
apy population (responders and non-responders) was 
primarily the oropharynx (38) but included the larynx 
(10), oral cavity (1), and unknown (1) (Table 2). Whole 
stimulated saliva was collected pre- and post-treat-
ment (6 and 12  months post-diagnosis) for 5  min, as 
described [37]. The total volume was quantified, and 
the flow rate (ml/minute) was calculated. The samples 
were centrifuged, and protease and phosphatase inhib-
itors (1e−4 U/ml aprotinin, 1.2  mM Na3VO4 [sodium 
orthovanadate], 0.1  mg/ml PMSF [phenylmethylsul-
fonyl fluoride]) were added to the supernatant, which 
was aliquoted and frozen at − 80 °C. A schematic over-
view of the entire study including sample collection 
and analysis is shown in Fig. 1A.

DNA isolation and amplification
DNA was isolated from saliva with a MagAttract 
PowerMicrobiome DNA/RNA Kit (Qiagen) using an 
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epMotion 5075 liquid handling system. The V4 region 
of the 16S rRNA gene was amplified and sequenced 
with an Illumina MiSeq using MiSeq Reagent Kit V2 
500 cycles (Illumina cat# MS102-2003), as described 
previously [81], and 3 µl of DNA (undiluted) was used 
for each standard PCR.

Sequence processing and analysis overview
The 16S rRNA gene sequence data was processed and 
analyzed using the software package mothur (v.1.42.3) 
[82]. After sequence processing [83] and alignment 
to the SILVA reference alignment (release 132) [84], 
sequences were binned into operational taxonomic 
units (OTUs) based on 97% sequence similarity using 
the OptiClust method [85]. Processing and analy-
sis steps are available in the mothur batch files (Sup-
plement data dsilva2.sop1.batch and dsilva2.sop2.
batch). Records of all steps performed in mothur are 
available in the mothur logfiles (Supplement data 
mothur.1582056286.logfile and mothur.1582305303.
logfile). By calculating θYC distances (a metric that 
takes the relative abundance of both shared and non-
shared OTUs into consideration) [86] between com-
munities and using analysis of molecular variance 
(AMOVA) [87], we tested for statistically signifi-
cant differences between the microbiota of different 
groups. NMDS was used to visualize θYC distances 
between samples. Linear discriminant analysis (LDA) 
effect size (LEfSe) and a Dirichlet-multinomial model 
after log-ratio transformation (ALDEx2) [48], a com-
positional differential abundance analysis tool, were 
used to determine if specific OTUs were differentially 
abundant in different groups [88]. Welch’s t test and 
Benjamini–Hochberg adjusted p values were used for 
ALDEx2 results. The taxonomic composition of bac-
terial communities was determined by classifying 
sequences within mothur using a modified version of 
the Ribosomal Database Project (RDP) training set 
(version 16) [89, 90].

Unpaired t tests were used for the comparison 
between all samples at 0  month and 6  months and 
between responders and non-responders at 0  month 
or 6 months. Paired t tests were used for the compari-
son between 0-month and 6-month samples for either 
chemoradiotherapy or surgery. We also investigated 
the diversity metrics, including the inverse Simp-
son index which was calculated. Predictive functional 
profiling of microbial communities using 16S rRNA 
sequences was performed using PICRUSt analysis 
[91], and pathways were identified using the KEGG 
classification.

Salivary DMBT1 protein quantification
DMBT1 quantification was performed if the baseline 
and corresponding 6 and/or 12 months of samples were 
available from the same patient (Table  3). DMBT1 in 
saliva samples was quantified by immunoblot (WB) 
and enzyme-linked immunosorbent assay (ELISA). For 
immunoblot analysis, equal volumes of saliva were elec-
trophoresed on 4–12% of Tris–glycine gels, and results 
were normalized by a sample volume. After transfer, 
DMBT1 was detected with goat anti-mouse DMBT1 
(AF5915 R&D Biosystems).

For ELISA, saliva samples were diluted 1:2 in PBS 
and analyzed in duplicate using a DMBT1 ELISA 
assay (EKU03679 Biomatik, Wilmington, Delaware). 
Only samples with sufficient volume were analyzed by 
ELISA, which required a larger sample volume than 
with immunoblotting. Consequently, ELISA was per-
formed on saliva samples from 28 patients, a subset of 
the 48 patients used for immunoblot analysis. Changes 
from baseline to month 6 and month 12 were tested in 
a linear mixed model of log-transformed values assum-
ing compound symmetric variance structure and fixed 
effect for timepoint (baseline, month 6, month 12) with 
baseline considered the reference.

Microbiome and DMBT1 protein expression correlation 
analysis
Pearson correlation coefficients between relative abun-
dance scores and DMBT1 protein expression levels 
were calculated for 20 subjects with available paired 
relative abundances and DMBT1 expression quantifica-
tions (Table 4).

Mouse saliva studies
UM-SCC-1 cells (8 × 105) in matrigel or matrigel alone 
were injected subcutaneously in athymic nude mice 
(Ncr-nu/nu, age 6  weeks, n = 15 for the tumor group, 
and n = 13 for the control group) according to the pro-
tocol approved by The University of Michigan Insti-
tutional Animal Care and Use Committee (IACUC). 
Enlarging tumors were monitored and measured at 
least 3 times per week. Saliva was collected from adult 
mice at 11 weeks (S1) and at 16 weeks or prior to eutha-
nasia  (S2), according to the approved protocol. Pilo-
carpine was injected intraperitoneally  (IP) at a dose of 
20  µg/20  g body weight. Stimulated whole saliva was 
collected (Fig.  7A). The volume of each saliva sample 
was quantified; samples were centrifuged at 10,000 rpm 
for 20 min at 4 °C. After centrifugation, saliva samples 
were transferred to new tubes, protease inhibitors were 
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added, and samples were stored at − 80  °C. DMBT1 
quantification by immunoblot was performed using the 
same protocol used for human saliva samples. A paired 
t-test was used to test for significant change over time 
within groups and a p-value <0.05 was considered sig-
nificant. A linear mixed effects model with interaction 
term for group x time assuming compound symmetric 
variance structure within subject, was used to further 
test for difference in slope.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​023-​01677-w.

Additional file 1: Fig. S1. (A) Relative abundance of OTUs between 
salivary microbiomes at 0 (pre-treatment) and 6 months (post-treatment) 
for SCC. (B) Most differentially abundant OTUs before and after treatment 
based on LEfSe analysis (LDA cutoff of 3). Fig. S2. Most differentially abun‑
dant OTUs between salivary microbiomes before (0 months) and after 
chemoradiotherapy (6 months) based on LEfSe analysis (LDA cutoff of 3).

Table 4  Demographics distribution of patients used in microbiome and DMBT1 change correlation (Fig. 8)

Variable Up (n = 15) Down (n = 5)
N or mean (std) N or mean (std) p value

Age Years 57.1 (7.2) 59.2 (9.9) 0.62

Gender Male 12 2 0.27

Female 3 3

Clinical stage 2 1 - 1.00

3 2 1

4 12 4

T stage T1 2 1 0.67

T2 8 1

T3 2 2

T4 3 1

N stage N0 1 2 0.17

N1 3 0

N2 11 3

Disease site Larynx 1 1 0.25

Oral cavity 2 -

Oropharynx 12 3

Nasopharynx 0 1

Treatment Chemotherapy 0 1 0.15

Surgery 3 -

Chemoradiotherapy 12 4

ACE comorbidities score None 5 1 0.36

Mild 8 3

Moderate 2 -

Severe 0 1

BMI Normal (15.5–24.9) 2 - 0.84

Overweight (25–29.9) 6 3

Obese (30 +) 7 2

HPV status Negative 3 3 0.25

Positive 12 2

Drinker Never 1 - 1.00

Current 13 4

Former (quit > 12 months) 1 1

Smoker (cigarettes) Never 5 - 0.04

Current 7 1

Former (quit > 12 months) 3 4

https://doi.org/10.1186/s40168-023-01677-w
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