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Abstract 

Background  Bioactive lipids produced by human cells or by the gut microbiota might play an important role in 
health and disease. Dietary intakes are key determinants of the gut microbiota, its production of short-chain (SCFAs) 
and branched-chain fatty acids (BCFAs), and of the host endocannabinoidome signalling, which are all involved in 
metabolic diseases. This hypothesis-driven longitudinal fixed sequence nutritional study, realized in healthy par‑
ticipants, was designed to determine if a lead-in diet affects the host response to a short-term dietary intervention. 
Participants received a Mediterranean diet (MedDiet) for 3 days, a 13-day lead-in controlled diet reflecting the average 
Canadian dietary intake (CanDiet), and once again a MedDiet for 3 consecutive days. Fecal and blood samples were 
collected at the end of each dietary phase to evaluate alterations in gut microbiota composition and plasma levels of 
endocannabinoidome mediators, SCFAs, and BCFAs.

Results  We observed an immediate and reversible modulation of plasma endocannabinoidome mediators, BCFAs, 
and some SCFAs in response to both diets. BCFAs were more strongly reduced by the MedDiet when the latter was 
preceded by the lead-in CanDiet. The gut microbiota response was also immediate, but not all changes due to the 
CanDiet were reversible following a short dietary MedDiet intervention. Higher initial microbiome diversity was asso‑
ciated with reduced microbiota modulation after short-term dietary interventions. We also observed that BCFAs and 
2-monoacylglycerols had many, but distinct, correlations with gut microbiota composition. Several taxa modulated by 
dietary intervention were previously associated to metabolic disorders, warranting the need to control for recent diet 
in observational association studies.

Conclusions  Our results indicate that lipid mediators involved in the communication between the gut microbiota 
and host metabolism exhibit a rapid response to dietary changes, which is also the case for some, but not all, micro‑
biome taxa. The lead-in diet influenced the gut microbiome and BCFA, but not the endocannabinoidome, response 
to the MedDiet. A higher initial microbiome diversity favored the stability of the gut microbiota in response to dietary 
changes. This study highlights the importance of considering the previous diet in studies relating the gut microbiome 
with lipid signals involved in host metabolism.
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Introduction
Evidence points to gut microbiota dysbiosis as a hall-
mark of various chronic diseases [1, 2]. Indeed, several 
species of bacteria are associated with health condi-
tions, as well as with dietary patterns [3–5]. Links 
between dietary intakes and metabolic disorders have 
been observed, as well as between these disorders and 
microbiota components [6, 7]. However, the causal-
ity of these interactions is still nebulous as microbiota 
changes are closely linked with diet and could be either 
a cause or a consequence of metabolic disorders [8].

Bioactive lipids produced by human cells or by the gut 
microbiota might play an important role in metabolic 
alterations [9, 10]. Gut bacteria produce short-chain 
fatty acids (SCFAs) and branched-chain fatty acids 
(BCFAs) from dietary fibers through carbohydrate and 
protein fermentation, respectively [10]. These metabo-
lites serve as an energy source for colonocytes and have 
cellular signalling functions, including the modulation 
of inflammation and motility of the intestine, lipid, and 
glucose metabolism, as well as satiety [11, 12]. In the 
host, the endocannabinoidome (eCBome) is a relatively 
new player in the response of the individual to the diet 
and in the regulation of both gut microbiome func-
tion and metabolic control [13, 14]. The eCBome is a 
complex lipid signalling system that comprises recep-
tors and mediators involved in most of those metabolic 
functions that are altered in metabolic diseases [15]. 
The mediators are ultimately derived from fatty acids, 
which, especially for the polyunsaturated fatty acids 
(PUFAs), are only found in dietary sources such as fish, 
vegetable oils, seed, and nuts [16]. They belong to vari-
ous families of long-chain fatty acid amides and esters, 
such as the N-acyl-ethanolamines (NAEs) and 2-mono-
acyl-glycerols (2-MAGs), which in turn include the 
two endocannabinoids, anandamide (N-arachidonoyl-
ethanolamine, AEA) and 2-arachidonoyl-gycerol 
(2-AG), respectively [17]. Recent articles have shown 
the importance of dietary fat intake as a determinant of 
circulating NAE and 2-MAG levels and highlighted the 
interaction between the eCBome and the gut microbi-
ota [18–21].

Long-term food intake is known to deeply influ-
ence the gut microbiome [22]. Microbiome composi-
tion, in association with specific diet components, has 
been associated to cardiometabolic risk [23] and recent 
work suggests that the effectiveness of cardiometabolic 
risk protection by the Mediterranean diet (MedDiet) is 

influenced by microbiome composition [4]. In addition, 
long-term dietary patterns similar to a MedDiet have 
been associated to specific properties of microbiome 
composition, including modulation of keystone species, 
and to lower intestinal inflammation [24, 25]. Still, meta-
analysis of the literature on the effects of the MedDiet 
on the gut microbiome did not show consensus between 
studies [26]. Although long-term diet is a driver of gut 
microbiota composition, studies also show that the lat-
ter also responds to short-term dietary changes [3]. In a 
mouse model, 3 days of high-fat, high-sucrose diet was 
sufficient to modulate bacterial genera in the jejunum, 
ileum, and caecum, with intensifying responses as the 
treatment duration increased [20]. In a cohort of healthy 
female athletes, 7 days of MedDiet or CanDiet had a 
modest effect on microbiome composition, but strongly 
modulated the impact of aerobic exercise on the imme-
diate response of plasma eCBome mediators and SCFAs 
[27], suggesting a divergent scale in the response to the 
diet of different biological systems. Resilience of the gut 
microbiome, sometimes associated with microbial diver-
sity [28], might also play a role in the response to dietary 
interventions [29].

In this work, we aimed to experimentally determine the 
impact of the previous diet on the eCBome and microbi-
ome response to a short-term MedDiet intervention. Our 
study was designed to investigate the effect of a lead-in 
diet to the response of participants to a 48-h MedDiet 
intervention. Thus, we conducted a longitudinal con-
trolled feeding study in a cohort of healthy volunteers 
to gain experimental insight on the interaction between 
diet, plasma lipid mediators, and the gut microbiome. 
Blood and fecal samples were collected: (1) at baseline, 
(2) after 48 h of MedDiet, which is rich in polyunsatu-
rated fatty acids, fibers and polyphenols, (3) after 13 days 
of average Canadian diet (CanDiet) and, finally, (4) after 
a second 48 h of the same MedDiet intervention (Fig. 1). 
Our primary objective was to determine if the lead-in 
CanDiet affected the response to MedDiet of plasmatic 
lipid mediators, namely the eCBome, SCFAs, and BCFAs, 
and of fecal microbiota composition. We compared the 
scale of the response of these variables to the change in 
diet and investigated the potential interactions between 
lipid mediators and the microbiome in response to diet. 
We specifically looked for the consequences of the lead-
in diet on changes in the response to MedDiet. The 
influence of the initial microbiome diversity of the par-
ticipants on bioactive lipids and microbiome modulation 
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was also assessed. This experimental, hypothesis-driven 
clinical trial provides in vivo insights into the interactions 
between the diet, plasma lipid mediators, and the human 
gut microbiome, with potential implications for meta-
bolic disorders and their comorbidities.

Material and methods
Controlled feeding intervention
This fixed sequenced study is summarized in Fig. 1. The 
first 3 days, a Mediterranean diet (MedDiet) was pro-
vided, then a Canadian diet (CanDiet) for 13 days and 
finally a Mediterranean diet (MedDiet) for 3 days. Details 
about the composition of the diets are given in Table 1. 
The CanDiet was designed to reflect the current Cana-
dian macronutrient intake while avoiding short-term 
nutritional deficiencies. The MedDiet was characterized 
by greater intake of fruits and vegetables, plant-based 
proteins and grains. It contained higher amounts of 
monounsaturated fatty acids (MUFAs), omega-3 PUFA, 
and fibers, with less saturated fatty acids (SFAs) and red 
meat [30]. Subjects were instructed to consume only 

the foods and beverages provided to them, which corre-
sponded to their estimated energy needs. Energy needs 
for each subject were estimated by averaging the energy 
requirements estimated by a validated web-based 24-h 
dietary recall (R24W) completed on three occasions, and 
energy expenditure obtained with Harris–Benedict for-
mula [31–33]. Healthy eating index (HEI) was calculated 
based on these R24W [34]. A checklist was provided to 
the participants to identify the food that had not been 
consumed. A form was provided to indicate food items 
that had been consumed in addition to the food pro-
vided. One participant was removed from the study due 
to non-compliance.

Ethics
Written informed consent of participants was obtained. 
The study was approved by the Laval University Eth-
ics Committee (2017-328 and 2018-262) and registered 
in the Clini​calTr​ials.​gov registry (NCT03783260). The 
longitudinal controlled feeding study was conducted 
between December 2018 and March 2019 at the Insti-
tute of Nutrition and Functional Foods (INAF) in Quebec 
City, Canada.

Sample characteristics
Twenty-one healthy young adults from 20 to 34 years old 
composed of 11 women and 10 men with general good 
health and a body mass index between 18.5 and 30 kg/
m2 completed the study successfully (Table  2). Subjects 
with enteropathies, alcohol consumption exceeding the 
Canadian recommendation for men (> 15 drinks/week) 

Fig. 1  Schematic representation of study design

Table 1  Composition of the MedDiet and CanDiet diets in the 
study

MedDiet CanDiet

HEI score 80 65

Energy (kcal) 2502 2500

Energy from carbohydrates (%) 46.81 48.42

Total dietary fibers (g) 45.48 19.08

Energy from proteins (%) 15.75 17.46

Animal proteins (g) 56.02 73.00

Plant proteins (g) 44.27 33.44

Energy from lipids (%) 35.11 34.05

Energy from saturated fatty acids (%) 6.20 15.19

Energy from monounsaturated fatty acids (%) 20.35 11.14

Energy from polyunsaturated fatty acids (%) 6.24 4.90

Linoleic acid (18:2) (g) 15.62 11.49

Alpha-linolenic acid (18:3) (g) 1.60 1.08

Arachidonic acid (20:4) (g) 0.13 0.14

Eicosapentaenoic acid (20:5) (g) 0.20 0.01

Docosapentaenoic acid (22:5) (g) 0.06 0.01

Docosahexaenoic acid (22:6) (g) 0.45 0.04

Table 2  Anthropometric and metabolic characteristics of study 
participants (n=21)

Women (n=11) Men (n=10)

Mean Range Mean Range

Age 26.82 20–34 23.20 20–29

BMI (kg/m2) 21.60 20.1–24.1 22.22 20.4–25

WC (cm) 71.50 65.8–78.6 78.61 74–87.2

Fasting glucose (mmol/L) 4.47 4–4.9 4.49 4–4.9

Triglycerides (mmol/L) 0.82 0.61–1.78 0.86 0.62–1.11

HOMA-IR 1.09 0.38–2 1.24 0.4–2.27

HEI score 64.94 39.5–87 56.36 37.5–74.4

http://clinicaltrials.gov


Page 4 of 16Bourdeau‑Julien et al. Microbiome           (2023) 11:26 

and women (> 10 drinks/week), active tobacco usage, 
consumption of dietary supplements (e.g., multivitamins, 
omega-3, probiotics), weight change (±5 kg) in the last 
6 months, having taken antibiotics in the last 3 months, 
and pregnant and/or breastfeeding women were not 
eligible.

Sample collection
Overnight fasting blood samples as well as fecal samples 
were collected on the morning of each dietary change 
(Fig.  1). Fecal samples were immediately aliquoted and 
frozen by the participant. Samples at V2 and V4 were 
taken after 48 hours of MedDiet. A posteriori data 
analysis confirmed that all fecal samples were collected 
between waking up and noon.

Circulating lipid quantification
Levels of PUFAs, NAEs, and MAGs in plasma samples 
(200 μL) were measured using high-performance liquid 
chromatography coupled to tandem mass spectrometry 
(LC–MS/MS) as previously described [35]. It allowed the 
quantification of NAEs including N-arachidonoylethanol-
amine or anandamide (AEA), N-palmitoyl-ethanolamine 
(PEA), N-oleoyl-ethanolamine (OEA), N-linoleoyl-eth-
anolamine (LEA), N-eicosapentaenoyl-ethanolamine 
(EPEA), and N-docosahexaenoyl-ethanolamine (DHEA), 
as well as MAGs including 1/2-Arachidonoylglycerol 
(AG), 1/2-palmitoyl-glycerol (PG), 1/2-oleoyl-glycerol 
(OG), 1/2-linoleoyl-glycerol (LG), 1/2-eicosapenaenoyl-
glycerol (EPG), 1/2-docosapentaenoyl-glycerol (DPG), 
and 1/2-docosahexaenoyl-glycerol (DHG). In the case of 
polyunsaturated 1- and 2-MAGs, the data are presented 
as 2-MAGs but they represent the combined signals from 
the 1(3)- and 2-isomers because the 1(3) isomers are 
most likely generated via acyl migration from the 2-iso-
mers. PUFAs, including arachidonic acid (AA), doco-
sahexaenoic acid (DHA), docosapentaenoic acid (DPA), 
and eicosapentaenoic acid (EPA), were also measured. 
Values of 0 were replaced by the value of half the detec-
tion limit for each metabolite. Quantification of SCFAs 
and BCFAs was performed on a GC-FID system at INAF 
analytical platform as previously described [27].

16S rRNA gene sequencing
Stool bacterial DNA was extracted using the QIAamp 
DNA Stool Kit (QIA- GEN, CA, USA), and amplifica-
tion of the V3–V4 region was performed using the prim-
ers 341F (5′-CCT​ACG​ GGNGGC​WGC​AG-3′) and 805R 
(5′-GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′) (Illumina, CA, 
USA) as previously described [20]. Briefly, libraries were 
purified using magnetic beads (Axygen Biosciences, CA, 
USA) and quality assessed (Agilent Technologies, CA, 
USA). High-throughput sequencing (2 × 300 bp paired 

end) was performed on Illumina MiSeq. Sequences were 
processed using the Dada2 package (Version 1.10.1), and 
associations to bacterial taxa were obtained using the Silva 
v132 reference database [36, 37]. Data have not been rare-
fied. The sequence counts per sample median are 46,904, 
mean 46,442, minimum 21,134, and maximum 79,290 
(Figure S1). Sequence variant tables were transformed at 
each taxonomic level in relative abundances. Statistical 
analyses such as the mixed linear-effect models (LME) and 
the multiple factor analysis (MFA) were only performed on 
taxa that were at more than 1% in at least one sample. Raw 
sequencing reads are available in SRA (PRJNA810015).

Statistical approach
All figures and statistical analyses were performed using 
R studio software (RStudio 1.2.1335, R version 4.1.3). 
Mixed linear-effect models (LME) including random 
individual effect was used to identify lipid mediators and 
microbiome taxa at more than 1% in at least one sample 
that were influenced by diet. The genus taxonomic level 
was selected for analysis, as it best explained the vari-
ability between our samples based on a multiple factor 
analysis (MFA) made on all taxonomic levels (Figure S3). 
The primary and secondary objectives were to determine 
if lead-in diet (regular diet different between participants 
or standardized CanDiet) affected plasma lipid media-
tors (primary) and microbiome (secondary) response to 
MedDiet intervention. Plasma lipid concentrations have 
been normalized using ranked values fitted into LME 
and significance has been tested by analysis of variance 
(ANOVA) with random effects nested within partici-
pants. False discovery rate-corrected p-value lower than 
0.05 was considered statistically significant. False discov-
ery rate (FDR) correction on p-values was made with the 
function p.adjust of the stats package. Principal compo-
nent analysis (PCA) and multiple factor analysis (MFA) 
were made with the FactoMineR package [38]. PCA and 
MFA plots were made with the factoextra package. MFA 
microbiome analysis included all taxonomic ranks to 
improve interpretability, and taxa representing 1% in at 
least one sample were included in the analysis. Permuta-
tional multivariate analysis of variance (PERMANOVA) 
has been made using Adonis function of the package 
vegan with 100,000 permutations. Hierarchical cluster-
ing from the MFA or PCA analysis were made using the 
HCPC function of the hierarchical clustering on Facto-
MineR package. Variables significantly different between 
clusters were also obtained by the HCPC function. The 
function binom.test of the stats package was used to test 
the distribution within clusters of samples from Med-
Diets or CanDiet and baseline. Simpson’s and Shan-
non diversity indices were calculated on all sequence 
variants using the vegan package [39]. Most plots were 



Page 5 of 16Bourdeau‑Julien et al. Microbiome           (2023) 11:26 	

drawn with ggplot2 package and statistical analyses for 
geom_boxplot were calculated by the function stat_com-
pare_means from the ggpubr package. Barplots were 
drawn with barplot2 function from the gplots package. 
Colored bars below dendrograms were drawn using the 
dendextent rpackage [40]. Heatmaps were drawn using 
pheatmap package, and correlation plots were drawn 
with corrplot package. Spearman correlations were cal-
culated using the function cor.test from the stats package. 
The stats package function lm was used for the regression 
lines and dist to calculate Euclidean distance. The inter-
action network was made with Cytoscape Version 3.8.0.

Results
Short‑term dietary intervention determines plasma lipid 
mediators
We assessed the effect of short-term MedDiet dietary 
interventions with and without a lead-in diet stabilization 

period with a CanDiet (Fig. 2). As expected, the plasma 
concentrations of polyunsaturated fatty acids increased 
in response to both MedDiet interventions compared to 
baseline and CanDiet (Fig. 2A). Increases after both Med-
Diet (V2 and V4) were also observed for several eCBome 
mediators including the NAEs, DHEA, and EPEA 
(Fig. 2B), and the 2-MAGs, 2-DHG, and 2-EPG (Fig. 2C). 
BCFAs and SCFAs were not significantly altered by the 
first MedDiet intervention (Fig. 2D). However, propion-
ate, valerate, isobutyrate, and isovalerate were signifi-
cantly increased after the CanDiet and then decreased 
upon the second MedDiet. There was no significant dif-
ference between the levels of bioactive lipids between 
MedDiet at V2 and V4, but analysis of the latter indicates 
that diet stabilization improved reproducibility of the 
metabolite response. Overall, the fold variation of metab-
olites between the second MedDiet and the CanDiet (V4/
V3), and between the CanDiet to the first MedDiet (V3/

Fig. 2  Response of plasma bioactive lipids to the dietary intervention. Panels show results for A polyunsaturated fatty acids (PUFAs), 
endocannabinoidome mediators classes, B N-acylethanolamines (NAEs), and C monoacylglycerols (MAGs) and D short-chain fatty acids (SCFAs) 
and branched-chain fatty acids (BCFAs). The graph represents the mean with the standard error of the log2 ratio between the plasmatic lipid 
concentrations at MedDiet (V2) vs Baseline (V1) (top panel), CanDiet (V3) vs MedDiet (V2) (middle panel), and MedDiet (V4) vs CanDiet (V3) (bottom 
panel). The red line drawn at 0 represents no change in the metabolite. Lipid concentrations have been normalized using ranked values fitted into 
mixed linear-effect model (LME) and differences between visits have been tested by analysis of variance (ANOVA). P-values have been corrected by 
false discovery rate (FDR). Significance was set at p<0.1 (.), p<0.05 (*), p<0.01 (**), and p<0.001 (***). Names of the molecules are arachidonic acid 
(AA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), eicosapentaenoic acid (EPA), anandamide (AEA), N-docosahexaenoyl-ethanola
mine (DHEA), Neicosapentaenoyl-ethanolamine (EPEA), N-linoleoyl-ethanolamine (LEA), N-oleoyl-ethanolamine (OEA), N-palmitoyl-ethanolamine 
(PEA), 2-arachidonoyl-glycerol (2-AG), 2-docosahexaenoyl-glycerol (2-DHG), docosaepentaenoic-glycerol (2-DPG), 2-eicosapentaenoyl-glycerol 
(2-EPG), 2-linoleoyl-glycerol (2-LG), 2-oleoyl-glycerol (2-OG) and 2-palmitoyl-glycerol (2-PG)
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V2) were the exact opposite, indicating a direct influence 
of diet on these metabolites. Overall, the lead-in diet did 
not affect the response of bioactive lipids to the MedDiet 
as these metabolites responded to short-term changes in 
diet, although with BCFAs the response was stronger and 
less variable after the second MedDiet intervention.

Gut microbiota responds to dietary changes within 48 h
We also investigated the fecal microbiome response 
to short-term MedDiet dietary interventions with and 
without a lead-in diet stabilization period with CanDiet 
(Fig.  3, Supplementary Table S1). Simpson’s and Shan-
non microbiome diversity were significantly higher 

Fig. 3  Response of gut microbiome to the dietary intervention. Mean relative abundance with standard error of the microbiota genera significantly 
affected by the dietary interventions are displayed. A Microbiota genera increased by the MedDiet, B are modulated by CanDiet in a manner that 
was reversible by the MedDiet, C are modulated by the CanDiet and do not recover with the MedDiet, or D others. Relative abundance of the 
microbiota genera that were at more than 1% in at least one sample has been normalized using ranked values fitted into mixed linear-effect model 
(LME) and differences between visits have been tested by analysis of variance (ANOVA). P-values have been corrected by false discovery rate (FDR). 
Significance was set at p<0.1 (.), p<0.05 (*), p<0.01 (**), and p<0.001 (***)
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after dietary intervention compared to baseline diver-
sity (Figure S2A-B). All significantly modulated taxa 
had baseline relative abundances lower than 5%, except 
for Bacteroides. Three patterns of microbiota response 
were identified. First, MedDiet interventions led to a 
reproducible increase of seven genera independently of 
lead-in diet: Bacteroides, Butyricoccus, Coprococcus.1, 
Lachnoclostridium, Lachnospiraceae UCG 001, Paras-
utterella, and Lachnospira (Fig.  3A). Second, CanDiet 
modulated genera in a manner that was reversible by 
the MedDiet, including Romboutsia, Ruminococcaceae 
UCG 004, Roseburia, Subdoligranulum, and Collinsella 
(Fig. 3B). Third, and most important, taxa modulated by 
the CanDiet did not return to their initial relative abun-
dance after the second MedDiet (Fig. 3C). For instance, 
the relative abundance of Coprococcus 3 and Rumini-
clostridium 5 was significantly different at the end of each 
MedDiet intervention period (V2, V4). Thus, the increase 
induced by the CanDiet stabilization was still observed at 
V4 for these taxa. Similarly, Ruminococcaceae NK4A214 
and Lactobacillus were significantly decreased by the 
CanDiet (V2, V3) but did not recover after the second 
MedDiet (V4) (Fig. 3C). Finally, unclassified Faecalibacte-
rium UBA1819 increased throughout the study (Fig. 3D). 
These results indicate that gut microbiota responded 
to the MedDiet within 48 h and that, for some taxa, a 
2-week CanDiet affected the gut microbiota response to 
the MedDiet.

Interindividual differences in microbiota response 
to dietary interventions
It is known that the gut microbiota of every individual 
harbor unique features and that they can respond differ-
ently to dietary interventions [41, 42]. Since the baseline 
microbiota of participants might reflect their long-term 
diet or other underlying conditions, we investigated 
interindividual differences in microbiome composition 
to determine if subsets of participants could have spe-
cific response to dietary interventions. To do so, we com-
pared microbiome profiles using multiple factor analysis 
(Figure S3), with taxonomical ranks included as different 
groups of variables, followed by hierarchical clustering of 
the resulting variance decomposition [28] (Fig. 4). Sam-
ples were grouped by dietary interventions (chi-squared, 
p=0.003) (Figure S3D, Fig.  4A). Indeed, from the 5 
main clusters identified, two were enriched in a specific 
diet. Cluster M2 was significantly associated with base-
line samples (7/14, p=0.04) and showed significantly 
lower microbiome diversity than the four other clusters 
(Fig. 4C). Cluster M5 was enriched in MedDiet samples 
(16/17, p=0.0003). By contrast, cluster M1 and cluster 
M4 contained three to four visits of the same participant, 
indicating limited microbiome modulation by the diet 

for these individuals (Figure S4). The microbiota of these 
participants seemed to be less affected by the diet and 
more by interindividual characteristics compared to the 
other clusters. A similar methodology applied to bioac-
tive lipids showed clustering mostly associated with diet 
(Figs. S5 and 4D). These results indicate that individual 
microbiomes might respond differently to short-term 
dietary intervention, although bioactive lipids are mostly 
associated with recent diet composition.

Microbiome response to diet, but not the host bioactive 
lipid response, is associated to initial microbiome diversity
Gut microbiota diversity is believed to be associated with 
microbiota stability and resilience [43]. Thus, we investi-
gated if the Euclidean distances between the microbiome 
profiles at each visit for each participant were corre-
lated with their baseline microbiome indices (Simpson’s 
index). Overall, microbiome modulation was inversely 
correlated to the baseline microbiome diversity of the 
participants (Figs.  5A and S2C-D). Hence, individuals 
with greater initial microbiota diversity had smaller dis-
tances between visits. This finding supports the hypothe-
sis that microbiota diversity is associated with microbiota 
stability and that this hypothesis is valid for short-term 
changes in the diet. A similar analysis was performed on 
plasma lipids, but we observed no significant correlations 
between microbiome diversity and the metabolite profile 
distances from initial metabolome (Fig. 5B). As a control, 
we investigated if baseline microbiome diversity was cor-
related with baseline healthy eating index (HEI), which 
was not the case (p=0.26, Spearman). In addition, no 
taxa or metabolite was significantly correlated with HEI 
after FDR correction (Figure S6).

Dynamic associations between diet, microbiome diversity, 
and bioactive lipids
The stability of the interaction between microbiome 
diversity, specific taxa, and plasma metabolites with 
different diets was investigated by evaluating the cor-
relations of microbial diversity with other variables at 
the four visits and using all data. Genera from the gut 
microbiota were consistently correlated with micro-
bial diversity across the different visits for numer-
ous taxa, highlighting the stability of the association 
between microbiota composition and diversity, even 
when changing diet (Fig.  5C). A notable exception to 
this general rule was Lachnoclostridium, which was 
negatively correlated with diversity only after Can-
Diet. Of the genera significantly associated with base-
line microbiome diversity, only Lachnoclostridium and 
Lachnospira were significantly modulated by the diet 
(Fig. 3). No significant correlations between the micro-
biota diversity and plasma metabolites were seen after 
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FDR correction (Fig.  5D). Interestingly, although not 
statistically significant, correlations between metabo-
lites and microbiota diversity were stronger with both 
baseline (V1) and CanDiet (V3) compared to MedDiets 
(V2, V4). The difference between gut microbiota and 
plasma metabolite correlations with microbiome diver-
sity highlight a dynamic association of plasma eCBome 
mediators, SCFAs, and BCFAs with the diet, in oppo-
sition to the stability of the association of gut bacteria 
with microbiome diversity at the time frames of this 
study.

2‑MAGs and BCFAs have distinct correlations 
with the microbiome
To further investigate the relation between gut bacte-
ria and bioactive lipids, we generated a correlation net-
work between microbiota genera relative abundances 
and plasma metabolite concentrations (Fig. 6). Our first 
general observation from this network was that lipid 
mediators belonging to the same chemical families were 
grouped together within the network, with a large sub-
network associated with 2-MAGs and another with 
BCFAs.

Fig. 4  Clustering of microbiota taxonomical profiles. A Hierarchical clustering on multiple factor analysis of the microbiota profile of individuals at 
different visits. Variables contributing to the difference between the clusters are displayed on the dendrogram. Horizontal colored bar below the 
dendrogram represents the visit associated with sample. B Barplot showing the relative abundance of the 16 more abundant microbiota genera. 
Microbiota alpha diversity measured on all sequence variants by Simpson’s index (1-D) between C microbiota clusters and D bioactive lipid clusters
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In the 2-MAGs subnetwork, Paraprevotella and 
Anaerostipes played central roles by correlating posi-
tively and negatively, respectively, with 2-AG, 2-DHG, 
2-OG, 2-LG, and 2-EPG. These 2-MAGs were con-
nected by positive correlation with taxa such as 
Intestinibacter, Catenibacterium, Romboutsia, and 
Clostridium sensu stricto 1. Erysipelotrichaceae was 
negatively associated with 2-AG, 2-DPG, and 2-DHG. 
Interestingly, 2-PG was separated from the subnetwork, 
having opposite association with gut microbiota genera 

compared to the other 2-MAGs. NAEs did not have 
high connectivity within the correlation network.

High shared connectivity was observed between 
bacteria and isobutyrate, isovalerate, and valer-
ate, the most significant correlations of which were 
also negatively correlated with microbiome diversity. 
Plasma levels of valerate, isobutyrate, and isovaler-
ate were significantly modulated by the diet and 
were correlated with genera also modulated by the 
diet (Lachnoclostridium, Coprococcus, Bacteroides, 

Fig. 5  Microbiota modulation is associated with initial microbiome diversity. Euclidean distance of A microbiota profiles including all sequence 
variants or B lipidic profile between baseline and each visit of the study for each participant in relation with their alpha diversity at baseline. 
Regression lines were drawn for each visit. Slope of line (lm) and Spearman correlations were considered significant only for microbiota distance 
measurements with p-values < 0.01. Spearman coefficients are also significant and are displayed on the legend. Red represents the distance 
between the microbiota profile of baseline (V1) and the first MedDiet (V2), black of baseline (V1) and CanDiet (V3), and gray of baseline (V1) and 
the second MedDiet (V4). C Heatmap illustrating the FDR-corrected Spearman correlations between the gut microbiota genera that were at 
more than 1% in at least one sample and gut microbiota diversity calculated on all sequence variants represented by Simpson’s index (1-D) at 
each visit and combining the four visits. D Heatmap illustrating the FDR-corrected Spearman correlations between plasmatic lipid concentrations 
and gut microbiota diversity calculated on all sequence variants represented by Simpson’s index (1-D) at each visit and combining the four visits. 
Significance was set at p<0.05 (*), p<0.01 (**), and p<0.001 (***)



Page 10 of 16Bourdeau‑Julien et al. Microbiome           (2023) 11:26 

and Butyricicoccus). Taxa positively correlated with 
butyrate or acetate were in general negatively cor-
related with BCFAs. Plasmatic concentrations of the 
short-chain fatty acids acetate, butyrate, and propion-
ate were negatively correlated with the genus Akker-
mansia. Plasma levels of acetate and butyrate were not 
modulated by the diet and showed significant correla-
tion with taxa that were also not correlated with the 
diet, indicating that the production of these metabo-
lites and associated microbiota were generally not 
affected by the short-term dietary intervention with 
the MedDiet.

Overall, taxa correlated with eCBome mediators 
were not significantly modulated by diet or consist-
ently correlated with microbiome diversity, suggesting 
that their association with eCBome modulation could 
be independent of these two factors. Taxa correlated 
with SCFAs and BCFAs were significantly modulated 
between the diets (Fig. 2), and some of these taxa were 
correlated with microbiome diversity, suggesting that 
diet may influence this association. These observa-
tions are consistent with the nature of eCB and con-
geners, which are generally produced by the host, and 
of SCFAs/BCFAs, which are generally produced by the 
microbiome.

Discussion
The present study aimed to define how a lead-in diet 
affects the response of gut microbiome and lipid media-
tors to a short-term MedDiet using a controlled feeding 
protocol in healthy subjects. It allowed to evaluate how 
the gut microbiota, the eCBome, and short-chain and 
branched-chain fatty acids adapted to dietary changes in 
a dynamic way. We compared the short-term effect of a 
MedDiet in a sample of individuals with different base-
line dietary habits with that obtained, in the same indi-
viduals, following instead a 13-day stabilization period 
with a CanDiet. Our results showed no significant differ-
ence in the response of plasma bioactive lipids between 
the two MedDiet interventions. In fact, for PUFAs, 
MAGs, NAEs, SCFAs, and BCFAs, the fold change 
induced by the CanDiet compared to the first MedDiet 
was almost the exact opposite of the fold change induced 
by the second MedDiet compared to the CanDiet. How-
ever, the effect on BCFAs appeared to be stronger and 
affected by less variability after the MedDiet interven-
tion that followed the CanDiet. The eCBome lipid pro-
file appeared to be mostly determined by dietary intake, 
rather than the lead-in diet, and this effect was imme-
diate and consistent. It must however be emphasized 
that this was observed in a young and healthy cohort 

Fig. 6  Correlation network between microbiota and bioactive lipids show distinct clusters associated with BCFAs and 2-MAGs. Network 
representing associations between gut microbiota genera that were at more than 1% in at least one sample and lipids based on Spearman 
correlations. Dotted lines represent significant correlations with a p-value < 0.01 and straight lines represent significant correlations after FDR with a 
p-value < 0.05. Color of the edge indicates the strength of positive (blue) or negative (red) correlation. Nodes are colored based on their association 
with microbiota diversity measured on all sequence variants by Simpson’s index (1-D) and nodes with significant correlations after FDR (p<0.05) 
have black border. Colored circles were drawn by hand to highlight subnetworks dividing molecules by lipid classes. Taxa were included in the 
group with which they had the most significant correlations. In case of a tie between two or more groups, genera were not circled
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submitted to short-term dietary interventions, and the 
picture could be different in individuals with metabolic 
disorders or other conditions in which these lipids have 
been implicated. In comparison with bioactive lipids, the 
response of the microbiome followed taxa-specific pat-
terns, with some bacteria responding directly to short-
term diet while others were influenced by the lead-in 
diet. Therefore, the main finding of this manuscript is 
that, in healthy individuals, the lead-in diet significantly 
and qualitatively affects the response to a 48-h MedDiet 
intervention of specific microbiome bacteria but not that 
of some bioactive lipids produced by the host.

The initial microbiome alpha diversity was highly cor-
related with gut microbiome modulation between diets, 
but not with the distance in plasma metabolites between 
the visits. We observe that a microbiota with a higher 
baseline alpha diversity was more resistant to dietary 
interventions, and hence more stable over time. A simi-
lar impact of diversity on the response to antibiotics 
has also been reported [28], as well as the association of 
microbiome instability with metabolic diseases and other 
conditions [44–47]. A stable microbiota would be more 
resistant to disturbances, and thus to dysbiosis. There-
fore, microbiota stability would be one of the factors 
explaining the benefits of high gut microbiota diversity.

Lipid mediators measured in plasma were similarly 
modulated after the two MedDiets, indicating a direct 
link between diet and plasma metabolites. Monoacyl-
glycerols 2-DHG, 2-EPG, and 2-OG were increased in 
MedDiet compared to CanDiet. These three media-
tors, along with 2-AG and 2-LG, were positively cor-
related with Paraprevotella. This bacterial genus is 
found in low abundance in T2D and preDM patients 
compared to healthy individuals [48]. In a study looking 
at metabolic status of obese children and adolescents, 
Paraprevotella has been positively associated with 
serum IL-6 [49], a proinflammatory factor with func-
tions maintaining intestinal homeostasis [50]. It is also 
known that cannabinoid receptor 2 (CB2) activation 
by AEA or 2-AG may induce IL-6 secretion [15, 51]. 
Indeed, trends of positive correlation between IL-6 and 
2-AG have been observed [52]. The positive association 
we show between Paraprevotella and 2-MAGs is coher-
ent with these previous observations, while also sup-
porting the hypothesis of an interaction between the 
intestinal microbiota and the endocannabinoid system. 
In addition, 2-MAGs (2-AG, 2-DPG and 2-DHG) and 
PUFAs (AA and DPA) positively correlated with Intes-
tinibacter, Romboutsia, or Clostridium sensu stricto 1, 
three bacterial genera negatively associated with T2D 
prevalence [53]. These correlations are consistent with 
the roles of unsaturated long-chain 2-MAGs including 

2-AG, 2-DPG, and 2-DHG, as they may increase insu-
lin sensitivity and decrease glucose intolerance through 
activation of CB2, TRPV1, and other targets [20, 54, 55].

N-acylethanolamines DHEA, EPEA, and OEA also 
showed an increase in MedDiet compared to CanDiet. 
Observational cohort has shown that levels of 2-DHG, 
2-EPG, DHEA, and EPEA correlate with dietary intake 
of DHA or EPA [21], a relation we also observe through-
out the current intervention, as DHA and EPA are differ-
ent between the baseline of the participants and MedDiet. 
These n-3 PUFA-derived NAEs and 2-MAGs have been 
shown to possess anti-inflammatory effects that may 
be beneficial for metabolic health, as they are known to 
activate receptors that, due to their pro-lipolytic, insu-
lin-sensitizing and incretin-like actions, are considered 
metabolically beneficial, including PPARα, GPR119, and 
TRPV1 [16, 20]. Similarly, the plasmatic concentrations of 
OEA and 1- and 2-OG, a NAE and 2-MAG respectively, 
derived from oleic acid, a fatty acid also enriched in the 
MedDiet interventions, were not modulated by the first 
MedDiet, but decreased by the CanDiet and reincreased 
to initial level with the second MedDiet. For most par-
ticipants, oleic acid intake in their diet prior to the study 
was similar to CanDiet composition. Consistent with the 
literature, the palmitic acid-derived NAE (PEA) and MAG 
(1 and 2-PG) did not significantly respond to the diet. In 
past studies, PEA has been shown to be unresponsive to 
dietary modulation [56], and this is possibly due to the 
fact that mammals can produce significant amounts of 
de novo palmitic acid to overcome dietary changes [57]. 
On the other hand, 1–2 PG tended to respond inversely 
from NAEs and MAGs derived from polyunsaturated fatty 
acids, especially regarding correlations with the microbi-
ome (Fig. 6). Interestingly, this mediator, which also acti-
vates PPARα, was the only eCBome signal to be increased 
in the plasma following A. muciniphila administration to 
obese individuals [14]. Finally, it is important to emphasize 
how the two endocannabinoids, AEA and 2-AG, which are 
derived from arachidonic acid and activate the metabolic 
syndrome exacerbating receptor CB1, but also the anti-
inflammatory receptor CB2 [15], were not significantly 
increased by the MedDiet interventions. This observation 
could be explained by the fact that the MedDiet and Can-
Diet had no difference in arachidonic acid, 0.13g vs 0.14g. 
Overall, the endocannabinoids and congeners that were 
positively modulated by the MedDiet were associated to 
mechanisms that are assumed to have a beneficial effect 
on health. Conversely, the decreased levels of MUFA- and 
n-3 PUFA-derived eCBome mediators that followed the 
CanDiet, which can be considered as a “Western diet” 
compared to the MedDiet, might play a role in the meta-
bolically negative effects of such dietary patterns.
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Fatty acids produced by the microbiota, i.e., SCFAs 
and BCFAs, responded differently to the dietary inter-
ventions. Acetate, butyrate, and propionate varied lit-
tle or not at all. They are the most prevalent metabolites 
produced by the gut microbiota from carbohydrate fer-
mentation [12]. Since the MedDiet contained consider-
ably more fiber compared to the CanDiet, an increase 
in the production of SCFAs was expected. Moreover, an 
observational study by Wang and collaborators showed 
that long-term Mediterranean-style dietary pattern was 
associated with impact on gut microorganisms associ-
ated, among other functions, to SCFA production [4]. 
However, despite the fact that the microbiota was altered 
by our short-term dietary interventions, the presence 
and abundance of the major taxa constituting the intes-
tinal microorganisms of individuals was maintained, thus 
ensuring metabolic activities. Indeed, two of the most 
abundant genera in our study cohort are known pro-
ducers of butyrate (Faecalibacterium), and acetate and 
propionate (Bacteroides) [11]. Such high proportion of 
these taxa may prevent the SCFA modulation by the diet. 
As for the BCFAs, isovalerate and isobutyrate, they are 
derived from the fermentation of branched-chain (iso-
leucine, leucine, and valine) or aromatic (tyrosine and 
phenylalanine) amino acids, many of which are consid-
ered deleterious to intestinal and metabolic health [9]. 
Accordingly, these amino acids were present in much 
greater amounts in the CanDiet than in the MedDiet. 
Indeed, SCFAs and BCFAs were not significantly modu-
lated by the first MedDiet (V2) intervention, suggesting 
that the food required for their production was compa-
rable between the baseline of the participants and the 
MedDiet (V2). A strong effect of CanDiet was, however, 
observed for BCFAs and valerate following the first Med-
Diet intervention, and this effect was reversed follow-
ing the second MedDiet (V4) intervention. It is of note 
that we measured these metabolites in plasma and not in 
the gut and our measure thus integrates gut metabolite 
production, their absorption and host metabolic activ-
ity. Still, Fig. 6 shows that BCFAs were heavily correlated 
with the gut microbiota, suggesting a potential role of the 
microbiome in determining the plasma concentration of 
these lipid mediators.

Specific gut microbes responded rapidly to short-
term MedDiet or CanDiet interventions. Bacteroides 
was the only genera with average relative abundance 
higher than 5% that was modulated by MedDiet. Bacte-
roides includes potentially beneficial species that could 
promote mucosal colonization, enforce the epithelial 
barrier of the gut, and have anti-inflammatory prop-
erties [58, 59]. All other modulated taxa had a rela-
tive abundance lower than 5%, an observation similar 
to what was reported after 7 days of antibiotics [28], 

which further supports the idea that many microbiota 
modulators affect lower abundance taxa. Bacterial gen-
era that increased with the MedDiet include, among 
others, Butyricicoccus and Roseburia, which are nega-
tively associated with obesity clinical markers in the 
literature [60, 61]. Buryticicoccus was previously shown 
to increase after 4 days of MedDiet [62], and we now 
demonstrate a similar effect after only 2 days. Rose-
buria has been shown to increase with non-digestible 
carbohydrates [63], supporting the direct association 
between these taxa and the diet, and it has previously 
been negatively associated with type 2 diabetes [64, 
65]. Romboutsia was positively associated with obe-
sity and increased with the CanDiet in our study [66]. 
Subdoligranulum increased with CanDiet consump-
tion and correlated with BCFAs. The previous litera-
ture shows contradictory results regarding this genus, 
indicating that its involvement in metabolic disorders 
may be complex. However, it was shown to be associ-
ated with positive health impact, like A. muciniphila 
[67], and, accordingly, to be negatively associated with 
HOMA-IR, although enriched in individual with type 2 
diabetes [60, 61]. Interestingly, Lachnospira and Copro-
coccus 2 were positively correlated with circulating lev-
els of EPA, a PUFA that is a hallmark of the MedDiet. 
These two taxa were previously found to be associated 
with the MedDiet score in a large USA cohort [68]. We 
thus observed strong correlations between taxa and 
molecules that are coherent with their potential role in 
metabolic health, be them beneficial or noxious.

Many of the changes induced by the CanDiet were 
reversed by 48 h of MedDiet, except for Lactobacillus 
and Ruminococcaceae NK4A214, which did not recover 
after the second MedDiet, an observation consistent with 
their negative association with diets rich in animal pro-
tein. Ruminococcaceae NK4A214 has also been shown to 
be associated with low HOMA-IR [53, 69]. Coprococcus 
3 was increased by CanDiet, but was not reduced back 
to its initial relative abundance by the second MedDiet. 
Similarly, the increase of Ruminiclostridium 5 induced 
by the CanDiet was still observed after the short Med-
Diet intervention. The decrease in Coprococcus 3 has 
previously been associated with a decrease in adiposity 
[70]. A 1-year-long MedDiet intervention was shown to 
reduce this genus, indicating that 2-day MedDiet was not 
long enough to reverse the effect of 14-day CanDiet on 
this taxon. Interestingly, David and collaborators showed 
that 2 days of washout is enough to reverse the effect of 
a 5-day dietary intervention of animal-based diet [3]. 
While previous studies suggest that gut microbiota come 
back to baseline composition after a dietary intervention 
[71], other works in mice show that the change might 
be irreversible after a long dietary intervention, with a 
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permanent loss of microbiota diversity in mice fed long 
term with a low microbiota accessible carbohydrate diet 
[72].

The factors determining the capacity of the gut micro-
biome to return to a former state after a long-term diet 
remain to be specifically determined. As specific diets are 
associated with diseases, it is important to understand 
after how much time the diet effect on the gut micro-
biota can be reversed to avoid reaching the point where 
a deleterious diet causes a permanent disruption of gut 
microbiota function. In our study, the poor resilience 
of Lactobacillus, Ruminococcaceae NK4A214, Rumini-
clostridium 5, and Coprococcus 3 to drastic short-term 
dietary changes could be linked to potential long-lasting 
effects of Western diets on metabolic health-associated 
risks [73].

One limitation of the current study is the use of a met-
ataxonomic approach, which does not provide gene and 
function resolution to the association of gut microbiota 
with the plasma metabolome. Methodologies providing 
functional information on the microbiome would pro-
vide more precise clues to the mechanisms underlying 
the interactions between the gut microbiome, the diet, 
and lipid mediators. It is also important to mention that 
the correlations observed between bioactive lipids and 
the gut microbiome in this controlled clinical study do 
not directly imply causality between correlated variables, 
although these results do provide insight into the poten-
tial relationship between these lipids, the gut microbi-
ome, and diet.

Our findings highlight that a 48-h MedDiet, after 
either the host usual diet or the short lead-in fully con-
trolled diet period, impacts plasma eCBome mediators 
in the same way, while the responses of plasma BCFA 
levels and fecal microbiota composition differ accord-
ing to the previous diet. This divergent response allows 
us to hypothesize that the recent lead-in dietary intakes 
may qualitatively affect the short-term response of the 
gut microbiota composition, in addition to modifying its 
metabolic functions in as much as they can be assessed 
by quantifying BCFAs in the blood. As a consequence, 
the composition of the host circulating eCBome signals 
may depend more on the diet than on gut microbiota 
composition and function, at least in generally healthy 
individuals.

Conclusions
Using defined diets that are consumed by all the par-
ticipants in a cohort with precise anthropometric char-
acteristics, we were able to determine diet-induced 
modulations of the microbiota and some of its related 
metabolites, as well as of an increasingly important set 
of host lipid mediators, and thus deeply investigate the 

interaction between the microbiome and circulating sig-
nals independently of the usual diet of the participants. 
Altogether, our results suggest that the diet influences 
both the microbiome and the eCBome in a rapid, direct, 
and significant way. However, the correlation between 
microbes and some members of the eCBome do not 
seem to be directly associated with the diet, confirming 
that the diet and the gut microbiome may be independ-
ent determinants of eCBome signalling [21]. Plasma 
BCFAs, instead, were clearly associated to both diet 
and gut microbiota, suggesting that their roles are inti-
mately tied with those of these two related factors. The 
fact that the effect of a 2-week CanDiet on BCFAs could 
be reversed by 2 days of MedDiet suggests that some 
potentially health-detrimental metabolites can be quickly 
improved with a short-term dietary intervention. On the 
other hand, the negative effect of a 2-week CanDiet on 
specific microbiota genera that have been associated with 
metabolic health were not reversed by 2 days of Med-
Diet. The diet of the participants in the weeks before 
the dietary intervention leaves a trace in the response 
of gut microbiota taxa. These results thus highlight the 
importance of considering the dietary habits of partici-
pants when studying the gut microbiota. Often, studies 
associating gut microbiota taxa to metabolites or dietary 
intakes provide results that are contradictory [74]. The 
complexity of the interactions between microorganisms 
in the gut ecosystem, and the limitation of computational 
methods for correlation have been suggested to explain 
this high variability [75]. Some long-lasting and short-
term diet-resilient effects of the previous diet that we 
observed in our cohort reinforce the hypothesis that the 
diet is a confounding factor in gut microbiota association 
studies.

In summary, we suggest several take-home messages 
from this study. First, a  short-term diet plays a crucial 
role in determining both microbiome composition and 
circulating lipid mediators. Second, the effect and suc-
cess of dietary interventions may depend on the initial 
diversity of the gut microbiome of patients. Third, care-
fully designed clinical trials with full-feeding periods, 
designed to address specific hypotheses, can bring stud-
ies closer to providing mechanistic insights. Therefore, 
studies investigating the role of the microbiome or lipid 
mediators in conditions that can be modulated by the 
diet should: (1) consider previous short-term dietary 
intakes in the interpretation of the results, as they could 
be among the determining factors of their observations, 
or (2) try to minimize the impact of this factor with a diet 
stabilization phase.

However, although several of the taxa found here to be 
modulated in response to dietary changes have been pre-
viously associated to metabolic diseases, the uncertainty 
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that their role may not be mostly related to the diet 
remains, possibly also due to us having recruited healthy 
and young individuals for this study. In this work, the use 
of a cohort of healthy young individuals provided crucial 
information on our understanding of the relationship 
between diet, the gut microbiome, and lipid mediators 
in a non-pathological context. Future studies should 
address similar questions in cohorts suffering from differ-
ent metabolic conditions to determine if the response to 
short-term dietary interventions is comparable between 
healthy and non-healthy individuals. This experimental 
approach would contribute to a transition from obser-
vational approaches to more mechanistic clinical studies 
and possibly open new avenues for the development of 
novel therapies for metabolic disorders.
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Additional file 1: Figure S1. Metataxonomic sequencing library size. 
Total sequence counts of the microbiota samples regrouped by study 
visits.

Additional file 2: Figure S2. Microbiota diversity between visits. 
Microbiota alpha diversity measured on all sequence variants by A) Simp‑
son’s index (1-D) and B) Shannon index between visits of the intervention 
study. Euclidean distance of microbiota profile including all sequence vari‑
ants between baseline and each visit of the study for each participant in 
relation with their alpha diversity represented by C) Shannon index or D) 
total observed ASVs at baseline. Regression lines were drawn for each visit. 
Slope of line (lm) were significant for microbiota distance measurements 
with p-values < 0.05. Spearman coefficients are displayed on the legend. 
Red represents the distance between the microbiota profile of baseline 
(V1) and the first MedDiet (V2), black of baseline (V1) and CanDiet (V3) 
and gray of baseline (V1) and the second MedDiet (V4). Significance was 
set at p<0.05 (*), p<0.01 (**) and p<0.001 (***).

Additional file 3: Figure S3. Multiple factor analysis (MFA) on micro‑
biota profile. A) Loading plot representing the contribution of taxonomic 
ranks of the gut microbiota to the variability between individuals at 
different visits. Taxa representing less than 1% in every sample have been 
filtered out. The ellipses represent the 95% confidence interval of the 
mean of points as computed with the FactoMineR package for the effect 
of B) diet, C) participants and D) the five clusters of samples distinguished 
from hierarchical clustering of the PCA. A sixth cluster containing only 
two samples was excluded from cluster analysis. Barplot representing the 
contribution of the top 15 variables to the MFA for E) dimension 1 and F) 
dimension 2.

Additional file 4: Figure S4. Distribution of participants visits in 
clusters from microbiota profiles. Heatmap representing the number of 
visits per participant in each cluster of the microbiota MFA.

Additional file 5: Figure S5. Clustering of bioactive lipid profiles. 
Principal component analysis (PCA) on bioactive lipid profiles. A) Loading 
plot representing the contribution of lipids from each category to the 
variability between individuals at different visits. Ellipses show the effect 
of B) diet and C) individuals on samples. The ellipses represent the 95% 
confidence interval of the mean of points as computed with the Facto‑
MineR package for the effect of B) diet, C) participants and D) the five 
clusters of samples distinguished from hierarchical clustering of the PCA. 
E) Hierarchical clustering on principal components (HCPC) of lipid profile 
of individuals at different visits. Variables contributing to the difference 
between the clusters are displayed on the dendrogram. A colored bar is 
printed below the dendrogram represents the visit to which the sample 

belongs. F) Heatmap of the lipid concentration for each sample divided by 
cluster and molecule category. For better visualization, the concentration 
values were centered around the mean for each metabolite.

Additional file 6: Figure S6. Heatmap illustrating the FDR-corrected 
Spearman correlations between HEI score of participants before the inter‑
vention study and gut microbiota genera relative abundances, Simpson’s 
diversity index, Shannon diversity index and plasmatic lipid concentra‑
tions at baseline (V1). Genera representing less than 1% in every sample 
have been filtered out. No feature was significant after FDR correction.

Additional file 7: Supplementary Table S1. Results of statistical analysis 
for metataxonomic data at all taxonomical ranks. Results for the ANOVA 
and post-hoc tests before and after FDR correction are shown for phylum, 
class, order, family, genera, species and amplicon sequence variants (ASV). 
Mean values of each variables for all four visits are also shown.
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