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Abstract 

Background:  Little is known about the global distribution and environmental drivers of key microbial functional 
traits such as antibiotic resistance genes (ARGs). Soils are one of Earth’s largest reservoirs of ARGs, which are integral 
for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and 
global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and 
created the first global atlas with the distributions of topsoil ARGs.

Results:  We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic 
elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. 
Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pin‑
pointed the global hotspots of the diversity and proportions of soil ARGs.

Conclusions:  Together, our work provides the foundation for a better understanding of the ecology and global distri‑
bution of the environmental soil antibiotic resistome.
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Background
Antibiotic resistance through the acquisition of antibi-
otic resistance genes (ARGs) evolves via natural selec-
tion and is a strategy used by bacteria to withstand the 
harmful effects of antibiotics released by bacteria and 
other organisms, playing a critical role in regulating 
microbial populations [1, 2]. The prevalence of ARGs in 
the environment has been triggered by the development 
and widespread use of antibiotics in human health care 
and animal production [3–6]. Soils are one of the most 
important reservoirs of ARGs on Earth (i.e., the soil anti-
biotic resistome) [1] and constitute a major pathway for 
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the exchange of ARGs among bacteria, including major 
clinical pathogens [7, 8]. The accumulation of ARGs in 
soils has emerged as a public health concern due to their 
high sequence similarity to ARGs in human pathogens 
[7] and the potential of soil ARGs to reduce the effec-
tiveness of antibiotics [9, 10]. Moreover, the importance 
and implications of the accumulation of ARGs in soils 
have fostered multiple investigations aiming to under-
stand the environmental factors controlling their abun-
dance and diversity from local to global scales [11, 12]. In 
recent years, information on soil ARGs has increasingly 
become available at reference databases such as RefSoil+ 
[13]. However, there are still major unknowns associated 
with the global distributions of soil ARGs and with the 
environmental drivers of their abundance and diversity. 
For example, despite the recognized importance and 
risks of increased antimicrobial resistance under global 
change [5], we still lack global atlas with the distributions 
of soil ARG diversity and abundance. This information 
is lacking even for the most dominant individual ARGs 
found across global soils. This knowledge is essential to 
identify the global soil ARGs hotspots, to better under-
stand the ecology and biogeography of ARG-associated 
soil microbial communities, and to guide management 
actions aimed at reducing antibiotic resistance-associ-
ated infections.

Improving our understanding of soilborne ARGs is 
fundamental for two main reasons. First, soil ARGs con-
stitute important defense tools used by soil microbes 
to outcompete other microorganisms for essential soil 
resources (e.g., nutrients) [11]. Thus, learning more 
about soilborne ARGs, which are essential components 
of the soil microbiome with important functional impli-
cations (e.g., microbial warfare) [11], is fundamental to 
better understand the ecology and global distribution of 

microbial traits, about which we currently know very lit-
tle. Second, under certain circumstances (e.g., soils with 
high accumulation of ARGs and mobile genetic elements 
(MGEs) under strong selection pressure) [14], soilborne 
ARGs could potentially be transmitted to important 
plant, human, and animal pathogens [14], reducing our 
capacity to fight important diseases. Knowing the loca-
tion of soilborne ARGs, hotspots could be of great help 
to anticipate these situations and thus to prevent future 
potential threats to human, animal, and plant health.

To address existing knowledge gaps related to topsoil 
ARGs, we conducted the largest and most comprehen-
sive standardized global survey carried out to date (1012 
locations across 35 countries from all continents; Fig. 1) 
and used a high-throughput quantitative PCR approach 
[15] to characterize the richness (number of ARG phy-
lotypes) and proportion of 285 individual topsoil (10 cm 
depth) ARGs encoding resistance to major categories of 
clinically relevant antibiotics (Supplementary Table  1). 
The locations surveyed include a wide range of terres-
trial ecosystem types (croplands and natural ecosystems 
such as forests, grasslands, and shrublands) and climatic 
regions (arid, temperate, tropical, continental, and polar; 
Supplementary Table  2) and capture a representative 
fraction of global environmental conditions (Supplemen-
tary Fig. 1). The standardized proportion of topsoil ARGs 
was determined as the average standardized (between 0 
and 1) relative abundance (normalized by accounting for 
bacterial 16S rRNA gene) of 285 individual ARGs (see 
“Materials and methods”). Using this approach, each 
ARG or MGE contributed equally to the final relative 
abundance (proportion) of ARGs or MGEs. The propor-
tions of ARGs and MGEs calculated using this approach 
were highly correlated with the same variables calculated 
as the sum of all standardized (0–1) ARGs or MGEs (ρ 

Fig. 1  Location of the 1012 sites included in this study
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= 1.00; P < 0.001) or as the sum of the non-standardized 
relative abundance of all ARGs (ρ =  0.89; P < 0.001) or 
MGEs (ρ = 0.95; P < 0.0001).

Using this unique survey, we (i) identified the most 
dominant ARG types and mechanisms of action (e.g., 
protection, deactivation, efflux) in soils worldwide, (ii) 
investigated the main environmental factors (climate, 
soil properties, vegetation, and proportion and richness 
of MGEs) controlling the distribution of the proportion 
and diversity (richness) of topsoil ARGs, and (iii) gener-
ated an atlas identifying their global distribution across 
terrestrial ecosystems. We hypothesized that (1) simi-
lar to what it has been reported for individual bacterial 
taxa [16], a few ARG types dominate soils across the 
globe, and (2) the richness and proportion of MGEs play 
an overriding role in controlling the global distribution 
of ARGs. We know that soils play an important role in 
the transmission of ARGs from one microbe to another 
through horizontal gene transfer [10–12], yet the rela-
tive importance of MGEs compared with other envi-
ronmental factors in driving the global distributions of 
ARGs remains poorly understood. We also expect our 
global mapping effort to provide a new perspective of the 
potential global hotspots for the richness and proportion 
of ARGs.

Materials and methods
Global field survey and soil sample collection
Composite soil samples (from multiple soil cores) were 
collected from 1012 sites from 35 countries across all 
continents (Fig.  1). Surveyed plots were ~0.1–0.25 ha 
and aimed to provide information at the ecosystem level. 
These sites include a wide range of vegetation types 
(forests, grasslands and shrublands in natural ecosys-
tems, and croplands; Supplementary Table  2) and cli-
matic regions (arid, temperate, tropical, continental, and 
polar ecosystems). Croplands included rice, maize, soy-
bean, tea, and peanut and were mostly based in Asia and 
mainly fertilized using inorganic fertilizers. To the best of 
our knowledge, these croplands have not been irrigated 
with reclaimed water. Mean annual precipitation and 
temperature in these locations ranged from 26 to 2347 
mm and from −6.7 to 29.2 °C, respectively. Soil sample 
collection took place between 2012 and 2019. At each 
site, a topsoil sample (top ~10 cm depth) was collected 
under the most common vegetation. At each location, 
we collected a composite soil sample based on multiple 
soil cores (10–15 cores) to account for the spatial hetero-
geneity within the surveyed plot. After field collection, 
each soil sample was separated into two subsamples. One 
subsample was frozen at −20 °C for molecular analyses, 
while the other subsample was air-dried for chemical 

analyses. Soil pH and carbon ranged between 2.99–9.54 
and 0.03–48.28%, respectively.

ARGs and MGEs characterization
Soil DNA was extracted using the PowerSoil® DNA Iso-
lation Kit (MoBio Laboratories, Carlsbad, CA, USA) 
according to the manufacturer’s instructions. DNA was 
shipped to the University of Melbourne, where all sam-
ples were processed using the same standardized proto-
cols. The relative abundance of 10 unique MGEs and 285 
unique ARGs encoding resistance to all the major cat-
egories of antibiotics was obtained from all soil samples 
using the WaferGen SmartChip Real-Time PCR system 
(Fremont, CA, USA) [15]. This high-throughput quanti-
tative PCR technology is both a powerful tool to detect a 
wide spectrum of primer-specific ARGs and MGEs [12, 
17, 18] and suitable to conduct comparative studies of 
antibiotic resistance [17]. It has also been widely used to 
investigate the relative abundance and diversity of ARGs 
in various environmental settings, including natural envi-
ronments with limited human disturbance [12, 17–19]. 
Information on the primer sets used, and on the type 
and antibiotic resistance mechanism behind every ARG 
quantified, is available in Supplementary Table 1.

We followed the PCR protocol described in [12]. In 
brief, the 100 nl reactions contained SensiMix SYBR No-
ROX reagent (Bioline, London, UK), primers, DNA, and 
sterilized water. We included three analytical replicates 
for each soil sample and run. We used 5184-nanowell 
SmartChips (WaferGen, Fremont, CA, USA) including 
296 primer sets, a calibrator (as 16S rRNA gene for the 
same DNA sample for all the chips), and a negative con-
trol. All primer sets used in this study have been validated 
to reduce the rate of false positives. The newest version 
of this high-throughput PCR method for ARG detection 
included 384 primer sets; the results obtained from the 
updated primer sets correlate well with old primers, sug-
gesting that comparisons can still be made for samples 
analyzed using the old and new arrays [18]. To ensure 
reproducibility of our results, we used a high-precision, 
nanoliter-volume liquid handler (i.e., SmartChip Multi-
Sample NanoDispenser) to process our samples. Ampli-
fication conditions were 95 °C for 10 min, followed by 
40 cycles of 95 °C for 30 s and 60 °C for 30 s. The results 
were filtered following the next criteria: (i) a threshold 
cycle value (CT) of 31 was used as the detection limit, (ii) 
samples with more than two analytical replicates with a 
CT less than 31 were regarded as positive quantification, 
and (iii) amplicons with multiple melting curve peaks 
were removed from the analysis.

We used the 2−ΔCT method [20], where ΔCT = (CT 

detected ARGs−CT 16S rRNA gene), to calculate the rela-
tive abundances of ARGs and MGEs compared to the 
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abundance of 16S rRNA gene in each soil sample. We 
then standardized the relative abundance of all individ-
ual ARGs and MGEs between 0 and 1. The proportion 
of ARGs and MGEs used in the main analyses from this 
paper was calculated as the average of the standardized 
relative abundance of all individual ARGs or MGEs.

Environmental information
The coordinates and ecosystem type (grassland, shrub-
land, forest, or cropland) of each location surveyed were 
recorded in situ. Information on the total annual temper-
ature and precipitation (BIO1 and 12), as well as on their 
variability (BIO4 and 15), was obtained from the World-
Clim v2 database at 1 km resolution [21] (https://​www.​
world​clim.​org/​data/​biocl​im.​html). The climatic variables 
included here are calculated as explained in [22] and are 
based on highly standardized, well-accepted, and long-
term used climatic variables [21, 22]. Soil pH was meas-
ured with a pH meter, in a 1:2.5 mass: volume soil and 
water suspension. Soil fine texture (% of fine fractions: 
clay + silt) and the concentration of soil total organic C 
and total N were measured using standardized methods 
[22, 23]. Soil C:N was calculated using the above informa-
tion. Total organic C and N were highly correlated with 
each other (r = 0.90; P < 0.001), and therefore, only total 
organic C (but not N) was used in subsequent analyses.

Statistical analyses
We used nonparametric PERMANOVA to test for sig-
nificant differences (P < 0.05) in the richness [24], the 
proportion of ARGs, and their community composi-
tion across biomes and continents (see Supplementary 
Table  2 for further details on our biome classification). 
PERMANOVA analyses were carried out using PRIMER 
v 6113 and PERMANOVA+ (PRIMER-E, Plymouth, UK) 
considering every composite sample/site as a replicate. 
Having more than one sample within each site would 
have been considered pseudo-replication as our question 
was related to compare the proportion and richness of 
soil ARGs across different ecosystem types globally (e.g., 
boreal vs. tropical forests) rather than to compare the 
proportion and richness of soil ARGs across sites within 
a given ecosystem type (e.g., two temperate forests). 
Environmental gradient designs [25] such as that used 
here are considered a powerful tool for detecting pat-
terns in ecological responses and generally outperform 
local replicated designs in terms of prediction success 
of responses at a large spatial scale [25]. PERMANOVA 
analyses are often applied to any situation where one 
wishes to analyze either univariate or multivariate data 
in response to either simple or complex experimental 
designs or models. The methods are particularly suited 
for nonparametric data.

We then used structural equation modelling (SEM) 
[26] to identify the direct and indirect effects of space, cli-
mate, vegetation, MGEs, and soil properties as drivers of 
the richness and proportion of soil ARGs (the main struc-
ture of our a priori model can be found in Supplementary 
Fig. 2; also see Supplementary Table 3 for further details 
on the predictors used and Supplementary Tables 4–5 for 
all direct associations considered). We grouped the dif-
ferent categories of predictors (climate, soil properties, 
vegetation, and MGEs) in the same box for graphical sim-
plicity. But please note that these boxes do not represent 
latent variables (Supplementary Fig. 2). Variables within 
these boxes are allowed to covary, with the exception 
of elevation and spatial dissimilarity, which constituted 
our degree of freedom (Supplementary Fig. 2). The most 
globally distributed vegetation types in our database (for-
ests, shrublands, and grasslands) were included in our 
SEM as categorical variables with two levels: 1 (a given 
vegetation type) and 0 (remaining vegetation types). 
Since some of the variables introduced were not normally 
distributed, the probability that a path coefficient differs 
from zero was tested using bootstrap tests [27]. Boot-
strapping is preferred to the classical maximum-likeli-
hood estimation in these cases, because in bootstrapping, 
probability assessments are not based on an assumption 
that the data match a particular theoretical distribution. 
We then tested the goodness of fit of our model using the 
approach explained in refs. [26, 27], which include infor-
mation on the chi-square test (χ2; the model has a good fit 
when 0 ≤ χ2 ≤ 2 and 0.05 < p ≤ 1.00), root-mean-square 
error of approximation (RMSEA; the model has a good fit 
when RMSEA 0 ≤ RMSEA ≤ 0.05 and 0.10 < p ≤ 1.00) , 
and the Bollen-Stine bootstrap test (the model has a good 
fit when 0.10 < bootstrap p ≤ 1.00). Our model showed 
a solid goodness of fit and, therefore, a satisfactory fit to 
our data. SEM models were conducted with the software 
AMOS 20 (IBM SPSS Inc., Chicago, IL, USA). Finally, we 
also repeated our models using the subset of natural eco-
systems (n = 802), which included the largest proportion 
of our data.

Global mapping
Mapping of the proportion and richness of soil ARGs was 
done using a random forest algorithm [28]. Model fit-
ting and prediction were done using ArcGIS Pro (ESRI, 
Redlands, California, USA). Random forest algorithms 
create hundreds of ensembles of decision trees to cre-
ate a model that can then be used for prediction [28, 29]. 
For each decision tree, a random set of points generated 
from the training data (here two-thirds of the dataset) 
is used to calculate a prediction that then contributes 
to the overall outcome. To ensure compatibility across 
datasets and variables, we calculated all maps at a spatial 

https://www.worldclim.org/data/bioclim.html
https://www.worldclim.org/data/bioclim.html
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resolution of 0.25°. We considered as predictors the fol-
lowing: climate (mean annual temperature; mean annual 
precipitation; temperature seasonality; precipitation sea-
sonality), land-use type (forests; grasslands; cropland; 
shrublands), and vegetation cover, elevation, and soil 
variables (soil fine texture; carbon content; pH and C:N 
ratio). When generating our global maps, information on 
soil properties was collected from SoilGrids (https://​soilg​
rids.​org) and resampled to 0.25° by using the mean value 
of all pixels contained in each cell. The same applied to 
elevation [21] and vegetation cover [30]. While our global 
survey covers most of the variability in environmental 
conditions found on Earth, we left out of our predictions 
locations of the planet with high uncertainty in our data-
base (areas in gray in Supplementary Fig. 1). Our models 
returned an R2 of 0.92 (for richness) and 0.86 (for relative 
abundance). Further cross-validation of model fit was 
done with a randomized set of 10% of the samples. The 

resulting correlations between predicted and observed 
richness and proportion of soil ARGs were highly signifi-
cant in both cases (P < 0.0001).

Results
First, we investigated the proportion and richness of 
ARGs in soils worldwide. Using a histogram, we could 
infer that while most surveyed soils showed relatively 
low proportions of ARGs, only a few soils had relatively 
high proportions of topsoil ARGs (Fig.  2A). Intermedi-
ate levels of ARG richness (40–60 out of 285 ARGs) were 
common across the soils surveyed (Fig.  2A). We also 
found that multidrug resistance genes, and efflux pump 
machineries, were the most dominant types of ARGs in 
soils globally (Fig. 3A). We further identified, for the first 
time, dominant ARGs that were abundant (within the top 
20% most abundant ARGs) and ubiquitous (occurred at > 
50% of sites and were present in >2/3 of the global biomes 

Fig. 2  Proportion and richness of antibiotic resistance genes (ARGs) across global biomes and continents. A includes the distribution histogram 
for the proportion and richness of ARGs. B and C include the mean (± SE, number of sites/ecosystems in brackets) of the proportion and 
richness of soil ARGs across global biomes and continents, respectively. Each site is considered a statistical replicate in the PERMANOVA analyses. 
The proportion of ARGs was determined as the average standardized relative abundance of 285 individual ARGs. Details of the global biome 
classification can be found in Supplementary Table 2. Temp., temperate. Trop., tropical. We grouped our data to ensure high enough resolution for 
all ecosystem sub-types

https://soilgrids.org
https://soilgrids.org
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in Supplementary Table 2) across global soils. We found 
14 dominant ARGs in soils across the globe (Fig. 2B). The 
beta-lactamase gene fox5 and the multidrug resistance 

genes oprJ, oprD, and acrA-05 were the most dominant 
ARGs in global soils. These dominant ARGs are less likely 
artifacts as only ARG assays with perfect single peak in 

Fig. 3  ARG composition across global biomes and continents. A shows the proportion (%) of ARG types across global biomes and continents (n 
for each biome in brackets). B shows the ubiquity (%) of dominant ARGs. Dominant ARGs are those that are abundant (top 20% of abundance), 
ubiquitous (occurred at > 50% of sites), and present in at least 2/3 of the biomes surveyed. Details on the global biome classification used can be 
found in Supplementary Table 2. Temp., temperate and Trop., tropical. An additional visualization of the community composition of all ARGs across 
global biomes and continents can be found in Fig. 4
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melting curves and high amplification efficiency are 
retained in our results. We also included a water sample 
in each SmartChip as a negative control, and each DNA 
sample was run with three technical replicates to reduce 
any false-positive/-negative detections.

Ecosystem biomes had a large influence on the propor-
tion and richness of ARGs (Fig. 4). First, we showed that 
tundra ecosystems, boreal forests, other cold forests, and 
shrublands were positively associated with the propor-
tion of soil ARGs globally (Fig.  2B; see Supplementary 
Table 2 for a biome classification). Boreal, cold, temper-
ate, and tropical forests were positively associated with 
the richness of ARGs in soils (Fig. 2B). We did not find 
significant differences in the richness of ARGs between 
croplands and other biomes (Fig. 2B).

We then aimed to identify the major environmental 
factors associated with the distribution of the propor-
tion and richness of soil ARGs. Our SEM revealed that 
the proportion of soil MGEs was the most important 
factor positively associated with the proportion of soil 
ARGs (Fig. 5A and C; bootstrap P = 0.001; Supplemen-
tary Tables 3–4); this relationship was more important 
than that found for key environmental factors such 
as location, climate, vegetation, and soil properties 
(Fig.  5A; Supplementary Tables  3–4). Our SEM pro-
vided further evidence of direct and significant negative 
correlations between the proportion of soil ARGs with 
mean annual temperature and temperature seasonal-
ity and of direct and significant positive relationship 
between the proportion of soil ARGs and precipitation 

Fig. 4  Community composition of ARGs across continents (A) and global biomes (B). NMDS analysis (Bray-Curtis) summarizing the community 
composition information (relative abundance) of 285 ARGs across different continents and global biomes (see Supplementary Table 2)



Page 8 of 14Delgado‑Baquerizo et al. Microbiome          (2022) 10:219 

seasonality (Fig.  5A). Similarly, the richness of MGEs 
was highly positively correlated with that of ARGs 
(Fig.  5B). We also found important indirect associa-
tions of MGE richness with ARG richness via changes 
in pH and plant cover (Fig. 5B). Spearman correlations 
between environmental factors and ARGs are available 
in Fig. 6.

We then created the first collection of maps for cur-
rent distribution of the richness and proportions of soil 
ARGs (Fig. 7). Our atlas supported results in Fig. 1 and 
indicated that soils from cold/boreal forests in North 
America/Asia were associated with intermediate-high 
proportions of ARGs (Fig.  7). High latitudinal regions 
of North America and Asia, as well as tropical and sub-
tropical regions in South America, Africa, and Asia, 
were found to be the most important hotspots of the 
richness of soil ARGs (Fig. 7B).

Discussion
Our study provides the first atlas showing the global 
distribution of environmental ARGs in soils, through 
conducting a global field survey of 1012 sites across 35 
countries from all continents. We pinpointed the major 
global hotspots of soil ARGs and identified global driv-
ers for diversity and abundance of the dominant soil 
ARGs. This study represents an important advance-
ment in our understanding of the ecology, biogeography, 
and potential changes in soilborne ARGs in a chang-
ing world, which is integral to increase our capacity to 
address future health crises driven by antibiotic resistant 
infections.

Our study shows that, in general, soils support rela-
tively low ARG proportions, with only a few soils sup-
porting relatively high proportions of topsoil ARGs 
(Fig.  2A). On the contrary, according to our histogram, 
intermediate levels of ARG richness are common in soils 

Fig. 5  Drivers of the proportion (A) and richness (B) of topsoil ARGs globally. A and B include structural equation models assessing the direct 
and indirect effects of environmental factors on the proportion and richness of ARGs. The proportion of ARGs was determined as the average 
standardized relative abundance of 285 individual ARGs. We grouped the different categories of predictors (climate, soil properties, vegetation, and 
MGEs) in the same box for graphical simplicity (these boxes do not represent latent variables). Variables within these boxes are allowed to covary, 
with the exception of elevation and spatial dissimilarity, which constituted our degree of freedom. Numbers adjacent to arrows are indicative of the 
effect size of the relationship. Only significant effects (P < 0.05) are plotted. Supplementary Tables 4–5 show the full SEM. F, forests; G, grasslands; S, 
shrublands. MAT, mean annual temperature. PSEA, precipitation seasonality. TSEA, temperature seasonality. There was a nonsignificant deviation 
of the data from the model (χ2 = 0.10, df = 1; P = 0.75; RMSEA P = 0.93; bootstrap P = 0.71). C includes selected scatter and boxplots showing the 
regression between environmental factors and soil ARGs. Red lines are Loess regressions. MGEs includes both richness and proportions. Y-axis in C is 
shown in log scale. Units and acronyms are available in Supplementary Table 3
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Fig. 6  Spearman rank correlations between environmental predictors and the proportion and richness of soil ARGs. Acronyms are available 
in Supplementary Table 3. MAT, mean annual temperature. MAP, mean annual precipitation. PSEA, precipitation seasonality. TSEA, temperature 
seasonality. No significant correlation is plotted in gray

Fig. 7  A global atlas of the distribution of topsoil ARGs. A and B represent the present global distribution of the proportion and richness of soil 
ARGs, respectively. Numbers associated with the legend of this figure show standardized proportions and richness of topsoil ARGs. The proportion 
of ARGs was determined as the average standardized proportion of 285 individual ARGs. Our models returned an R2 of 0.92 (for richness) and 0.86 
(for relative abundance). Outlier regions in our global survey (> 97.5% quantile of the chi-squared distribution) were not considered in our global 
atlas and are plotted in white as no data (see Supplementary Fig. 1)
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worldwide (Fig.  2A). Multidrug resistance genes, and 
efflux pump machineries, are the most dominant ARG 
types and antibiotic resistance mechanisms of action, 
respectively, found in soils across the globe (Figs.  3A 
and 4). These ARGs are especially effective against a 
broad spectrum of antibiotics because they allow bac-
teria to pump antibiotic peptides out of their cells [31]. 
Efflux pumps, like oprJ and oprD revealed in this study, 
are evolutionarily ancient and a very common antibi-
otic resistance mechanism in pristine ecosystems [31, 
32]. Multidrug efflux pumps are commonly intrinsically 
encoded by chromosome and exhibit different functions 
with physiological and ecological significances that go 
beyond their activity as antibiotic resistance elements. In 
fact, multidrug efflux pumps have a wide range of sub-
strate, and their original function was not, in most cases, 
to resist to antibiotics [32]. Their physiological roles also 
involve regulating intracellular pH, transporting quorum 
sensing molecules, and enhancing bacterial pathogenic-
ity. Our results are in agreement with previous local 
and experimental work highlighting the dominance of 
this type of ARGs in soils [31, 33] and support the many 
studies that have demonstrated the ubiquity of ARGs in 
terrestrial ecosystems with contrasting level of anthropo-
genic disturbance, from pristine to croplands [34–36].

We further show that only 14 ARGs can be considered 
dominant and ubiquitous in soils worldwide, includ-
ing the beta-lactamase gene fox5 and the multidrug 
resistance genes oprJ, oprD, and acrA-05. These domi-
nant ARGs were present in all biomes (Supplementary 
Table 2). The only exception was oleC, which was found 
in all biomes except in cold shrublands. The poten-
tial public health risks associated with these ubiquitous 
ARGs should be interpreted with caution, as these ubiq-
uitous soil ARGs are commonly involved in basic pro-
cesses in bacterial physiology and should be regarded as 
a potential risk only if they are captured by transferable 
genetic elements [37]. However, when these genes are 
subject to a high antibiotic load (e.g., in farms or in natu-
ral ecosystems where antibiotic concentrations are locally 
high; 44), they are more likely to become relevant for 
resistance development. Indeed, the spread of fecal mat-
ter across the globe via animal waste, sewage effluents, 
and birds transporting microbes from urban habitats has 
contributed to the ARG dissemination in farmland soils 
and estuaries [38–40]. Even so, it should be noted that 
there are extremely stringent bottlenecks for the trans-
fer of ARGs from soil bacterial hosts to human patho-
gens [41], especially in natural habitats that are rarely 
colonized by human pathogens. The abundant and ubiq-
uitous ARGs identified in our study are clear targets to 
further investigate the potential global contribution of 
soils in increasing the resistance of microbial pathogens 

to several antibiotics. Taken together, these results pro-
vide global insights into the most common types of ARGs 
found in soils globally.

We then used structural equation modeling (SEM; 
Supplementary Fig. 2) to generate a system-level under-
standing of the most important ecological factors con-
trolling the distribution of topsoil ARGs across the 
globe (Fig. 5; Supplementary Fig. 2 and Supplementary 
Tables 3–5). Our results suggest that the proportion of 
soil MGEs (see “Materials and methods”) is, by far, the 
most important factor associated (positively) with the 
proportion of soil ARGs (Fig.  5; bootstrap P = 0.001; 
Supplementary Tables 3–4). Moreover, our SEM shows 
for the first time that the direct relationship between 
the proportion of soilborne MGEs and that of ARGs 
is far more important than the effects of other essen-
tial environmental factors such as location, climate, 
vegetation, and soil properties (Fig.  5A; Supplemen-
tary Tables  3–4). For example, the direct relationship 
between the proportion of soil MGEs and that of ARGs 
is three times more important than that associated 
with mean annual temperature and between 18 and 
230 times more important than that linked to soil C:N 
ratio and soil C, respectively (Fig.  5A; Supplementary 
Tables  3–4). Similarly, the richness of soil MGEs was 
also the most important factor associated with the rich-
ness of ARGs (Fig.  5B), which is consistent with pre-
vious findings from a regional-scale study of Chinese 
forest ecosystems [12]. Here, we further show some 
novel indirect positive associations between ARG rich-
ness with both soil pH and plant cover via increasing 
richness of MGEs (Supplementary Table 5). Additional 
analyses showed that the proportion of soil MGEs had 
the strongest correlation with the relative abundance 
of multiple ARG types and mechanisms of action and 
with the abundance of the most dominant individual 
ARGs (Fig.  6). MGEs (including plasmids, integrons, 
and transposons) are common in soils [12], can trans-
fer genetic information from one species or replicon to 
another, and allow ARGs to efficiently disperse across 
different organisms [14]. They can also potentially facil-
itate the transfer of important ARGs from soil microor-
ganisms to clinically important human pathogens [42]. 
The importance of MGEs was maintained even when 
removing from our analyses the subset of locations 
belonging to croplands (Supplementary Fig.  3). Our 
findings are therefore important because they provide 
evidence of the potential capacity of soils to contribute 
to the rapid spread of genes associated with the resist-
ance to medically relevant antibiotics via horizontal 
gene transfer mediated by MGEs. This knowledge fur-
ther contributes to better understanding the rapidly 
increasing amount of information on soil ARGs (e.g., 
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via RefSoil+) [13]. It is also important to note that the 
strong correlations of ARGs and MGEs implicate the 
genetic potential of ARGs transfer, but the frequency 
of horizontal gene transfer in soil is generally low, as 
revealed by the evidence that the composition of soil 
resistome is correlated with the taxonomic composi-
tion of bacteria [37].

Tundra ecosystems (nine locations in Antarctica, Chile, 
and Iceland), boreal forests (Northern Hemisphere high 
latitude forests), other cold forests, and shrublands had 
the greatest proportion of soil ARGs globally (Fig. 2B; see 
Supplementary Table  2 to a biome classification). Soils 
in these ecosystems have, on average, between two- and 
nine times higher proportions of ARGs than soils from 
other ecosystems. Remarkably, Antarctica, which was 
represented by only three sites near each other, included 
the soils with the highest proportions of ARGs (Fig. 2C). 
These results agree with those from local studies observ-
ing an accumulation of ARGs in Arctic ecosystems [19, 
43]. Our SEM provided further evidence of direct and 
significant negative associations between mean annual 
temperature and temperature seasonality with the pro-
portion of soil ARGs. We also found a direct and signifi-
cant positive relationship between the proportion of soil 
ARGs and precipitation seasonality, an environmental 
condition shared by cold deserts such as those from Ant-
arctica and many temperate shrublands [44, 45]. These 
relationships were still found when we focused on sam-
ples from natural ecosystems and removed those from 
croplands (Supplementary Fig.  3). Together, our results 
show that a greater proportion of soil ARGs is found in 
extreme environments and highlight potential co-evolu-
tive mechanisms aiming to provide resistance genes and 
adapt to harsh environments. Microbial antibiotics and 
extreme cold temperatures are known to cause similar 
types of damage in cellular components [46]. Conse-
quently, soil microbes might use ARGs to withstand both 
types of stressors, and this may explain the patterns of 
ARG proportion observed in cold ecosystems [11, 46]. 
Interestingly, although we also found a positive correla-
tion between soil C:N ratio and the proportion of soil 
ARGs (Fig. 6), as previously reported by studies based on 
shotgun sequencing [11], this positive association van-
ished when we considered environmental factors such as 
location, climate, vegetation, and soil properties in our 
SEM. The combination of these factors has not been pre-
viously considered as predictors of soil ARG abundance 
and diversity at a global scale. As previously reported 
[11], we also found a correlation between mean annual 
precipitation and the proportion of soil ARGs (Fig.  6). 
However, this association was only evident when crop-
lands were removed from our analyses (Supplementary 
Fig. 3). Cropland ecosystems are often irrigated, and this 

could have masked the importance of precipitation for 
ARGs when all data were analyzed together.

Boreal, cold, temperate, and tropical forests supported 
the highest richness of ARGs in soils (Fig. 2B). Remark-
ably, on average, boreal and cold forests supported a 
64% higher ARG richness than all the other ecosystems 
(Fig.  2B). Our analyses further demonstrate the contri-
bution of forest biomes to the diversity of topsoil ARGs 
globally (Figs. 5B and D and 6). Croplands did not show 
significantly different levels of ARG richness compared 
with most other biomes. However, we would like to stress 
that most croplands in the present dataset are from Asia, 
and that future studies would need to better address the 
global impact of agriculture on soil ARGs. Vegetation 
structure was also an important predictor of the com-
munity composition of individual ARGs (Fig.  6). Our 
findings indicate, therefore, that any land use promoting 
reforestation or deforestation [47] may have important 
consequences for the global management of soil ARGs. 
Our SEM analyses further identified a direct and signifi-
cant positive association between soil ARG richness and 
temperature seasonality (Fig.  5B and D). These results 
were consistent when removing the subset of locations 
belonging to croplands (Supplementary Fig. 3). However, 
after removing croplands, we found that many vegeta-
tion impacts on ARG richness were driven via changes in 
soil pH (the major driver of soil bacterial diversity [11]), 
and that precipitation seasonality also positively influ-
enced the richness of ARGs in exclusively non-cropland 
ecosystems. Finally, we found a positive and significant 
correlation between the fungal-to-bacterial ratio and the 
richness and proportion of soil ARGs at those sites where 
this comparison was possible (r > 0.299; P < 0.005; n = 
87). Many fungal species are known to produce antibiot-
ics [19], supporting the positive association with the rich-
ness of ARGs across soils reported here and elsewhere 
[11]. We also considered the possibility that human influ-
ence, as measured with the Global Human Influence 
Index [48] (see “Materials and methods”), could influ-
ence our results. However, we could not find any signifi-
cant correlation between ARG richness and this index of 
human influence (P > 0.05; n = 1012).

We generated the first atlas for the current distribu-
tion of the richness and proportions of soil ARGs, a 
necessary step to identify topsoil ARG hotspots and to 
predict sources of potential resistance to antibiotics asso-
ciated with soil ARG reservoirs. Our atlas suggests that 
soils from cold and boreal forests in North America and 
Asia support intermediate to high proportions of ARGs 
(Fig. 7A), with similar proportions being found in highly 
seasonal arid regions across the globe (Fig.  7A; Supple-
mentary Fig. 4A). Our findings further suggest that soils 
from high latitudinal regions of North America and 
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Asia, as well as tropical and subtropical regions in South 
America, Africa, and Asia, are the most important hot-
spots for the richness of soil ARGs (Fig.  7B). Many of 
these locations correspond to forest environments and 
regions with high-temperature seasonality (Fig. 7B; Sup-
plementary Fig.  4B). Soils from Asia had some of the 
highest ARG richness, matching regions with the highest 
current and forecasted human casualties associated with 
antibiotic resistance, and with some of the largest rates 
of antibiotic applications for animal production on Earth 
[39]. Moreover, soils from highly populated areas in Aus-
tralia showed relatively low proportion and richness of 
soil ARGs, matching areas with the lowest human casu-
alties associated with antibiotic resistance [49]. These 
areas are also some of the most (e.g., China) and least 
(e.g., Australia) populated regions on Earth. Of course, 
soil ARGs are not necessarily directly implicated in these 
casualties. However, they potentially support a reservoir 
of multiple ARG types and defense mechanisms that can 
be acquired by human pathogens, increasing their viru-
lence or incidence in areas already severely affected by 
antibiotic resistance.

Our study opens the door to better understanding the 
global distribution of soilborne ARGs in terrestrial eco-
systems. In this respect, we targeted genes associated 
directly or indirectly with soil ARGs. Even so, we would 
like to highlight that some of the selected genes are 
essential to microbial physiology and not always related 
to drug resistance, especially when considered alone and 
not accounting for the presence of multiple genes simul-
taneously. For instance, tetR is a gene regulator, which 
may be out of context without another tetracycline resist-
ance mechanism such as tetA or an efflux pump. Simi-
larly, vanY and vanT are equally nonspecific and out of 
context when not considering other van genes from the 
same cluster simultaneously. This said, we aimed to pro-
vide a holistic view of soil ARGs by simultaneously con-
sidering 285 genes directly or indirectly associated with 
ARGs offering a valuable baseline for future work about 
the soil resistome.

Conclusions
Our results significantly advance our knowledge of the 
ecology, biogeography, and environmental factors asso-
ciated with environmental soilborne ARGs. We gener-
ated the first atlas of the global distribution of soil ARGs, 
pinpointing the major global hotspots of soil ARGs, and 
providing a comprehensive identification of global driv-
ers for their diversity and proportions. We further pro-
vide a key database including standardized information 
on soil ARGs for > 1000 globally distributed locations, 
which will be useful for soil microbial ecologists to test 
multiple hypotheses related to the ecology, biogeography, 

and evolution of soil microbiomes. Together, our results 
pave the way for an improved understanding on the ecol-
ogy and global distribution of key microbial traits such as 
those associated with the topsoil antibiotic resistome and 
provide key insights to better manage the soil ARG pool 
and understand the future potential implications of soil-
borne ARGs for microbial warfare and human health.
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