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Abstract 

Background:  The gut microbiome promotes specific immune responses, and in turn, the immune system has a 
hand in shaping the microbiome. Cancer and autoimmune diseases are two major disease families that result from 
the contrasting manifestations of immune dysfunction. We hypothesized that the opposing immunological profiles 
between cancer and autoimmunity yield analogously inverted gut microbiome signatures. To test this, we conducted 
a systematic review and meta-analysis on gut microbiome signatures and their directionality in cancers and autoim-
mune conditions.

Methodology:  We searched PubMed, Web of Science, and Embase to identify relevant articles to be included in this 
study. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statements and PRISMA 2009 checklist. Study estimates were pooled by a generic inverse vari-
ance random-effects meta-analysis model. The relative abundance of microbiome features was converted to log fold 
change, and the standard error was calculated from the p-values, sample size, and fold change.

Results:  We screened 3874 potentially relevant publications. A total of 82 eligible studies comprising 37 autoimmune 
and 45 cancer studies with 4208 healthy human controls and 5957 disease cases from 27 countries were included in 
this study. We identified a set of microbiome features that show consistent, opposite directionality between cancers 
and autoimmune diseases in multiple studies. Fusobacterium and Peptostreptococcus were the most consistently 
increased genera among the cancer cases which were found to be associated in a remarkable 13 (+0.5 log fold 
change in 5 studies) and 11 studies (+3.6 log fold change in 5 studies), respectively. Conversely, Bacteroides was the 
most prominent genus, which was found to be increased in 12 autoimmune studies (+0.2 log fold change in 6 stud-
ies) and decreased in six cancer studies (−0.3 log fold change in 4 studies). Sulfur-metabolism pathways were found 
to be the most frequent pathways among the member of cancer-increased genus and species.
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Introduction
Development of cancer and autoimmune diseases is 
influenced by contrasting manifestations of immune 
dysfunction. Immunosubversion is the prime immune 
functional defect in cancer pathogenesis [1], while hyper-
activation of the immune system against self-antigens is 
the main pathogenic alteration in autoimmune patho-
genesis [2]. This contrasting immune landscape between 
autoimmunity and cancer is mainly explained by immu-
nological tolerance [3]. Autoreactive immune cells escap-
ing from the central tolerance mechanism and impaired 
peripheral tolerance are the hallmarks of autoimmunity. 
In contrast, the immune system’s weakness to cancer’s 
immune evasion and induction of peripheral tolerance 
are considered hallmarks of cancer [4]. Immune cells, 
regulatory factors, and cytokines modulate the devel-
opment and progression of cancers and autoimmunity 
through immune homeostasis and peripheral tolerance. 
T regulatory cells (Tregs) are the major immune cells 
found with increased frequency in the tumor microen-
vironment and are believed to be negatively associated 
with antitumor immune responses, promotion of malig-
nancy, and a worsening prognosis in many types of can-
cers [5–7]. Conversely, Treg frequency has been found 
to be decreased in diverse types of autoimmune diseases 
such as type 1 diabetes (T1D) [8], arthritis [9], and sys-
temic lupus erythematosus [10–12], which explains the 
loss of peripheral tolerance in autoimmune pathogen-
esis [13]. Another critical regulatory component is the 
immune checkpoints, such as CTLA-4 and PD-1, which 
are less expressed by immune cells in autoimmunity 
and highly expressed by immune cells and tumor cells 
in cancers [14–16]. For instance, CTLA-4 deficiency 
is associated with immune dysregulation and aberrant 
autoimmunity [17, 18]. On the other hand, blocking 
the CTLA-4 by Anti-CTLA-4 antibodies was shown to 
remove the immune barrier to cancer and demonstrated 
as promising cancer therapy [19]. Furthermore, many 
proinflammatory and immunosuppressive cytokines are 
found to be increased or decreased in an opposite man-
ner between cancer and autoimmunity, such as IL-10 
and TGF-beta [3]. However, the presence of opposite 
immune landscape between autoimmunity and cancer is 
not always constant. There are some aspects where the 
immune responses are actually quite similar in cancer 
and autoimmunity. For instance, a proinflammatory type 
of immune landscape are observed in the early stage of 

colorectal [20] and other cancers [21]. Although genetic 
background is one of the major predisposing factors 
both in cancer and autoimmunity, other environmen-
tal factors, such as the gut microbiome, have recently 
been found to be strongly associated with both cancers 
and autoimmune diseases [22, 23]. The gut microbiome 
contributes to the host’s “immune education” and lym-
phoid tissue development [24, 25] and is hypothesized to 
be capable of promoting the immune system, as seen in 
autoimmune diseases or cancers.

We hypothesized that the gut microbiome would mir-
ror the inverse immunologic relationship between auto-
immune disease and cancer. In other words, certain gut 
microbiome features would be shared across autoim-
mune diseases and others shared across cancers, with 
those shared by both conditions demonstrating opposite-
sign associations (e.g., depleted in cancer and enriched in 
autoimmune disease). Although many independent stud-
ies have surveyed microbiome associations with autoim-
mune diseases and cancer, there is a lack of large-scale, 
evidence-based, systematic analysis of research findings 
on this topic. The observation of consistent microbi-
ome associations across multiple studies and in diverse 
geographical locations is paramount to painting the 
landscape of robust and reproducible microbiome asso-
ciations in human disease, and comparing associations 
across diseases is likely to yield novel insights into the 
underlying and differentiating biology of the phenotypes 
in question.

We identified 82 published microbiome studies and 
synthesized the results of the microbiome features that 
are associated with multiple cancer and autoimmune dis-
eases. Furthermore, we explored the functional potential 
of the identified gut microbiome features in association 
with cancer and autoimmunity. These findings revealed a 
novel set of gut microbiome signatures showing a robust 
association with multiple cancer or autoimmune disease 
conditions across multiple studies, which may serve as 
hypotheses for future studies investigating the relation-
ship between the microbiome and immunological state.

Methods
Literature source and search strategy
A systematic database search strategy was employed to 
identify microbiome studies in cancer and autoimmune 
diseases. On March 26, 2020, three electronic databases 
(PubMed, Web of Science, and EMBASE) were searched 

Conclusions:  The surprising reproducibility of these associations across studies and geographies suggests a shared 
underlying mechanism shaping the microbiome across cancers and autoimmune diseases.
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for relevant publications until the date of the search. The 
first author (MZI) searched the database. The database 
search was conducted separately for autoimmune dis-
eases and cancers. The microbiome and disease-related 
search terms were joined together using the Boolean 
operator “AND” and “OR.” Medical Subject Headings 
(MeSH) terms were used for PubMed, and a combina-
tion of general search terms was used for the Web of Sci-
ence and Embase databases. A detailed description of the 
database search terms is listed in Supplementary Table 1.

Study eligibility criteria
Studies published in English from 1 January 2008 to 26 
March 2020 were considered. The major inclusion crite-
ria included the following: (1) the study was on the asso-
ciation between the gut microbiome with either cancer 
or autoimmune diseases (i.e., colorectal cancer and ade-
noma, gastric cancer and adenocarcinoma, pancreatic 
cancer and ductal adenocarcinoma, prostate cancer, cer-
vical cancer, lung cancer, thyroid papillary cancer, breast 
cancer, hepatocellular carcinoma, gastrointestinal tract 
(GIT) neoplasia, type 1 diabetes, autoimmune arthritis, 
multiple sclerosis, systemic lupus erythematosus, Graves’ 
disease, primary Sjögren’s syndrome, pemphigus vul-
garis, anti-N-methyl-D-aspartate receptor (NMDAR) 
encephalitis, and autoimmune hepatitis), (2) the study 
subjects were human, (3) the study had clear demarcation 
of healthy control and disease cases, and (4) the DNA 
sequencing method was 16s rRNA or shotgun. Cross-
sectional, case-control, or longitudinal cohort studies 
were considered to be eligible if they had samples from 
healthy control and disease cases. Studies were excluded 
if they had insufficient taxonomic classification below 
genus, lack statistical comparison of microbiome taxo-
nomic abundance between cases and controls, and con-
tained cases that underwent treatment with antibiotics or 
failed to meet the inclusion criteria mentioned above. We 
did not include conference abstracts, reports, and experi-
mental and intervention studies.

Study screening and selection
All publications identified by the systematic database 
search were first screened for duplicates. After duplicate 
removal, the titles and abstracts of all publications were 
independently screened by two authors (MZI and MT) to 
identify potential studies for full-text screening.

Data extraction
We developed and evaluated a pilot data extraction 
spreadsheet before the final data extraction. Full-text 
articles were screened for data extraction by one author 
(either MZI or MT). Independent overlapping data 
extraction was performed for 5% of the studies. Any 

disagreements between the data extractors were resolved 
by consensus. Data were extracted on the first author, 
year of publication, country, type of disease, method of 
disease diagnosis, specimen types, number of cases and 
controls, age of the subject, characteristics of control, 
DNA sequencing type and platform, availability and 
source of sequencing data, alpha diversity, statistically 
significant genus and species and their corresponding 
p-values, the relative abundance of genus and species, 
and statistically significant metabolic pathways and their 
corresponding p-values.

Maintenance of study standard and quality assessment 
of individual study
We conducted this systematic review in accordance with 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) statements [26] and PRISMA 
2009 checklist (Supplementary Table 2). We did not pub-
lish a protocol for this systematic review and meta-anal-
ysis. All included studies were independently assessed 
for quality and bias using the Newcastle-Ottawa Scale 
(NOS) [27]. The risk of bias in each study was assessed in 
three major domains: study selections, compatibility, and 
ascertainment of exposure.

Data analysis
To identify shared and unique microbiome features 
(genus, species, and metabolic pathways) between auto-
immune and cancer studies, we extracted genus, spe-
cies, and predicted metabolic pathway data that were 
already analyzed in published studies. We considered 
all the individual studies as an independent observation 
and extracted the significant (false discovery rate, FDR 
adjusted p-value < 0.05 or nominal p-value < 0.05 where 
FDR adjusted p-value was absent) associated microbiome 
features found between cases and controls. This approach 
enabled us to exclude spurious microbiome features and 
to aggregate the most meaningful features from multi-
ple studies. We first removed microbiome features that 
were found only once in the 82 included studies. We then 
defined whether a feature is “increased” or “decreased” 
among the cases of cancer and autoimmune studies. We 
defined a microbiome feature as “increased in cancer” if it 
was found to be significantly increased among the cancer 
cases in more than one cancer study and in at least 70% 
of the cancer studies that identify the feature as signifi-
cant. On the contrary, we considered a microbiome fea-
ture as “decreased in cancer” if it was decreased among 
the cancer cases in more than one cancer study and in at 
least 70% of the cancer studies that identify the feature as 
significant. In the same way, we defined the microbiome 
features as “increased in autoimmune” and “decreased in 
autoimmune.”
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Data were synthesized and summarized in Microsoft 
Office Excel. Meta-analyses on the relative abundance 
of the bacterial genus were conducted in R version 4.0.2 
[28] using R package metafor version 2.4-0 [29] and 
meta version 4.13-0 [30]. The relative abundance data 
were converted to log fold-change, and the standard 
error was calculated from the p-values, sample size, and 
log fold change using R package dmetar [31]. The stand-
ard error was calculated using “se.from.p” function [se.
from.p(effect.size = log fold-change, p = pvalue, N = 
sample size, effect.size.type = “ratio”). Generic inverse 
variance random-effect meta-analysis was performed 
using “metagen” function [metagen(Log fold-change, 
standard error of fold-change, studlab, data = data, 
subset = genus == "genus name," byvar = disease type, 
comb.fixed = FALSE, comb.random = TRUE, hakn 
= FALSE, prediction = FALSE, print.byvar = FALSE, 
sm=""]. The DerSimonian-Laird random-effects method 
was used to combine the study estimates [32]. The for-
est plots were generated using the “forest” function in R 
metafor package [forest(Random effect model, …]. The full 
meta-analysis pipeline is available in a GitHub reposi-
tory (https://​github.​com/​mdzoh​oruli​slam/​Cancer-​autoi​
mmuni​ty_​meta-​analy​sis).

Results
Results of electronic database search and study selection
We identified 3874 potentially relevant publications by 
searching three electronic databases (Fig. 1, “Methods”). 
We screened the title and abstract of all publications 
identified in the initial database search. Primary screen-
ing identified 238 studies for full-text retrieval and eli-
gibility checking. A total of 82 case-control studies were 
included (Supplementary Tables 3–4).

Characteristics and quality assessment of the included 
studies
We included 37 autoimmune and 45 cancer studies, 
amassing 4208 healthy human controls and 5957 disease 
cases from 27 countries (Table 1, Supplementary file 1). 
We captured nine types of autoimmune diseases: type 1 
diabetes (n = 13) [33–45], arthritis (n = 9) [46–54], mul-
tiple sclerosis (n = 7) [46, 55–60], systemic lupus ery-
thematosus (n = 4) [61–64], Graves’ disease (n = 2) [65, 
66], primary Sjögren’s syndrome (n = 1) [63], pemphigus 
vulgaris (n = 1) [67], anti-NMDAR encephalitis (n = 1) 
[68], and autoimmune hepatitis (n = 1) [69]. The cancer 
studies constituted ten types of cancer including colorec-
tal cancer and adenoma (n = 27) [70–96], gastric cancer 
and adenocarcinoma (n = 6) [97–102], pancreatic cancer 
and ductal adenocarcinoma (n = 3) [103–105], prostate 
cancer (n = 2) [106, 107], cervical cancer (n = 2) [108, 
109], lung cancer (n = 1) [110], thyroid papillary cancer 

(n = 1) [111], breast cancer (n = 1) [112], hepatocellular 
carcinoma (n = 1) [113], and GIT neoplasia (n = 1) [114]. 
Overall, the majority of the studies (79%) have low risk of 
bias (based on the nine criteria of the Newcastle-Ottawa 
Scale) (Fig. 2). However, there was a high risk of bias in 
some indicators such as bias due to lack of representa-
tive cases (49%) and improper selection of controls (44%). 
The lack of representative case bias was mainly due to the 
absence of consecutive or obviously representative series 
of cases, and the improper selection of controls bias was 
due to inclusion of controls from hospital or no descrip-
tion about the selection of study control.

Significant associations of alpha diversity in cancer 
and autoimmune studies have opposite trends
The majority of studies (65/82) reported alpha diversity as 
a measure of microbiome diversity within cases or con-
trols (Fig.  3a). The most frequently used alpha-diversity 
indices were the Shannon, Chao, and Simpson, reported 
in 56, 29, and 22 studies, respectively. Overall, most 
indices showed no significant difference in alpha diver-
sities between cases and controls in both cancer (62%) 
and autoimmune (67%) studies. However, an increasing 
trend of alpha diversity in cancer studies and an opposite 
decreasing trend in autoimmune studies were observed. 
The overall alpha diversity was significantly increased 
among cases in 25% of the cancer studies and decreased 
in 13%. Conversely, the alpha diversity was significantly 
decreased among cases in 30% of the autoimmune stud-
ies and increased in 3% (Fig. 3a).

Cancer and autoimmunity contain inverted and distinct 
microbiome signatures
A microbiome feature can be repeatedly found to be 
increased in cancer and decreased in autoimmunity or 
vice versa in multiple studies. We identified features that 
fall into two categories: (i) cancer increased and (ii) auto-
immune increased. The “cancer-increased” category rep-
resents the microbiome features that were found to be 
increased among the cancer cases but decreased or not 
significantly associated among the autoimmune cases. 
On the other hand, the “autoimmune-increased” cate-
gory represents the microbiome features that were found 
to be increased in autoimmune cases but decreased or 
not significantly associated in the cancer cases.

Genus
We identified 214 distinct genus-level associations with 
either cancer or autoimmune diseases across 73/82 (89%) 
studies. Of these, 83 genera were reported in more than 
one cancer or autoimmune study. However, we filtered 
out 43 of 83 genera (Supplementary Table  5) based on 
the second filtering threshold (present in at least 70% 

https://github.com/mdzohorulislam/Cancer-autoimmunity_meta-analysis
https://github.com/mdzohorulislam/Cancer-autoimmunity_meta-analysis
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of the disease category). Therefore, we could identify 40 
genera with a consistent trend to be increased or oppo-
sitely decreased in cancer and autoimmunity (Fig.  3b). 
Of these 40 genera, 30 was found in the cancer-increased 
category and 10 in the autoimmune-increased category 
(Fig.  3b). In the cancer-increased category, six genera 
(Enterococcus, Parabacteroides, Odoribacter, Paraprevo-
tella, Desulfovibrio, and Oxalobacter) show true opposite 
directionality (i.e., increased in cancer but decreased in 
autoimmune diseases) between cancer and autoimmune 
diseases, whereas 24 genera in the cancer-increased cat-
egory were increased in cancer but not significantly asso-
ciated between the cases and controls in autoimmunity. 

Of them, Fusobacterium, Peptostreptococcus, and Por-
phyromonas were the most frequently increased genera 
among the cancer cases which were found to be associ-
ated in 13, 11, and eight cancer studies, respectively. In 
the autoimmune-increased category, Bacteroides and 
Parasutterella were inversely associated between cancer 
and autoimmune cases. The opposite directionality of 
Bacteroides between cancer and autoimmune diseases 
is the most prominent, which was found to be increased 
in 12 autoimmune studies and decreased in six cancer 
studies. The remaining eight genera in the autoimmune-
increased category were always increased in autoimmun-
ity but absent in cancer.

Fig. 1  PRISMA flow diagram of study selection
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We next explored the quantitative level of the relative 
abundance difference of the genus between cases and 
healthy controls. We extracted the relative abundance 
data of these significantly associated genera, where avail-
able, and conducted a random-effects meta-analysis. We 
conducted the meta-analysis only on genera for which we 
found the relative abundance data in at least four stud-
ies. By this criteria, six genera had sufficient abundance 
data available in at least four studies. In the autoimmune-
increased genus category, meta-analysis was performed 
on Bacteroides and Eggerthella. Meta-analysis of Bacte-
roides involved 10 studies including six autoimmune and 
four cancer studies. The genus Bacteroides was increased 

among the autoimmune cases by an overall +0.4 log fold 
change (95% CI, 0.1 to 0.3) compared with healthy con-
trols, whereas it was decreased among the cancer cases 
by an overall −0.3 log fold change (95% CI, −0.5 to −0.1) 
(Fig.  3c). Between-study heterogeneity among the auto-
immune and cancer studies were 48% and 66%, respec-
tively. Four autoimmune studies were included in the 
meta-analysis of Eggerthella, which showed an increased 
abundance in autoimmune cases by an overall +1.7 log 
fold change (95% CI, 1.3 to 2.1) with a between-study het-
erogeneity of 0% (Fig. 3d). In the cancer-increased genus 
category, meta-analysis was performed on Enterococcus, 
Parabacteroides, Peptostreptococcus, and Fusobacterium. 

Table 1  Summary of study characteristics

a Arthritis studies include ankylosing spondylitis (n = 1), enthesitis-related arthritis (n = 2), juvenile idiopathic arthritis (n = 1), rheumatoid arthritis (n = 5), and 
spondyloarthritis (n = 1). bTwo studies investigated two different diseases. Countries — AT Austria, AU Australia, AZ Azerbaijan, BE Belgium, CA Canada, CN China, DE 
Germany, DK Denmark, ES Spain, FI Finland, FR France, IN India, IR Iran, IT Italy, JO Jordan, JP Japan, KR Republic of Korea, MA Morocco, MN Mongolia, MX Mexico, NG 
Nigeria, NL Netherlands, PL Poland, SD Sudan, SE Sweden, UK United Kingdom, USA United States of America

Categories Disease Country (ISO2) No. of study No. of case No. of control Age-range (years) Sequencing type 
(no. of study)

Autoimmune Type 1 diabetes AU, AZ, CN, FI, DE, JO, 
MX, NG, PL, ES, SD, 
SE, NL, UK, US

13 568 893 1–47 16s (12) and shotgun 
(1)

Arthritisa CA, CN, FI, FR, IN, 
IT, US

9 438 339 5–71 16s (8) and shotgun 
(1)

Multiple sclerosis CN, BE, JP, US 7 272 328 12–50 16s

Systemic lupus 
erythematosus

CN, ES, NL 4 156 253 45–50 16s

Graves’ disease CN 2 43 42 35–50 16s

Primary Sjögren’s 
syndrome

NL 1 39 965 40–55 16s

Pemphigus vulgaris CN 1 18 14 44–45 16s

Anti-NMDAR 
encephalitis

CN 1 30 12 29–32 16s

Autoimmune 
hepatitis

CN 1 119 132 19–75 16s

Cancer Colorectal cancer 
and adenoma

AT, CA, CN, DK, FI, FR, 
IR, IT, JP, MA, ES, US

27 1630 2131 40–70 16s (22) and shotgun 
(5)

Gastric cancer and 
adenocarcinoma

CN, KR, MN 6 498 467 50–58 16s

Pancreatic cancer 
and ductal adenocar-
cinoma

CN, US 3 76 58 55–68 16s

Prostate cancer US 2 26 24 63–66 16s (1) and shotgun 
(1)

Cervical cancer CN, US 2 50 51 48–60 16s

Lung cancer CN 1 30 30 50–61 16s

Thyroid papillary 
cancer

CN 1 34 40 46–48 16s

Breast cancer CN 1 43 90 49–51 Shotgun

Hepatocellular carci-
noma (liver cancer)

CN 1 75 75 48–49 16s

GIT neoplasia FI 1 63 13 43–70 16s

Total - 27 84b 4208 5957 - -
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A total of eight studies were included in the meta-anal-
ysis of Enterococcus, which showed an overall increase 
of +1.9 log fold (95% CI, 0.7 to 3.1) among the cancer 
cases and decrease by −0.7 log fold (95% CI, −2.5 to 1.0) 
(Fig. 3e). The between-study heterogeneity was 76% and 
93% among the cancer and autoimmune studies, respec-
tively. We included six studies in the meta-analysis of 
Parabacteroides (Fig. 3f ). It accounted for an overall +0.9 
log fold increase (95% CI, −1.3 to 3.2) in cancer cases and 
−0.7 log fold decrease (95% CI, −1.0 to −0.48) in auto-
immune cases with 82% and 19% between-study hetero-
geneity, respectively. Meta-analysis of Peptostreptococcus 
includes five cancer studies which show an overall +3.6 
log fold increase (95% CI, 1.2 to 6.0) among the cancer 
cases where the between-study heterogeneity was 85% 
(Fig. 3g). Five cancer studies were included in the meta-
analysis of Fusobacterium (Fig.  3h). The results showed 
an overall +0.5 log fold increase (95% CI, 0.3 to 0.7) of 
Fusobacterium among the cancer cases with a between-
study heterogeneity of 64%.

Species
Twenty-eight studies (34%) reported significant 
species-level taxonomic associations in cancer and 
autoimmune diseases. A total of 159 species were sig-
nificantly associated in at least one study, of which 28 
species were associated in more than one cancer or 

autoimmune study. Of these 28 species, 27 were found 
to be associated with cancer or autoimmune disease 
categories; however, only one species (Faecalibacterium 
prausnitzii) was consistently found to be decreased 
both in cancer (n = 2) and autoimmune studies (n = 
3). Among the 27 species, 20 were identified in the can-
cer-increased category and seven in the autoimmune-
increased category (Fig. 4a). Fusobacterium nucleatum 
was the most common species in the cancer-increased 
category, appearing in eight cancer studies. However, 
seven of these eight cancer studies were on colorectal 
cancer, and one was on breast cancer. This might actu-
ally represent a skew, because colorectal cancer was 
the most represented cancer among the cancer studies 
(27/45). Therefore, it is reasonable that F. nucleatum 
would be the most common cancer-increased species, 
and it may not indicate that F. nucleatum was increased 
in cancer generally. None of the cancer-increased spe-
cies was found to be significantly associated in the auto-
immune studies. Among the autoimmune-increased 
species, Bifidobacterium longum and Streptococcus 
salivarius were associated inversely between cancer 
and autoimmune diseases. Interestingly, four members 
of the Eubacterium genus, Eubacterium eligens, Eubac-
terium hallii, Eubacterium rectale, and Eubacterium 
ventriosum, were decreased in cancer cases in multiple 
studies. However, none of these Eubacterium species 
was significantly associated with autoimmune diseases.

Fig. 2  Summary of the results of risk-of-bias assessment by the Newcastle-Ottawa Scale (NOS)
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Metabolic pathways
Associations between predicted microbial metabolic path-
ways and diseases were only reported in 20 studies (24%). 
A total of 405 predicted metabolic pathways were shown 
to be significantly associated in at least one cancer or auto-
immune study. Most of the pathways were found in only 
one study, whereas 48 were associated with cancer and 
autoimmunity in multiple studies. Of these 48 pathways, 
35 were increasingly or decreasingly associated with can-
cer and autoimmunity (Fig. 4b), whereas 13 were found to 
be inconsistently or ambiguously associated with disease 
categories (Supplementary Table  6). None of the path-
ways exhibited an inverse association between cancer and 
autoimmunity, as observed in several genera and species. 
However, some pathways were increased or decreased in 

multiple cancer and autoimmune studies such as lipopoly-
saccharide biosynthesis, which was found to be increased 
in three autoimmune studies (Fig. 4b).

Disease‑associated genera and species are taxonomically 
and functionally diverse
Taxonomic diversity
To understand the phylogenetic and taxonomic related-
ness among the associated genera and species, we used 
the NCBI common tree taxonomy browser tool for the 
construction of taxonomic trees. All 40 cancer-increased 
and autoimmune-increased genera belonged to six bacte-
rial phyla. The majority of the genera (n = 18) belonged 
to the phylum Bacillota followed by Pseudomonadota 
(n = 10) (Fig.  5a). All 27 species were represented by 

Fig. 3  Alpha diversity and genus-level association of microbiome in cancer and autoimmune diseases. a Trend of alpha diversity of microbiome 
in cancer and autoimmunity across studies. “Decrease” and “increase” indicate statistical significance (p < 0.05) difference of alpha diversity 
between cases and controls, and “no difference” indicates no statistical significance (p > 0.05) difference of alpha diversity between cases and 
controls. Here, AI denotes Autoimmunity and CR Cancer. b Bacterial genera found to be significantly (p < 0.05) increased or decreased in cancer 
or autoimmune patients in more than one and in at least 70% of the studies in respective disease categories. c–h Forest plot of log fold change of 
relative abundance of six genera in cancer or autoimmune patients compared with healthy controls
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five phyla (Fig.  5b). The Bacillota phylum represents 
the majority of the species (n = 13) followed by Bacte-
roidota (n = 6). We observed some interesting trends 
across phyla. The members (both genus and species) of 
Fusobacteriota were always found to be increased in can-
cers. Interestingly, most of the genera and species of the 
phylum Bacteroidota were found to be increasingly asso-
ciated with cancer and decreasingly associated with auto-
immunity. The only exception is the Bacteroides genus 
which showed an opposite directionality compared with 
other members of this phylum (Fig.  5b). Similarly, the 
majority of the members of the Pseudomonadota showed 
a positive association with cancer or a negative associa-
tion with autoimmunity, with the exception of the genera 
Parasutterella and Sutterella, which showed an opposite 
directionality. Most of the genera of the Bacillota phy-
lum was found to be increased both in cancer and auto-
immunity. However, the species of the Bacillota phylum 
could be divided into two groups considering opposite 
directionality with cancer and autoimmunity. One group 
of species was found to be increased in cancer (n = 8 spe-
cies), and another group was found to be decreased in 
cancer (n = 5 species) (Fig. 5b).

Functional diversity
To predict the shared or unique metabolic functions 
among the cancer-increased or autoimmune-increased 
genera and species, we identified metabolic pathways 
using MetAboliC pAthways DAtabase for Microbial 
taxonomic groups (MACADAM) [115], which employs 

pathway tools based on the MetaCyc database [116] 
that includes metabolic pathways as well as associated 
metabolites, reactions, and enzymes. We first extracted 
all the metabolic pathways that are present among can-
cer-increased and autoimmune-increased genera and 
species. We then identified the pathways that were exclu-
sively present either in cancer-increased or autoimmune-
increased groups. Of the 936 metabolic pathways that 
were detected together in two groups, 303 pathways 
were found exclusively in cancer-increased taxa. On the 
other hand, only 17 pathways were present exclusively in 
autoimmune-increased taxa (Fig.  5c, Supplementary file 
2). Among the 303 cancer-increased pathways, 119 had 
a complete pathway score of 1, meaning that some mem-
bers of the cancer-increased taxa contain all enzymes 
to complete the metabolic pathway. The most frequent 
pathways in the cancer-increased groups belonged to 
aromatic compound degradation (38/303) followed by 
non-carbon nutrient metabolism (23/303), amino-acid 
degradation (21/303), and cofactor biosynthesis (16/303). 
Interestingly, 17 of the 23 non-carbon nutrient metabo-
lism pathways were related to sulfur metabolism. Of the 
autoimmune-increased pathways (n = 17), four complete 
metabolic pathways were contained in some members of 
the autoimmune-increased taxa (Fig. 5d, Supplementary 
file 2).

Because we observed taxonomically opposing direc-
tionality within the members of Bacteroidota, Pseu-
domonadota, and Bacillota (Fig.  5a–b), we further 
explored the functional similarities or dissimilarities 

Fig. 4  Species-level association and predicted metabolic pathways of microbiome in cancer and autoimmune diseases. Bacterial species (a) and 
predicted metabolic pathways (b) found to be significantly (p < 0.05) increased or decreased in cancer or autoimmune patients in multiple cancer 
and autoimmune studies
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within the members of these phyla. In the Bacteroidota 
phylum, four genera and six species were associated in 
the cancer-increased group (Fig.  5a–b), whereas only 
the Bacteroides genus belonged to the autoimmune-
increased group. By comparing the potential metabolic 
functions between the cancer-increased taxa and the 
Bacteroides genus (autoimmune increased) under the 
Bacteroidota phylum, we detected 53 pathways exclu-
sively present among the cancer-increased taxa and 39 
pathways that were exclusively present in the genus Bac-
teroides (Supplementary file 2). In the Bacillota phylum, 
we compared the metabolic functions between cancer-
increased (i.e., Anaerococcus, Christensenella, Dialister 

pneumosintes, Enterococcus, Filifactor, Gemella morbil-
lorum, Lactobacillus, Lactococcus, Megasphaera, Mogi-
bacterium, Parvimonas, Parvimonas micra, Selenomonas, 
Selenomonas sputigena, Acidaminococcus intestini  and 
Turicibacter) and autoimmune-increased (i.e., Blautia, 
Eubacterium eligens, Eubacterium hallii, Eubacterium 
rectale, Flavonifractor, Gemella, Lachnoclostridium, and 
Streptococcus salivarius) species. A total of 162 path-
ways were exclusively present in the cancer-increased 
group, and 21 pathways were found exclusively in the 
autoimmune-increased group under the phylum Bacil-
lota (Supplementary file 2). Similarly, in the Pseudomon-
adota phylum, we compared the metabolic functions in 

Fig. 5  Taxonomic and functional diversity of cancer and autoimmune-associated microbiome. Taxonomic relatedness of bacterial genus (a) 
and species (b) in cancer and autoimmune diseases. The bars represent the total number of studies where the respective taxa were found to be 
significantly increased or decreased. The colors of the clades denote Phylum. The heatmap (c) shows 320 distinct metabolic pathways that were 
exclusively found in either cancer or autoimmune-increased taxa. The pathways were predicted from a list of cancer and autoimmune microbiomes 
by querying the metaCyc database using MACADAM [115]. The color scale shows pathway completeness score. Pathway completeness 
score 1 indicates the respective bacterial taxa contains a full set of metabolic potentials to complete the pathway. The left cluster is likely 
autoimmune-specific microbial pathways, and the right big cluster is likely cancer-specific microbial pathways. A complete list of these pathways 
can be found in the Supplementary file 2. The scatterplot (d) shows the number of pathways (dot size) with specific pathway score features 
between cancer and autoimmune microbes
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the cancer-increased group (i.e., Aquabacterium, Biloph-
ila wadsworthia, Delftia, Desulfovibrio, Escherichia coli, 
Klebsiella, Morganella, Oxalobacter, and Proteus) and 
autoimmune-increased group (i.e., Sutterella). A total 
of 700 pathways were exclusively present in the cancer-
increased group, and no pathways were found exclusively 
in the autoimmune-increased taxa in this phylum (Sup-
plementary file 2).

Discussion
This work involved a systematic literature review on gut 
microbiome studies in cancer and autoimmune condi-
tions. We also conducted a meta-analysis to pool the rela-
tive fold change of certain genera across multiple studies. 
We identified a set of microbiome features that show a 
consistently opposite directionality between cancer and 
autoimmune diseases in multiple studies. This study also 
identified many non-robust microbiome associations 
that were only reported in a single study, illustrating the 
degree of variation between gut microbiome studies and 
the need for larger sampling or rigorous meta-analysis to 
distinguish significant data from noise. Although only a 
minority of features were found to be consistently oppo-
site, but this is still much more than would be expected 
because finding a feature that shows repeated direc-
tionality in multiple studies might represent a biological 
connection with the disease. Most cancer studies show 
an increase of a group of well-known cancer-associated 
microbiome features and decrease of commensal bacte-
rial genera in cancer cases compared with healthy con-
trols, whereas the autoimmune cases are characterized 
by invasion or depletion of commonly known commensal 
bacterial genera. We identified 30 genera that were cat-
egorized as cancer increased. Of them, 24 were always 
increased in cancer but had no significant association 
with autoimmune diseases. Most of these 24 genera are 
previously reported cancer-associated bacteria such as 
Fusobacterium, Peptostreptococcus, and Porphyromonas. 
The genus-level association is also consistent for some 
species under the same genera. Most of the 20 species 
found to be positively associated with cancer are cancer-
associated bacteria such as Fusobacterium nucleatum 
[117], Peptostreptococcus stomatis [118], and Parvimonas 
micra [119]. These findings corroborate a previous 
meta-analysis of gut microbiome studies, which found 
increased abundance of similar microbiome features in 
multiple colorectal cancers studies [120]. However, six 
of the 30 cancer-increased genera, namely Enterococcus, 
Parabacteroides, Odoribacter, Paraprevotella, Desulfovi-
brio, and Oxalobacter show true opposite directionality 
between cancer and autoimmune diseases. Several spe-
cies under these genera are known to be associated as 
potent immune suppressors. For instance, a well-known 

opportunistic pathogen Enterococcus faecalis is capable 
of modulating immune function by suppressing mac-
rophage activity through preventing NF-κB signaling 
[121] or promoting anti-inflammatory cytokine IL-10 
[122, 123]. Similarly, members of the genus Parabacte-
roides including Parabacteroides distasonis were previ-
ously found to be decreased in autoimmune disease [124] 
and to reduce the severity of intestinal inflammation in 
colitis in mice through decreased production of proin-
flammatory cytokine TNF-α [125].

A set of ten genera and seven species were identi-
fied in the autoimmune-increased category. Bacte-
roides, Parasutterella, Bifidobacterium longum, and 
Streptococcus salivarius were found to be inversely 
associated between cancer and autoimmune cases. In 
addition, multiple Eubacterium species were identi-
fied in this category (Fig.  4). Bacteroides was found to 
be increased in 12 autoimmune studies and decreased 
in 6 cancer studies, whereas Parasutterella was found 
to be increased in 3 autoimmune studies and decreased 
in 2 cancer studies. Several species of Bacteroides and 
Parasutterella were previously shown to be capable of 
restoring antitumor responses such as Bacteroides the-
taiotaomicron, Bacteroides rodentium, and Parasutte-
rella excrementihominis [126–128].

Comparison of metabolic pathways across can-
cer-increased and autoimmune-increased microbi-
ome taxa shows unique microbiome functions. Most 
noticeably, sulfur-metabolism pathways were found to 
be one of the frequent pathways among certain mem-
ber of cancer-increased taxa such as Aquabacterium, 
Bilophila wadsworthia, Delftia, Desulfovibrio, Escheri-
chia coli, Fusobacterium, Klebsiella, Lactobacillus, 
Morganella, Odoribacter, and Proteus. The presence of 
sulfur-metabolizing microbiome in the human gut has 
been shown to be associated with a high risk of colo-
rectal cancer [129]. Although the exact mechanism is 
unknown, the intermediary sulfur metabolites and the 
production of hydrogen sulfide (H2S) are thought to 
be associated with colorectal cancer pathogenesis and 
epithelial damage [130, 131]. However, disease-spe-
cific causality and the underlying mechanism of these 
associations are yet to be discovered. Therefore, fur-
ther laboratory experimentation with a combination of 
multiple members of these sets of microbiome features 
will help to understand their biological role in immu-
nomodulation in autoimmunity and cancer.

This is the first systematic review that synthesized 
results from 82 case-control microbiome studies in can-
cer and autoimmunity, representing participants from 
multiple age groups and geographies. We implemented 
a broad and advanced search strategy in multiple data-
bases which enable us to identify the majority of the 
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publications in the field. We defined clear inclusion and 
exclusion criteria. We conducted quality assessment of 
the included studies using the Cochrane recommended 
standard tools and maintained high standards by the 
strict implementation of PRISMA guidelines.

The study has some limitations. We conducted a tra-
ditional systematic review and meta-analysis rather 
than reanalysis of previously published sequencing data. 
Therefore, we mainly relied on the primary studies’ 
sequence analysis, taxonomic classification, and statisti-
cal test. Studies typically use different models and diverse 
types of bioinformatics pipelines, taxonomic classifiers, 
and statistical comparisons which may infer dissimilar 
taxonomies and sometimes render results difficult to 
compare. Reanalysis of raw sequencing data is the stand-
ard approach of performing meta-analysis of microbiome 
studies that provide quantitative comparison of taxono-
mies across diseases. However, there are also many chal-
lenges of a meta-analysis of raw sequencing data such 
as diverse study design, heterogeneous demographics of 
study participants, different methods for DNA extrac-
tion and sequencing type and platform, and availabil-
ity of metadata and raw sequences. For instance, in our 
study, many of the included studies (> 50%) do not have 
publicly available raw sequencing data. Moreover, the 
findings of this study are very similar to a previous meta-
analysis [120] where the authors performed reanaly-
sis of raw sequencing data of 28 published case-control 
studies across ten diseases. They detected an increased 
abundance of common cancer-associated bacteria such 
as Fusobacterium, Porphyromonas, Peptostreptococcus, 
and Parvimonas in multiple colorectal cancer studies. 
We found similar associations for all of these bacteria in 
multiple cancer studies in our analysis. Furthermore, we 
conducted a meta-analysis on the relative abundance of 
six genera to explore the quantitative difference in their 
abundance between disease cases and controls. The 
diverse methodological approaches used in the primary 
microbiome studies, such as DNA processing and bio-
informatic pipelines, might affect the pooled estimate 
of the meta-analysis. Therefore, it would be appropriate 
to perform a subgroup analysis to identify the source of 
heterogeneity if it existed. Unfortunately, it was not feasi-
ble to perform a subgroup meta-analysis considering the 
few numbers of studies in each subgroup. For example, 
we included six studies for meta-analysis on Bacteroides 
abundance in autoimmune diseases (Fig. 3c). Of these six 
studies, two were in each category of v3–v4, v2–v4, and 
v4–v5 based on the region of 16s gene amplified. How-
ever, we collected this additional information and incor-
porated it into Supplementary file 1. Finally, we were 
not able to conduct a meta-analysis on many genera and 

species due to the absence of relative abundance data in 
the published literature.

Based on our findings and observations, we propose 
some recommendations and future directions in this 
field of research. We recommend that future case-con-
trol microbiome studies should report relative abun-
dance data, sample variance, and p-value of the statistical 
analysis which will facilitate future meta-analysis and 
enable combining of results from multiple studies. The 
importance of publicly available raw sequencing data and 
patient metadata is enormous for direct comparison of 
the results across studies. In this study, we can only draw 
correlative evidence with some microbiome features 
between cancers and autoimmunity but cannot speak to 
causality and mechanism, one way or the other. There-
fore, the findings from this study can be used in future 
studies to understand the mechanistic connection which 
can help to identify selective microbial consortia for 
microbiome-based immune therapies for the prevention 
and treatment of cancer and autoimmune diseases which 
can be further tested by laboratory investigation.

In conclusion, despite some limitations, this study 
identified distinct types of cancer and autoimmune asso-
ciated microbiome features that are consistently identi-
fied in multiple studies. These associations may point to 
important underlying biology of how disease and health 
shape the microbiome or vice versa, and this serves as an 
unprecedented trove of hypotheses for future studies of 
the role of the microbiome in autoimmunity and cancer.
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