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Abstract 

Background:  The 16S rRNA gene is used extensively in bacterial phylogenetics, in species delineation, and now 
widely in microbiome studies. However, the gene suffers from intragenomic heterogeneity, and reports of recombi-
nation and an unreliable phylogenetic signal are accumulating. Here, we compare core gene phylogenies to phy-
logenies constructed using core gene concatenations to estimate the strength of signal for the 16S rRNA gene, its 
hypervariable regions, and all core genes at the intra- and inter-genus levels. Specifically, we perform four intra-genus 
analyses (Clostridium, n = 65; Legionella, n = 47; Staphylococcus, n = 36; and Campylobacter, n = 17) and one inter-
genus analysis [41 core genera of the human gut microbiome (31 families, 17 orders, and 12 classes), n = 82].

Results:  At both taxonomic levels, the 16S rRNA gene was recombinant and subject to horizontal gene transfer. At 
the intra-genus level, the gene showed one of the lowest levels of concordance with the core genome phylogeny 
(50.7% average). Concordance for hypervariable regions was lower still, with entropy masking providing little to no 
benefit. A major factor influencing concordance was SNP count, which showed a positive logarithmic association. 
Using this relationship, we determined that 690 ± 110 SNPs were required for 80% concordance (average 16S rRNA 
gene SNP count was 254). We also found a wide range in 16S-23S-5S rRNA operon copy number among genomes 
(1–27). At the inter-genus level, concordance for the whole 16S rRNA gene was markedly higher (73.8% — 10th out of 
49 loci); however, the most concordant hypervariable regions (V4, V3-V4, and V1-V2) ranked in the third quartile (62.5 
to 60.0%).

Conclusions:  Ramifications of a poor phylogenetic performance for the 16S rRNA gene are far reaching. For example, 
in addition to incorrect species/strain delineation and phylogenetic inference, it has the potential to confound com-
munity diversity metrics if phylogenetic information is incorporated — for example, with popular approaches such 
as Faith’s phylogenetic diversity and UniFrac. Our results highlight the problematic nature of these approaches and 
their use (along with entropy masking) is discouraged. Lastly, the wide range in 16S rRNA gene copy number among 
genomes also has a strong potential to confound diversity metrics.
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Background
Extensive use of the 16S rRNA gene in phylogenetics was 
first pioneered by Carl Woese in 1977 to delineate the 
previously undescribed taxonomic lineage — Archaea 
[1]. Woese justified the use of the 16S rRNA gene and 
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other rRNA genes (5S and 23S) by highlighting their uni-
versality in bacteria and their molecular clock-like nature 
[2]. An important characteristic that favors the use of 
the 16S rRNA gene in particular is the presence of mul-
tiple conserved/hypervariable regions that allow mul-
tiple options for PCR primer design [3]. More recently, 
the hypervariable regions have gained widespread use in 
microbiome studies, as in addition to their universality in 
bacteria, their length in nucleotides is well suited to next-
generation sequencing platforms. However, the question 
of which hypervariable region and/or combination of 
regions provides optimal results is debated [4–6].

Variations in the nucleotide sequence of the 16S rRNA 
gene were historically assumed to be more likely a prod-
uct of speciation and vertical inheritance than horizon-
tal gene transfer (HGT) and/or events of recombination 
[7–11]. Despite this assumption, accumulating reports 
provide evidence suggesting that the gene is subject to 
both these phenomena [12–15]. Several studies have also 
investigated the intragenomic heterogeneity of multiple 
copies of the 16S rRNA gene [12, 16, 17]. The prevalence 
of multiple copies of the gene in a single genome may 
facilitate PCR-induced chimeras to form between the 
copies, leading to inaccurate characterizations of bacte-
rial species [18]. Additionally, multiple copies within a 
genome have the potential to inflate taxonomic abun-
dance and confound measures of microbiome diversity 
[19, 20].

Alternative phylogenetic approaches to using the 16S 
rRNA gene for novel species delineation include produc-
ing other rRNA gene phylogenies (5S or 23S), combined 
rRNA gene phylogenies (16S-23S), one or more protein 
coding gene phylogenies, or a core genome phylogeny 
(one produced using genes shared among all OTUs). 
Reports of discordance between phylogenies produced 
using these approaches and 16S rRNA gene phylogenies 
are numerous [21–38] and call into question the reliabil-
ity or strength of the phylogenetic signal for the gene. The 
ramifications of this unresolved question are far reach-
ing given the extensive use of the gene in many areas of 
research. For example, in addition to incorrectly delin-
eating new species and phylogenetic position, there are 
ramifications for microbiome studies. Specifically, popu-
lar approaches used to calculate alpha and beta diver-
sity within and among microbial communities such as 
Faith’s phylogenetic diversity and UniFrac incorporate 
phylogenetic information [39–41] and these approaches 
are incorporated into the two most popular microbiome 
analyses pipelines: Mothur and QIIME2 [42, 43]. Clearly, 
there is a need to critically evaluate the strength of the 
phylogenetic signal for the 16S rRNA gene. Here, we take 
a novel phylogenomic approach that measures concord-
ance between a gene phylogeny and a putative species 

phylogeny built using genes shared among all taxa (the 
core genome) to evaluate the level of concordance for the 
16S rRNA gene, other rRNA genes, and all single-copy 
core genes at the intra-genus level in four highly diver-
gent genera (two Gram-positive and two Gram-nega-
tive) that contain important pathogens: Staphylococcus, 
Clostridium, Campylobacter, and Legionella. We find that 
(i) all four genera exhibited evidence for 16S rRNA gene 
recombination/HGT, (ii) the 16S rRNA gene displayed 
one of the lowest levels of concordance with the species 
phylogeny of any gene tested, (iii) hypervariable regions 
of the 16S rRNA gene showed a decrease in concordance 
compared to the full gene, (iv) entropy masking provided 
little to no benefit, (v) protein coding ribosomal genes 
also displayed low concordance on average, (vi) concord-
ance for any given gene was strongly predicted by align-
ment single nucleotide polymorphism (SNP) count, and 
(vii) SNPs from non-ribosomal protein coding genes dis-
played the strongest concordance while SNPs from rRNA 
genes showed the weakest concordance. Given the broad 
taxonomic scope of microbiome studies, we extended our 
approach to evaluate phylogenetic performance at the 
inter-genus level. Here, core genes were evaluated using a 
phylogeny representing 41 core genera of the human gut 
microbiome. At this evolutionary scale, concordance for 
the full 16S rRNA gene was improved, ranking in the first 
quartile with 73.8% concordance (10th out of 49 loci). 
Although concordance for some hypervariable regions 
was improved, even  the most concordant regions (V4, 
V3-V4, and V1-V2) ranked in the third quartile with 62.5 
to 60.0% concordance.

Results
Intra‑genus homologous gene clustering 
and recombination/HGT
For the four intra-genus analyses, we chose four highly 
divergent and clinically relevant genera as a representa-
tion of the range of diversity existing among bacteria. 
For each genus, we downloaded all available assembled 
genome sequences and their assembly statistics from the 
RefSeq genome database at NCBI. Assessing all assem-
blies, we selected a representative strain for each spe-
cies within each genus: Clostridium (65), Legionella (47), 
Staphylococcus (36), and Campylobacter (17). Strain 
selection preference was given to closed genomes and 
those assemblies with fewer contigs. Strain information 
and accession numbers regarding the 165 genomes used 
in our analyses are presented in Table S1.

The first step in our approach required the use of 
homologous gene clustering to delineate core genes. 
After paralogs and genes judged subject to recombina-
tion and/or HGT were removed (see below), core gene 
phylogenies were constructed using concatenations of 
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core gene alignments (the species phylogeny, Fig. S1A-
H). Phylogenies for each core gene were then separately 
compared to the species phylogeny and the proportion 
of bipartition concordance between the two was calcu-
lated. Reliability of each species phylogeny was assessed 
using bootstrapping and all phylogenies showed strong 
support (Figs. S1A, C, E, and G). We further assessed the 
reliability of the species phylogenies by comparison to a 
second core gene phylogeny that represented a consen-
sus of the topologies of each single-copy core gene phy-
logeny. Each consensus phylogeny was highly concordant 
with its respective species phylogeny (Figs. S1B, D, F, and 
H). Specifically, for Staphylococcus, the phylogenies were 
identical; for Legionella, the phylogenies differed by two 
bipartitions (95.6% concordance); for Clostridium, the 
phylogenies differed by four bipartitions (93.5% concord-
ance); and for Campylobacter, the phylogenies differed by 
one bipartition (93.3% concordance). These differences 
involved minor rearrangements among closely placed 
taxa.

The homologous gene clustering delineated 120 sin-
gle-copy core genes for Clostridium, 392 for Legionella, 
604 for Staphylococcus, and 495 for Campylobacter. We 
utilized two separate approaches to test for recombina-
tion [pairwise homoplasy index (PHI) and single break-
point (SBP)] and one for HGT (HGTector) [44–46]. The 
number of genes that exhibited evidence of recombina-
tion/HGT for any test was as follows: Clostridium = 53 
(44.2%), Legionella = 51 (13.0%), Staphylococcus = 246 
(40.7%), and Campylobacter = 299 (60.4%) (see Table 
S2 for a breakdown of each test). After excluding these 
genes, the following number remained: Clostridium = 67 
(55.8%), Legionella = 341 (87.0%), Staphylococcus = 358 
(59.3%), and Campylobacter = 196 (39.6%).

The 16S rRNA gene exhibited evidence of recombina-
tion for the PHI approach in Campylobacter, Legionella, 
and Clostridium, for the SBP approach in Campylobac-
ter and Legionella, and negative for both approaches for 
Staphylococcus (Table 1). When evaluating possible HGT 
events, HGTector can only utilize amino acid sequences. 
Therefore, given the non-protein coding nature of the 
16S rRNA gene, we applied an alternative phylogenetic 
approach. First, we produced 16S rRNA gene phylogenies 
including all copies of the gene within all genomes for 
each genus (the 16S-23S-5S operon can exist as multi-
ple copies within a genome — see Table S3 for frequency 
distribution among genomes). Then, any gene copy that 
was monophyletic within a species was considered to be 
vertically inherited. Alternatively, if a gene copy for a spe-
cies clustered within a grouping from a second species, 
HGT for that copy was inferred. This analysis suggested 
exchange among strains within Staphylococcus and 
Clostridium but not Legionella or Campylobacter (Table 

S3, Fig. S2A-D). In Staphylococcus, three instances of 
putative HGT were identified (Fig. S2D): the six copies of 
the 16S rRNA gene in Staphylococcus pseudintermedius 
were not monophyletic, but instead the single copies of 
Staphylococcus delphini and Staphylococcus intermedius 
fell within the grouping. Additionally, the four copies of 
the gene in Staphylococcus aureus fell sporadically within 
the clade containing the five copies of the gene in Staphy-
lococcus argenteus. Finally, one of the six Staphylococ-
cus condimenti copies grouped polyphyletically with the 
five copies of Staphylococcus carnosus, suggesting HGT 
among these species. In Clostridium, two instances of 
putative HGT were identified (Fig. S2B): the eight cop-
ies of 16S rRNA gene in Clostridium botulinum fell spo-
radically within the clade containing the nine copies of 
the gene in Clostridium sporogenes. The sole copy of the 
16S rRNA gene in Clostridium coskatii and the nine cop-
ies of the gene in Clostridium ljungdahlii fell sporadically 
within the clade containing the nine copies of the gene in 
Clostridium autoethanogenum.

The 23S rRNA gene tested negative for recombination 
for both PHI and SBP approaches for all genera with the 
exception of the PHI approach in Legionella (Table  1). 
For Clostridium, 23 genes could not be tested as their 
gene sequence was missing from the genome — likely the 
result of rRNA operon truncation (Table S3). For the 5S 
rRNA gene, there was an insufficient number of inform-
ative nucleotide sites within each of the alignments 
for PHI to run using the default settings. The 5S rRNA 
gene alignments contained among the fewest number of 
SNPs when compared to all other genes (Tables S4A-D 
and S5) and reducing the sliding window used to calcu-
late the PHI statistic from the default of 100 nucleotides 
to 50 nucleotides enabled the program to run. However, 
recombination was not detected for any alignment. The 
gene also tested negative for recombination for the SBP 
approach in all four genera (Table  1). The analysis for 
Campylobacter was missing three species, again due to 
missing gene sequence (Table S3). We utilized the same 
phylogenetic approach as with the 16S rRNA gene to 
assess putative HGT for both 23S and 5S rRNA genes. 
These analyses suggested HGT among species in all gen-
era with the exception of Legionella for both genes and 
Campylobacter for the 23S rRNA gene (Table 1 and Fig. 
S2E-L). However, we acknowledge that our phylogenetic 
approach to detect HGT may be susceptible to error 
when the underlying phylogenetic signal was weak. This 
was particularly the case for the 5S rRNA gene, which 
due to its short length and low SNP count showed very 
low concordance with the species phylogeny. There was 
a wide distribution of 16S-23S-5S rRNA operon copy 
number among genomes for each genus (Fig. S3 and 
Table S3). For example, Clostridium ranged from two 
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to 27 copies. For the other genera, the numbers were as 
follows: Campylobacter (1 to 3), Legionella (1 to 4), and 
Staphylococcus (1 to 9). These numbers should be treated 
as estimates, as the majority of genomes were whole 
genome shotgun and the operon was frequently trun-
cated at the end of a contig.

Intra‑genus phylogenetic concordance and nucleotide 
substitution
Figure 1 and Tables S4A-D show the distribution of lev-
els of concordance for each gene delineated into five 
gene categories: non-ribosomal (NR), protein coding 
ribosomal (CR), rRNA, 16S HVR (16S rRNA gene hyper-
variable regions — discussed in more detail below), and 
rpo (RNA polymerase genes — discussed in more detail 
below). Overall, hypervariable regions and rRNA genes 
had among the lowest concordance. Specifically, con-
cordance for the 16S rRNA gene was 64.7% (Staphylococ-
cus), 51.6% (Clostridium), 40.0% (Legionella), and 46.7% 

(Campylobacter). To place these levels in perspective, 
for each genus, the following proportion of genes had 
higher concordance than the 16S rRNA gene: Staphylo-
coccus = 59.4%, Clostridium = 72.5%, Legionella = 96.2%, 
and Campylobacter = 76.2%. The average concord-
ance for protein coding ribosomal genes was interme-
diate between rRNA genes and non-ribosomal genes 
(rRNA = 42.3%, CR = 52.6%, NR = 66.0%, Table S5).

To complement our gene ranking approach based on 
concordance with the species phylogeny, we addition-
ally compared ranking based on gene phylogeny log-like-
lihood values and ran the approximately unbiased (AU) 
topology test [48]. Results showed the likelihood values 
to be highly concordant with concordance levels (Table 
S4A-D). For Campylobacter, four phylogenies showed 
no significant difference from the species phylogeny 
and these phylogenies showed the highest concordance 
(100%) (Table S4A-D). For Clostridium, one phylogeny 
showed no significant difference and showed the highest 

Table 1   Recombination and horizontal gene transfer (HGT) test results

NR Non-ribosomal genes, CR Coding ribosomal genes, PHI Pairwise homoplasy index recombination analysis, SBP Single break-point recombination analysis, HGT 
HGTector analysis for protein coding genes and our phylogenetic approach to detect HGT for rRNA genes (see text), rpoB* partial rpoB sequence based on primers 
published by Ogier et al. [47], M masked locus, V hypervariable regions of the 16S rRNA gene, ✓ indicates loci positive for recombination or HGT, X indicates loci 
negative for recombination or HGT, blank cells indicate where metrics could not be obtained due to the nature of the locus (short gene length for PHI, not protein 
coding for HGTector, single-copy gene for phylogenetic HGT), NR and CR loci presented as proportion of genes positive for recombination or HGT, NP not possible 
(missing locus)

Campylobacter
17 species, 495 core genes, 
445 NR, 50 CR

Clostridium
65 species, 120 core genes, 
108 NR, 12 CR

Legionella
47 species, 392 core genes, 
348 NR, 44, CR

Staphylococcus
36 species, 604 core genes, 
556 NR, 48 CR

Locus PHI SBP HGT PHI SBP HGT PHI SBP HGT PHI SBP HGT

rpoA X X X X X X X X X X X ✓
rpoB ✓ ✓ X ✓ X X X X X X X X

rpoB* X X X X X X X X

rpoC ✓ X X X X ✓ X X X ✓ X X

NR (%) 0.38 0.15 0.32 0.11 0.03 0.41 0.01 0.02 0.08 0.09 0.07 0.22

CR (%) 0.12 0.08 0.16 0.08 0.00 0.08 0.05 0.02 0.23 0.02 0.00 0.79

16S ✓ ✓ X ✓ X ✓ ✓ ✓ X X X ✓
23S X X X X X ✓ X ✓ X X X ✓
5S X ✓ X ✓ X X X ✓
16S M ✓ ✓ X X ✓ ✓ X X

V1-2 ✓ X X X X X X

V3 X X X X

V3 M X X X X X

V3-V4 X X X X X X X X

V3-V4 M X X X X X X

V4 X X X X X X X

V4 M X X X X X

V5 X X X X

V6 X X X X

V7 X X X X

V8 X X X X

V9 X X NP NP NP X
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concordance (93.5%). For Staphylococcus, one phylogeny 
showed no significant difference and showed the highest 
concordance (100%). For Legionella, three phylogenies 
showed no significant difference. Concordance for these 
phylogenies was very high, ranking joint first, 12th, and 
22nd out of 408 loci (88.9%, 82.2%, and 80.0% concord-
ance respectively).

Hypervariable regions of the 16S rRNA gene have 
grown increasingly popular in phylogenetics, in species 
delineation, and more recently in microbiome studies 
[49–56]. Some studies have suggested that these hyper-
variable regions are able to distinguish between species 
with more accuracy than the full gene [57]. To evaluate 
these hypervariable regions, we extracted each region, 
constructed phylogenies, and calculated levels of con-
cordance with the respective species phylogeny. Note, 
Legionella lacked the V9 region. V1-V2 were extracted 
together in a single alignment as these two regions are 
typically combined due to their combined length being 
suitable for Illumina sequencing. V3-V4 were extracted 
both individually and together as they are commonly 
combined for higher species delineation accuracy [58]. 

Overall, concordance for the hypervariable regions was 
lower than those for the full-length gene (Fig.  1). Spe-
cifically, the concordance for the full-length gene ranged 
from 1.8 to 5.0 times higher than the corresponding aver-
ages for the hypervariable regions. The region with the 
highest concordance was not consistent across the genera 
(Figs. 1 and S4). Specifically, the most concordant region 
for Staphylococcus and Legionella was V1-V2, whereas 
for Campylobacter, the V3-V4 and V5 regions were tied, 
and for Clostridium, the V3-V4 and V4 regions were tied. 
On average, the V3-V4 region showed the most concord-
ance (Fig. S4).

The accuracy of a phylogeny hinges greatly on the 
underlying nucleotide alignment, and numerous 
approaches have been developed to identify and mask 
regions of an alignment judged to have a weak phylo-
genetic signal. Many of these approaches are based 
on the assumption that highly variable regions have a 
weak or unreliable signal. Specifically, high variabil-
ity (nucleotide diversity) is assumed to be the prod-
uct of an elevated mutation rate, which may result in 
the region becoming substitution saturated, which 

Fig. 1  Levels of concordance with the species phylogeny for core genes sorted from lowest (left) to highest (right) for the 16S rRNA gene 
hypervariable regions (16S HVR, purple), rRNA genes (rRNA, pink), coding ribosomal genes (CR, light blue), non-ribosomal genes (NR, dark blue), and 
rpo genes (rpo, green). Colored dots correspond to levels of concordance with the species phylogeny for genes (and hypervariable regions). Degree 
of shading represents the number of loci observed for each level of concordance. For 16S HVR, SC, and NR, a single dot for each genus contains a 
number that shows the maximum number of loci observed across all levels of concordance for that genus. This dot will have the darkest level of 
shading. In all cases, there are multiple dots with this maximum level of shading and maximum loci count. For rRNA and rpo, there are only three 
loci (5S, 16S, 23S and rpoA, rpoB, rpoC) each with a frequency of one and the same degree of shading. The following designations indicate average 
concordance for each genus: Staphylococcus (S), Legionella (L), Clostridium (Cl), and Campylobacter (Ca). Hypervariable regions frequently used in 
microbiome research (V3-V4) are highlighted. Individual rRNA and rpo genes are designated as follows: 16S rRNA gene (16S), 23S rRNA gene (23S), 
5S rRNA gene (5S), rpoA gene (A), rpoB gene (B), and rpoC gene (C)
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may confound a phylogeny due to underestimation of 
genetic distances. One approach to measuring this vari-
ability is to calculate entropy or information content 
for alignment columns. In an attempt to improve the 
phylogenetic signal, columns that exceed a pre-deter-
mined threshold are then masked. To explore the effec-
tiveness of this approach for the 16S rRNA gene, we 
determined the level of concordance with the species 
phylogeny for alignments for each genus where the top 
10% most entropic alignment columns were masked. 
This approach decreased concordance for Clostridium, 
Staphylococcus, and Legionella (Table S4A-D). Spe-
cifically, concordance was between 1.5 and 3.3 times 
higher for the unmasked gene. Campylobacter was the 
exception, here concordance when masked remained 
the same as the un-masked concordance. We explored 
additional masking levels of 20% and 30%; however, at 
20%, only 70% of the gene’s alignment remained and 
at 30% the entire gene was masked. Additionally, we 
determined levels of concordance for the V3 region, 
V4 region, and V3-V4 regions combined when entropy 
masked at the 10% level. The V3 and V3-V4 regions 
for Staphylococcus could only be masked at the 5% 
level due to low entropy. When the V3, V4, and V3-V4 
regions were masked, they consistently suffered a 
decrease in concordance (Tables S4A-D). Concordance 
prior to masking ranged from 1.3 to 8.0 times as high 

and concordance for two regions (V4 — Staphylococcus 
and V3 — Campylobacter) reduced to zero.

A key factor affecting the amount of phylogenetic 
information within a gene alignment is the number of 
SNPs. Concordantly, we found that the level of con-
cordance for any given gene was strongly predicted by 
alignment SNP count (Fig.  2). For example, the average 
number of SNPs for the 16S rRNA gene was less than half 
that of non-ribosomal genes (254 and 604 respectively), 
which reflects the gene’s relatively poor concordance. To 
explore the relationship between gene SNP count and 
concordance, we plotted the number of SNPs within 
each core gene alignment against its concordance (Fig. 2). 
Visual inspection of the plots suggested that both loga-
rithmic and logistic regression models may be appropri-
ate for these data. Results of a fivefold cross-validation 
procedure [59] indicated that the logarithmic model was 
preferred (Table S6). Figure 2 shows that as the number 
of SNPs in a gene’s alignment increases, there is a rapid 
initial increase in concordance becoming more plateaued 
after 500–1000 SNPs. To explore this observation fur-
ther, we concatenated the five gene alignments with the 
lowest concordance as well as the ten gene alignments 
with the lowest concordance and produced new phylog-
enies and levels of concordance. Comparing the aver-
age concordance of the five lowest scoring genes to the 
concordance of their concatenation (Table S7), the level 

Fig. 2  Levels of concordance with the species phylogeny for core genes plotted against each gene’s SNP count. For each genus, the logarithmic 
model is shown. Gene and gene category labels and coloring follow Fig. 1



Page 7 of 18Hassler et al. Microbiome          (2022) 10:104 	

increased from 26 to 64% (average 142 SNPs to 712 
SNPs) in Legionella, from 32 to 68% (70 to 352 SNPs) in 
Staphylococcus, from 32 to 40% (512 to 2562 SNPs) in 
Clostridium, and from 27 to 67% (141 to 707 SNPs) in 
Campylobacter. With the exception of Campylobacter, 
concordance for the ten gene concatenation had a greater 
increase. Specifically, the level increased from 29 to 76% 
(average 145 SNPs to 1448 SNPs) for Legionella, from 36 
to 74% (77 to 768 SNPs) for Staphylococcus, and from 37 
to 47% (602 to 3800 SNPs) for Clostridium. Although the 
concordance for Campylobacter did increase (30 to 60%, 
244 to 2443 SNPs), the increase was slightly lower than 
that obtained for the five gene concatenation (67%). The 
increase in SNPs for each genus was closely matched 
by an increase in gene alignment length (Table S4A-D). 
To compare the effect of SNP count and gene length on 
levels of concordance further, for each genus, we com-
pared the sum-squared error around a logarithmic model 
for plots of SNP count vs concordance (Fig. 2) and gene 
length vs concordance (Fig. S5). We found all values to be 
lower for SNP count, suggesting a stronger relationship 
(Table S8). Variation in nucleotide mutation rate among 
genes is likely an important factor affecting the relation-
ship between gene length and concordance as genes 
with similar or identical SNP counts could have different 
lengths and vice versa.

In addition to alignment SNP count, we also found 
that the type of SNP influenced concordance. SNPs can 
be categorized by factors that affect their substation 

rate, which, if accelerated, can confound the phyloge-
netic signal due to substitution saturation. Multiple fac-
tors can affect the rate, such as structure and function 
of the gene product and differences between nucleotide 
position; for example, position within a codon for pro-
tein coding genes and whether the nucleotide is paired 
or un-paired within the secondary structure of rRNA 
genes. Paired nucleotides are connected via hydrogen 
bonds and form stems whereas un-paired nucleotides 
form loops. To explore these factors, we delineated 
eleven SNP categories as follows: (1) non-ribosomal 
[NR]; (2) non-ribosomal 1st and 2nd codon position 
[NR 1–2]; (3) non-ribosomal 3rd codon position [NR 
3]; (4) protein coding ribosomal [CR]; (5) protein cod-
ing ribosomal 1st and 2nd codon position [CR 1–2]; (6) 
protein coding ribosomal 3rd codon position [CR 3]; 
(7) 16S, 23S, and 5S rRNA combined [rRNA]; (8) only 
16S rRNA; (9) 16S rRNA paired “stem” nucleotide; (10) 
16S rRNA un-paired “loop” nucleotide; and (11) any 
category of SNP from a single-copy core gene [core]. 
For all SNP categories, a fivefold cross-validation again 
showed that a logarithmic model best described the 
relationship between concordance and SNP count (Fig. 
S6, Table S6). Applying this model to the core SNP cat-
egory, we found that the number of SNPs required to 
produce a phylogeny with 80% concordance ranged 
from 570 (Staphylococcus) to 816 (Legionella) with an 
overall average of 690 (Fig. 3, Table S9). For the remain-
ing SNP categories (excluding rRNA) and averaging 

Fig. 3  Dot plot showing the number of SNPs required for 80% concordance with the species phylogeny for seven SNP categories (see text). 
Non-ribosomal SNPs (NR, dark blue), coding ribosomal SNPs (CR, light blue), core gene SNPs (Core, grey), 3rd and 1st/2.nd nucleotide positions 
from non-ribosomal genes (NR 3, NR 1–2; dark blue) and coding ribosomal genes (CR 3, CR 1–2; light blue). Genus labels follow Fig. 1. The average 
number of SNPs necessary for 80% concordance for each SNP category is indicated by larger dots
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across the genera, we found that 1st and 2nd nucleo-
tide position SNPs from non-ribosomal genes [NR 1–2] 
required the fewest number of SNPs for 80% concord-
ance (534) (Fig. 3), followed by 1st and 2nd nucleotide 
position from coding ribosomal genes [CR 1–2] (632), 
then coding ribosomal genes [CR] (651), non-ribosomal 
genes [NR] (826), 3rd nucleotide position from cod-
ing ribosomal genes [CR 3] (1,010), and finally the 3rd 
nucleotide position from non-ribosomal genes [NR 3] 
(1,737). The four rRNA categories (all rRNA genes, 16S 
rRNA, 16S rRNA stem, and 16S rRNA loop) fell below 
our threshold of 1000 SNPs (see “Methods”). Therefore, 
we additionally compared all eleven categories based on 
what level of concordance would be produced using the 
average number of SNPs for the rRNA categories (266) 
(Fig.  4, Table S10). The same ranking observed when 
using 1000 SNPs was observed for the non-rRNA cat-
egories, with NR 1–2 having the highest concordance 
at 69.7%. For the rRNA categories, the rRNA gene SNP 
category “rRNA” had the highest concordance (55.4%), 
followed by the 16S rRNA gene (52.8%), stem (49.4%), 
and lastly loop (42.1%) (Fig. 4).

Phylogenetic concordance and gene biochemical 
characteristic
To determine if there was an association between con-
cordance with the species phylogeny and any gene bio-
chemical characteristic, core genes were annotated with 
Gene Ontology (GO) terms. To facilitate comparison 
across all four genera, we identified terms that were 
assigned to one or more genes in all four genera and des-
ignated them universal terms. We identified 75 universal 
GO terms. Overall, terms assigned to coding ribosomal 
[CR] genes had among the lowest concordance (Fig. S7). 
For example, CR genes were distributed among 11 terms 
and seven of these terms were among the bottom ten, 
with four having the lowest concordances of all terms. 
In order of lowest concordance first, these terms were 
structural constituent of ribosome, translation, ribosome, 
large ribosomal subunit, intracellular, ribosome biogen-
esis, small ribosomal subunit, RNA binding, methyl-
transferase activity, nucleic acid binding, and transferase 
activity. Figure S7 again shows a correlation between 
concordance and SNP count. For example, the terms 
assigned to CR genes had among the lowest SNP count. 
However, two terms (transferase activity and nucleic 

Fig. 4  For each genus and SNP category, a dot plot showing levels of concordance predicted using the best fit logarithmic equation where the 
y-value was the average SNP count for rRNA alignments (266 nt) (see text for rationale). Large dots show average concordance for each genus. 
Non-ribosomal SNPs (NR) are shown in dark blue, coding ribosomal SNPs (CR) in light blue, core SNPs in grey, and rRNA SNPs in pink. Genus labels 
follow Fig. 1
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acid binding) had relatively high concordance and cor-
respondingly high SNP count. In contrast to the pattern 
seen for terms assigned to CR genes, the terms assigned 
to rpo genes had among the highest concordance: spe-
cifically, DNA-directed RNA polymerase activity (ranked 
first), DNA-dependent transcription (ranked third), and 
DNA binding (ranked 13th).

Inter‑genus phylogenetic concordance and recombination/
HGT
Given that the 16S rRNA gene and its hypervariable 
regions are often used in comparisons above the spe-
cies level, we extended our pipeline to evaluate phylo-
genetic concordance with the species phylogeny at the 
inter-genus level. For this analysis, we elected to build a 
species phylogeny that was representative of the human 
gut microbiome — a diverse community spanning six 
phyla. We followed Liu et  al. (2021) who delineated 54 
core genera for this microbiome (31 families, 17 orders, 
and 12 classes) (Tables S11 and S12) [60]. To maximize 
the number of core genes, we elected to use only com-
plete genome sequences available at NCBI. Using two 
representative species for each genus, we recovered 82 
species representing 41 of the 54 core genera. Although 
genome sequences were unavailable for 13 of the core 
genera (Table S12), we were able to capture all families. 
Strain information and assembly IDs for which genome 
sequences were available for our analysis are presented in 
Table S11.

Following the same procedure used at the intra-
genus level, we first used homologous gene clustering 
to delineate the core genome and identified 38 single-
copy core genes (Table S13). Of these, four showed evi-
dence of recombination/HGT and were excluded. The 
remaining 34 genes produced a species phylogeny that 
possessed strong bootstrap support (Figs. 5A and S8A) 
and showed good concordance with the consensus phy-
logeny differing by 11 bipartitions (86.3% concordance) 
(Fig. S8B). The bipartition differences were distrib-
uted evenly through the phylogeny and again involved 
minor rearrangements among closely placed taxa. To 
further examine the level of concordance between the 
two approaches, we examined how concordance was 
distributed among the separate gene phylogeny com-
parisons (i.e., comparison to the species phylogeny and 

comparison to the consensus phylogeny) and found this 
distribution to be highly concordant between the two 
approaches (Fig. 5B and Table S13).

A notable positioning in the species phylogeny was 
the placement of Fusobacterium. Historically, this 
genus belongs to the phylum Fusobacteriota (formerly 
Fusobacteria); however, in our phylogeny, Fusobacte-
rium fell within the phylum Bacillota (formally Firmi-
cutes). Phylogenetic instability of Fusobacteriota and 
placement within Bacillota has been reported previ-
ously [61, 62]. To explore this placement further, we 
examined all 38 gene phylogenies and found that all but 
three (16S, rpoC, and 50S L27) placed Fusobacterium 
within Bacillota. Of these three, two (16S and rpoC) 
tested positive for recombination. Inspection of the 
rpoC sequence alignment showed a ~ 600  bp insertion 
starting at nucleotide position 3083 that was shared 
among Fusobacterium, all taxa within the Bacteroi-
dota, Pseudomonadota, and Verrucomicrobiota phyla, 
and all four genera of the Negativicutes class within 
Bacillota. A possible explanation for this insertion is an 
ancient recombination event involving these taxa. To 
explore this, we removed the insertion from the align-
ment and re-built the phylogeny. The resulting phylog-
eny placed Fusobacterium within Bacillota, supporting 
the recombination hypothesis. It is possible that similar 
recombination events may have confounded previous 
phylogenetic analyses involving Fusobacteriota.

Concordance with the species phylogeny for each gene, 
16S rRNA hypervariable regions, and a ~ 440 bp section 
of rpoB (see “Discussion”) was evaluated and the full 16S 
rRNA gene ranked 10th out of 49, with 73.8% concord-
ance (Fig.  5B and Table S13). Concordance for all loci 
ranged from 90.0 to 40.0%, with rpoB ranking highest 
and most hypervariable regions (V3, V5, V6, V7, V8, and 
V9) lowest (55.0–40.0%). Concordance for the remaining 
hypervariable regions (V4, V3-V4, and V1-V2) ranged 
from 62.5 to 60.0% (30th–36th). To again complement 
our gene ranking approach based on concordance with 
the species phylogeny, we calculated log-likelihood val-
ues for each gene phylogeny and ran the approximately 
unbiased (AU) topology test. Results again showed the 
likelihood values to be highly concordant with concord-
ance levels (Table S13) and one phylogeny (rpoB) showed 
no significant difference.

(See figure on next page.)
Fig. 5  A ML phylogeny showing relationship among 82 species that represent 41 core genera of the human gut microbiome. Taxonomic 
nomenclature and classification follow NCBI, and for each phylum, updated names are shown with longstanding informal names shown in 
parentheses. Levels of bootstrap support lower than 90% are shown (500 replicates). For each genus, two representative species are included 
(names not shown — see Table S11 and Fig. S8A for details). B Dot plot showing levels of concordance for core genes and 16S hypervariable 
regions. Black dots show concordance with the species phylogeny and grey dots show concordance with the phylogeny representing a consensus 
of the topologies of each single-copy core gene phylogeny. The 440-bp section of the rpoB gene referred to in the text is shown with an asterisk. 
Gene and gene category labels and coloring follow Fig. 1
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Fig. 5  (See legend on previous page.)



Page 11 of 18Hassler et al. Microbiome          (2022) 10:104 	

Discussion
rRNA and protein coding ribosomal genes show weak 
concordance with the species phylogeny
Focusing first on our intra-genus analyses, we show a 
weak concordance with the species phylogeny for the 16S 
rRNA gene in four taxonomically diverse and clinically 
relevant genera: Staphylococcus, Clostridium, Legionella, 
and Campylobacter. One explanation for this weak con-
cordance is recombination and HGT, which, concord-
ant with accumulating reports in the literature [13–16, 
63–65], we detected in all four genera. Another expla-
nation is the gene’s low SNP count. The gene possessed 
an average of 254 SNPs, which was less than two-fifths 
of that required to produce a phylogeny 80% concordant 
with the species phylogeny. These findings are concord-
ant with a recent study that showed stronger taxonomic 
resolution for the 16S-23S-5S operon compared to 
just the 16S rRNA gene [66]. Only 17.0% of 16S rRNA 
nucleotide sites were variable and this low SNP propor-
tion likely reflects ribosomal functional constraint on 
nucleotide substitution for the gene’s RNA imposed by 
the fundamental translational processes of tRNA bind-
ing, mRNA decoding, and peptidyl transfer. Intrinsic to 
these processes is the tertiary structure of the rRNA mol-
ecule, which acts as a scaffold for the ribosomal proteins. 
The importance of this structure with regard to rRNA 
evolution was recently highlighted by Bernier et al. who 
showed that approximately 90% of rRNA forms a tertiary 
“common core” of elements described as helices, junc-
tions, and loops that are highly conserved in ribosomes 
of all extant species [67]. This work is consistent with our 
finding that 83.0% of nucleotide sites for 16S rRNA across 
our four taxonomic groups showed no variation. In addi-
tion to the 16S rRNA gene as a whole, our SNP-by-SNP 
analysis showed low concordance for 16S rRNA SNPs 
and rRNA SNPs in general  when compared to protein 
coding DNA SNPs. Numerous studies have shown that 
rRNA nucleotide substitution rate is highly conserved 
at the center of the ribosome and increases as you move 
to the surface [68–74]. These observations likely reflect 
the fact that nucleotides at the surface of the ribosome 
are distal from the active binding sites at the core and are 
therefore less important in translational processes and 
maintenance of the rRNA tertiary structure. Further-
more, given their relatively poor concordance (close to 
that of the third codon position in non-ribosomal genes), 
there appears to be a significant release of functional 
constraint on this small proportion of nucleotides.

Within the literature, there has been considerable focus 
on the secondary structure mutation rate for eukaryote 
rRNA. However, results are conflicting, with some stud-
ies showing a faster rate for stems, others for loops, and 
others showing no difference [74–80]. For prokaryotes, 

studies have suggested that stems evolve more rap-
idly than loops [72, 81]. It is proposed that these paired 
stem regions experience selective pressure to maintain 
the rRNA secondary structure. Specifically, structure-
disrupting mutations are compensated for via positive 
selection of a secondary mutation, which restores the 
secondary structure of the molecule [82–88]. A possi-
ble ramification of an accelerated mutation rate skewed 
towards stems may be increased substitution saturation 
and reduced phylogenetic signal. However, here, we show 
for a diverse range of taxa that the number of SNPs is dis-
tributed evenly among stems and loops and concordance 
is lower for loops suggesting that un-paired nucleotides 
may be more susceptible to saturation (Fig. 4).

Although concordance for protein coding ribosomal 
genes [CR] was higher than for rRNA genes, it was still 
lower than for non-ribosomal genes [NR]. One explana-
tion for this weaker concordance is recombination/HGT, 
as 43.0% of protein coding ribosomal genes exhibited 
evidence of this through at least one of the tests. How-
ever, this number was relatively low when compared to 
rRNA genes (83.0%) and very similar to non-ribosomal 
genes (40.0%) (Table S5). Additional factors may be the 
relatively low average SNP count and proportion per 
gene when compared to non-ribosomal genes. Specifi-
cally, the SNP count was approximately one-third (218 
vs 604) and the SNP proportion was 50.4% as opposed 
to 66.0%. (Table S5 and Fig. S9). A key factor governing 
this lower number of SNPs was a relatively short average 
gene length (434 bp) — approximately half that of non-
ribosomal genes (928 bp) (Fig. S5). This short gene, and 
therefore protein length, likely facilitates rapid ribosome 
production and assembly that is required during periods 
of high metabolic activity and cell division.

Our analysis to associate species phylogeny concord-
ance with gene biochemical characteristic confirmed a 
poor concordance for genes involved in translation. In 
contrast, genes involved in transcription (an equally fun-
damental, yet distinct cellular process) possessed one 
of the strongest levels of concordance (Fig. S7). Specifi-
cally, the concordance for coding ribosomal genes [CR] 
was 53.5% as opposed to 81.3% for rpo genes (Table S5). 
This difference is most likely due to the much longer 
length (and hence SNP count) for RNA polymerase genes 
— average 2895  bp vs 434  bp (Table S5). Despite the 
large difference in size for these gene types, their aver-
age SNP proportions were very similar and relatively low 
(rpoABC = 52.4% vs CR = 50.4%) (Fig. S9 and Table S5). 
Proteins with slow mutation rates typically form large 
complexes and have surfaces that interact with other 
proteins, which results in elevated selection pressure to 
maintain function and prevent misfolding or aggrega-
tion [89–91]. RNA polymerase proteins and in particular 
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ribosomal proteins exemplify these characteristics [92–
96] likely contributing to the low SNP proportions we 
detected. Moreover, recent cryo-EM studies have sug-
gested that the bacterial ribosome and RNA polymerase 
form a transcription-translation complex during coupling 
of transcription and translation [94, 97–101]. In addition, 
these gene categories have above average expression lev-
els [102, 103], which has been correlated with slow muta-
tion rates and is thought to contribute to the selection 
pressure described above [91].

In contrast to rRNA SNPs, our SNP-by-SNP analysis 
showed that protein coding ribosomal SNPs possessed a 
level of concordance roughly equivalent to that of non-
ribosomal genes (concordance for first and second codon 
position, third codon position, and all codon positions 
had similar distributions — Fig.  4). Consequently, there 
appears to be sufficient functional constraint to limit sub-
stitution saturation and preserve the phylogenetic signal. 
These findings validate a phylogenetic approach where 
multiple coding ribosomal genes are combined, with our 
results indicating that three or more genes would be suffi-
cient. This approach would be practical when attempting 
to infer phylogenetic relationships over wide evolution-
ary distances.

16S rRNA hypervariable regions show weak concordance 
with the species phylogeny: implications for microbiome 
studies
Concordance with the species phylogeny for the hyper-
variable regions of the 16S rRNA gene was typically lower 
than that of the whole gene (a few regions were compara-
ble) and masking provided little to no benefit (Fig. 1 and 
Tables S4A-D). Again, a major factor likely contributing 
to these findings was low SNP count. The average num-
ber of SNPs for the hypervariable regions was 36, approx-
imately one-nineteenth the number of SNPs necessary 
for 80% concordance. Although entropy masking has the 
potential to improve the phylogenetic signal by masking 
sites that may be substitution saturated, the trade-off is 
a decrease in the number of SNPs from which to derive 
phylogenetic information. For the full 16S rRNA gene, 
masking decreased the average number of SNPs from 
254 to 137 — approximately one-fifth the number neces-
sary for 80% concordance. Masking the V3, V4, and V3-4 
regions decreased the SNP count and concordance even 
further. Our results highlight how concordance with the 
species phylogeny for different genes changes depending 
on the evolutionary scale [104, 105]. Moving from intra- 
to inter-genus level for 16S rRNA increased the num-
ber of SNPs threefold with an accompanying increase 
in concordance with the species phylogeny. In contrast 
to the SNPs observed at the intra-genus level, the SNPs 
acquired at the inter-genus level show much improved 

concordance with the species phylogeny, suggesting a 
slower rate of evolution and minimal saturation, which in 
turn suggests that these nucleotides may be closer to the 
core of the ribosome.

Hypervariable regions of the 16S rRNA gene are regu-
larly used in microbiome studies and diversity metrics 
are often calculated using approaches that incorporate 
phylogenetic information: for example, UniFrac for beta 
diversity and Faith’s phylogenetic diversity for alpha 
diversity. Specifically, both approaches require a phylog-
eny whose patristic distances (branch lengths) among 
OTUs are used to calculate the metric. Statistically signif-
icant differences in community composition may hinge 
on subtle differences in beta diversity and a poor phylo-
genetic signal may confound these analyses with possibly 
important ramifications — for example, studies of the 
human microbiome as it pertains to health and disease. 
Our results demonstrate that if taxonomic assignments 
at the intra-genus level are employed, the use of diversity 
metrics that incorporate phylogenetic signal when using 
the 16S rRNA gene and any of its hypervariable regions 
are problematic and should be discouraged. In addition, 
we show that entropy masking does not resolve the prob-
lem, rather it further decreases concordance and likewise 
should be discouraged. Another problem with 16S rRNA 
gene hypervariable regions is that they often fail to dis-
tinguish taxa below the genus level [5]. Lastly, it is also 
important to consider the large variation in 16S rRNA 
gene copy number among bacterial genomes as this has a 
strong potential to skew taxon frequency measurements 
and diversity metrics (Fig. S3).

Although no single gene has the appropriate combina-
tion of conserved and hypervariable regions to replicate 
the 16S rRNA gene’s ability to capture all members of 
any microbial community, other genes may be utilized to 
provide more targeted (narrow) taxonomic profiles that 
have higher taxonomic resolution and are more accurate 
and reliable [47, 106]. A good example is the rpoB gene 
(β subunit of RNA polymerase). This gene (along with 
rpoC — β’ subunit) has several beneficial characteristics. 
It is long, contains conserved and hypervariable regions, 
exists universally as a single-copy gene in bacteria [107], 
and shows high concordance (85.0% average at the intra-
genus level and 90.0% at the inter-genus level). Unfortu-
nately, the rpoB gene is too variable across all bacteria to 
facilitate the design of universal PCR primers. However, 
various sections of rpoB have been used (often paired 
with 16S rRNA) to profile select members of a commu-
nity [27]. For example, a Web of Science key word search 
detected 148 studies utilizing rpoB to profile microbial 
communities. Numerous studies have targeted the same 
general region of the gene [47, 106, 108–110] and the 
recent primer pair of Ogier et al. [47] (~ 440 bp) targeting 
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the nematode gut microbiome captures this region. We 
evaluated concordance for this region and measured an 
average of 47.6% at the intra-genus level and 70.0% at 
the inter-genus level (Table S4A-D and S13). While this 
concordance is markedly lower than that of the full rpoB 
gene, at the intra-genus level, it is considerably higher 
than the average level of concordance for the 16S rRNA 
hypervariable regions (19.8%) and the masked full 16S 
rRNA gene (31.8%). At the inter-genus level, however, 
the concordance is more comparable [70.0% (partial 
rpoB) vs 72.8% (full 16S rRNA gene)]. Given that con-
cordance for the full 16S rRNA gene is much improved 
at the inter-genus level, a robust strategy might be to pair 
it with a more targeted locus (the hypervariable regions 
still suffer from low concordance and their use is not 
recommended). The full 16S rRNA gene would provide 
information on bulk changes at and above the inter-
genus level across all bacteria and one or more additional 
loci would provide targeted intra-genus level informa-
tion. Improvements in long read sequencing technol-
ogy such as PacBio now make whole gene sequencing at 
the community level more feasible. However, it should 
be understood that the 16S rRNA gene is still prone to 
recombination and phylogenetic error. Furthermore, var-
iation in copy number among strains and species still has 
the potential to skew diversity metrics.

Conclusion
In summary, 16S rRNA gene nucleotide substitution at 
the intra-genus level is limited to a small proportion of 
the gene that appears localized at the surface of the ribo-
some where functional constraint is released. These fac-
tors result in a gene with a low number of intra-genus 
level SNPs that likely experience substitution satura-
tion. Coupled with recombination and HGT, these fac-
tors combine to produce a gene with one of the weakest 
levels of concordance with the species phylogeny at this 
taxonomic level of any gene in the core genome. Con-
sequently, we advocate discontinuing its use in species 
delineation and phylogenetics and recommend utilizing 
whole genome sequences or multiple coding ribosomal 
gene sequences where possible. Concordance with the 
species phylogeny for the hypervariable regions of the 
16S rRNA gene at the intra-genus level is weaker still and 
entropy masking only exacerbates the situation. At the 
inter-genus level, although concordance for the whole 
16S rRNA gene is much improved, the hypervariable 
regions still show relatively low concordance. These find-
ings coupled with those showing recombination/HGT 
and high variation in copy number have important rami-
fications for microbial community studies where these 
regions are used extensively. Specifically, their use could 
be misleading; in particular, if they are the sole locus 

employed and we recommend alternative approaches 
where possible. For example, whole genome metagenom-
ics is a powerful approach that attempts to assemble all 
genomes within the community. Recent progress with 
long read sequencing technology has made this approach 
more feasible by lowering the complexity of genome 
assembly — a serious impediment for short read tech-
nology. However, whole genome metagenomics (short or 
long read technology) is technically challenging and still 
cost prohibitive in many situations. Consequently, ampli-
con or gene sequencing remains an effective and practical 
approach for many microbial community studies. There-
fore, despite the limitations, and depending on the taxo-
nomic capture required, a practical compromise could be 
full 16S rRNA gene sequencing coupled with additional 
more taxonomically targeted loci. Regardless, widely 
used analytical approaches that incorporate phylogenetic 
information into the calculation of diversity metrics have 
the potential to confound results when using 16S rRNA 
gene sequence and are strongly discouraged.

Methods
Sequence data annotation
For each strain genome sequence (contigs and complete 
genomes), open reading frames (ORFs) were determined 
using Prokka v1.11 [111] and all genomes were reanno-
tated using custom annotation databases for each genus 
using Prokka v1.11. These custom annotation databases 
included the most current annotations available at Ref-
Seq genome for each of the four genera.

Homologous gene clustering and phylogenetic analyses
Homologous gene clustering for each genus was per-
formed using the Markov Clustering (MCL) algorithm, 
as implemented in the software MCLBlastLINE [112]. 
The software uses MCL to assign gene sequences to clus-
ters with putative shared homology based on a BLASTp 
search between all pairs of protein sequences (E-value 
cutoff: 1e − 5). An inflation parameter of 1.8 was speci-
fied in the MCL algorithm [112] as simulations have 
shown this value to be generally robust to false positives 
and negatives [113]. Results of these analyses were used 
to build gene content tables, which provide information 
regarding the presence or absence of a gene sequence 
within a homologous gene cluster (as well as copy num-
ber). For each genus, MCL gene clusters were consid-
ered part of the core genome if they were present in all 
genomes. We excluded clusters containing paralogous 
genes by only selecting clusters that contained a single 
gene/genome (single-copy core clusters).

Nucleotide sequences for each single-copy core cluster 
were aligned using Probalign v1.4 [114]. The number of 
SNPs present in nucleotide alignments was determined 
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using the BioPerl module Bio::PopGen::Statistics avail-
able from CPANM [115]. Each alignment was tested 
recombination using the Pairwise Homoplasy Index 
approach as implemented in the software PHI, which is 
part of the package PhiPack [44] and the single break-
point (SBP) approach [45] as implemented in HyPhy 
[116]. The alignments were additionally tested for HGT 
using the software HGTector [46]. The PHI recombina-
tion test measures the significance of discordant phy-
logenies across sites in an alignment and is based on the 
compatibility of parsimoniously informative sites. The 
SBP recombination approach scans an alignment for pos-
sible break points that would be the result of recombi-
nation. Maximum likelihood (ML) phylogenies are built 
for each alignment segment on either side of the possible 
break point. Using this approach, alignments are con-
sidered putatively recombinant if they possess a single 
breakpoint with discordant phylogenies on either side. 
HGTector assesses protein sequences for HGT using a 
BLAST-based approach at NCBI. Sequences are flagged 
as horizontally acquired if the top BLAST hits for the 
gene are from user-defined distantly related species.

Using the generalized time-reversible (GTR) model 
of nucleotide substitution, an un-rooted ML phylog-
eny (gene phylogeny) for each alignment was produced 
using PhyML v3.0 [117]. The proportion of invariable 
sites and gamma shape parameter distribution were esti-
mated using maximum likelihood. Branch support for 
these phylogenies was provided via 200 bootstrap rep-
licates. Using the same approach with PhyML, the ML 
species phylogeny was constructed using a concatena-
tion of all single-copy core gene cluster alignments that 
tested negative for all three recombination/HGT tests. 
Note that given our approach targets gene sequences 
(intact open reading frames) extracted from genome 
sequences, no intergenic nucleotide sequence is incor-
porated into the concatenation. The species phylogenies 
are presented in the supplementary material (Figs. S1A, 
C, E, and G) (intra-genus) and Figs. 5A and S8A (inter-
genus). Branch support for these phylogenies was pro-
vided via 500 bootstrap replicates. Reliability of species 
phylogenies was further assessed by comparison to a sec-
ond core gene phylogeny that represented a consensus of 
the ML topologies of each single-copy core gene phylog-
eny. The consensus phylogeny was constructed using the 
consense program within the PHYLIP package v3.6 [118]. 
We used the Majority Rule extended approach. Here, any 
grouping of taxa that occurs in more 50% of the phylog-
enies is included in the consensus phylogeny. For group-
ings that occur in less than 50% of the phylogenies, those 
that are compatible with the existing consensus topol-
ogy are sequentially added based on their frequency of 
occurrence.

Core gene phylogeny concordance with the species 
phylogeny
The topology of each single-copy core gene phylogeny 
was compared to its respective species phylogeny by 
constructing a consensus phylogeny between the two 
phylogenies using SumTrees (majority-rule) as imple-
mented in Dendropy [119]. Concordance was quantified 
by calculating the proportion of concordant bipartitions 
and genes ranked accordingly. Our concordance metric 
equates to the Robinson-Foulds distance metric [120]. 
This metric is a quantification of discordant bipartitions. 
Here, we normalize the metric by expressing it as a pro-
portion of concordant bipartitions. To complement our 
concordance ranking approach, we additionally calcu-
lated log-likelihood values for each gene phylogeny and 
ran the approximately unbiased (AU) topology test [48] 
using IQ-TREE v2.0.6 [121]. The AU test is a robust test 
that uses multi-scale bootstrapping of site-likelihoods to 
determine significant differences in topology.

rRNA gene alignment, recombination/HGT analyses, 
and phylogenetic analyses
For the rRNA gene phylogenetic analyses, given the 
presence of multiple gene copies or the 16S rRNA, 23S 
rRNA, and 5S rRNA gene sequences within individ-
ual genomes, we randomly selected representative 16S 
rRNA, 23S rRNA, and 5S rRNA gene sequences for each 
species in each genus. For the recombination tests (PHI 
and SBP), we used all copies within a genome. rRNA gene 
sequences within genomes were located using BLASTn 
and aligned using the Fast Fourier Transform (MAFFT) 
v7.309 [122] plugins as implemented in Geneious v9.0.4 
[123]. We were unable to test the rRNA genes for HGT 
using HGTector because the program requires an amino 
acid sequence as input. As an alternative, we took a phy-
logenetic approach. Using the rRNA alignments contain-
ing all gene copies, a maximum likelihood phylogeny 
was produced using the GTR model implemented in 
PhyML. A monophyletic grouping of gene copies indi-
cated vertical inheritance, whereas a polyphyletic group-
ing provided evidence for HGT. For example, if species A 
possessed a horizontally exchanged copy of its 16S rRNA 
gene from species B, then we would expect the horizon-
tally exchanged copy within species A to group among 
those from species B, separately from other vertically 
exchanged copies of the gene within species A.

Phylogenetic concordance and nucleotide substitution
To assess the accuracy of logarithmic and logistic regres-
sion models to predict the relationship between concord-
ance with the species phylogeny and the number of SNPs 
within a gene alignment, we used a fivefold cross-valida-
tion [124]. This analysis was done by randomly removing 
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20% of our data, fitting both the models based on the 
remaining 80% of our data, and then predicting the val-
ues of the removed datapoints based on the new fit. We 
then calculated the difference between the predicted 
values and the actual values for both models. Finally, we 
used the sum of the squared errors as the criterion to 
determine the best fit model.

To test if utilizing more genes, and thereby more SNPs, 
would increase concordance with the species phylogeny, 
we concatenated the alignments of the five and ten low-
est scoring genes from each genus and produced two 
new ML phylogenies (procedure described above). We 
then compared these phylogenies to their respective spe-
cies phylogeny to measure concordance. These measures 
were then compared to the average measures for the five 
and ten individual gene sets to determine if any increase 
in measurement of concordance occurred.

For each of the SNP categories, SNPs were extracted 
from the single-copy core gene alignments using a cus-
tom python script (see “Availability of data and materi-
als”). Stem and loop nucleotides were determined by 
predicting the secondary structure using rPredictorDB 
[125]. rPredictorDB uses a database of experimentally 
derived rRNA secondary structures as a template to 
predict those of individual input sequences. Sequences 
in the 16S rRNA gene alignments were then cross ref-
erenced with their associated secondary structures and 
only SNPs that were identified as stems or loops in all 
species’ sequences were extracted.

For each genus and SNP category, we described the 
relationship between concordance with the species phy-
logeny and the number of SNPs. For seven of the eleven 
categories, the following procedure was followed (the 
four remaining categories were excluded due to a limited 
number of SNPs in their alignments — see below). SNP 
columns were incrementally extracted at random (with-
out replication) from the core gene alignments, building 
1000 separate alignments that ranged in size from 1  bp 
(SNP) to 1000 bp (SNPs). For each of these alignments, 
concordance was measured and plotted against the SNP 
count (Fig. S6). Finally, cross-validation was again used 
to determine the model that best described the relation-
ship between concordance and SNP count. To compare 
the concordance among SNP categories, we determined 
the number of SNPs necessary for 80% concordance. This 
was accomplished as follows. Utilizing the best fit model 
for each category, the number of SNPs required was 
obtained by inverting the estimated model.

The four SNP categories with limited SNPs in their 
alignment were the rRNA categories (Table S14). With 
the exception of the stem category for Legionella, which 
contained only two SNPs, we extracted the maximum 
number of SNPs available in each alignment (64 through 

871). We then followed the same iterative procedure 
described above building as many alignments as pos-
sible. Again, concordance was plotted against the SNP 
count and cross-validation used to determine the model 
that best described the relationship. To compare levels of 
concordance, we estimated concordance using the best 
fit model and the average number of SNPs for these cat-
egories (266). For comparative purposes, we applied the 
same procedure to the other seven categories and plotted 
the results (Fig. 4).

Concordance with the species phylogeny and gene 
biochemical characteristic
Core genes were annotated with Gene Ontology (GO) 
terms [126] using InterProScan [127]. Terms that were 
assigned to one or more genes in all four genera were 
designated universal terms. For example, if the term 
“ATP binding” was only assigned to genes in three out 
of the four genera, it would not be considered univer-
sal. For each universal term, concordance for associated 
genes was averaged, both within each genus and across 
all genera. Terms were then ranked according to their 
concordance.

Inter‑genus phylogenetic concordance
Using the 82 closed genome sequences (species) outlined 
in the “Results” section, we used the same procedure 
used at the intra-genus level to evaluate phylogenetic 
concordance with the species phylogeny.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40168-​022-​01295-y.

Additional file 1: Figure S1. ML species and consensus phylogenies for 
each genus. Figure S2. rRNA HGT ML phylogenies for each genus. Figure 
S3. rRNA gene copy numbers for each species. Figure S4. 16S rRNA 
gene hypervariable region concordance for each genus. Figure S5. Gene 
length versus concordance for each genus. Figure S6. SNP count versus 
concordance for each SNP category and genus. Figure S7. Average level 
of concordance and SNP count for genes associated with universal GO 
terms. Figure S8. ML inter-genus phylogeny (includes individual species 
names). Figure S9. SNP proportion versus concordance for each SNP 
category.

Additional file 2. Excel spreadsheet including all supplementary tables, 
titles, and legends.

Acknowledgements
We thank Lauren O’Connell for her assistance with the rpoB gene PCR primer 
analysis; Allison Mann and J. Nicholas Fisk for their helpful comments during 
the editorial stage of manuscript preparation; and Terence Hassler for his 
enthusiasm and assistance with manuscript preparation.

Authors’ contributions
VPR provided conceptual framework; HBH and VPR provided the study design; 
HBH assembled the data; HBH performed analyses with contributions from BP, 

https://doi.org/10.1186/s40168-022-01295-y
https://doi.org/10.1186/s40168-022-01295-y


Page 16 of 18Hassler et al. Microbiome          (2022) 10:104 

CM, EL, RWJ, and BTR; HBH provided data visualizations; HBH and VPR wrote 
the manuscript. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the 
article and at 10.5281/zenodo.5976008.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biological Sciences, College of Science, Clemson University, 
Clemson, SC 29634, USA. 2 Software Engineer, ITW Hartness, Greenville, SC 
29605, USA. 3 School of Mathematical and Statistical Sciences, Clemson Univer-
sity, Clemson, SC 29634, USA. 

Received: 12 July 2021   Accepted: 23 May 2022

References
	 1.	 Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: 

the primary kingdoms. Proc Natl Acad Sci U S A. 1977;74(11):5088–90.
	 2.	 Woese C. Bacterial evolution. Microbiol Rev. 1987;51(2):221–71.
	 3.	 Van de Peer Y. A quantitative map of nucleotide substitution rates in 

bacterial rRNA. Nucleic Acids Res. 1996;24(17):3381–91.
	 4.	 Rintala A, Pietilä S, Munukka E, Eerola E, Pursiheimo JP, Laiho A, et al. Gut 

microbiota analysis results are highly dependent on the 16s rRNA gene 
target region, whereas the impact of DNA extraction is minor. J Biomol 
Tech. 2017;28(1):19–30.

	 5.	 Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen 
L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-
level microbiome analysis. Nat Commun. 2019;10(1):5029.

	 6.	 Fouhy F, Clooney AG, Stanton C, Claesson MJ, Cotter PD. 16S rRNA gene 
sequencing of mock microbial populations-impact of DNA extrac-
tion method, primer choice and sequencing platform. BMC Microbiol. 
2016;16(1):123.

	 7.	 Boughner LA, Singh P. Microbial ecology: where are we now? Postdoc J. 
2016;4(11):3–17.

	 8.	 Daubin V, Moran NA, Ochman H. Phylogenetics and the cohesion of 
bacterial genomes. Science. 2003;301(5634):829–32.

	 9.	 Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: 
the complexity hypothesis. Proc Natl Acad Sci U S A. 1999;96(7):3801–6.

	 10.	 Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, et al. The 
All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of 
all sequenced type strains. Syst Appl Microbiol. 2008;31(4):241–50.

	 11.	 Paquola ACM, Asif H, Pereira CAB, Feltes BC, Bonatto D, Lima WC, et al. 
Horizontal gene transfer building prokaryote genomes: genes related 
to exchange between cell and environment are frequently transferred. 
J Mol Evol. 2018;86(3–4):190–203.

	 12.	 Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S 
rRNA genes causes overestimation of prokaryotic diversity. Appl Envi-
ron Microbiol. 2013;79(19):5962–9.

	 13.	 Tian RM, Cai L, Zhang WP, Cao HL, Qian PY. Rare events of intragenu-
sand intraspecies horizontal transfer of the 16S rRNA gene. Genome 
Biol Evol. 2015;7(8):2310–20.

	 14.	 Tourova TP, Kuznetzov BB, Novikova EV, Poltaraus AB, Nazina TN. 
Heterogeneity of the nucleotide sequences of the 16S rRNA genes 

of the type strain of Desulfotomaculum kuznetsovii. Microbiology. 
2001;70(6):788–95.

	 15.	 Wai Ho Y, Zhang Z, Wang Y. Distinct types of rRNA operons exist in the 
genome of the actinomycete Thermomonospora chromogena and 
evidence for horizontal transfer of an entire rRNA operon. J Bacteriol. 
1999;181(17):5201–9.

	 16.	 Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and 
redundancy of 16S rRNA sequences in genomes with multiple rrn 
operons. J Bacteriol. 2004;186(9):2629–35.

	 17.	 Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, et al. 
Diversity of 16S rRNA genes within individual prokaryotic genomes. 
Appl Environ Microbiol. 2010;76(12):3886–97.

	 18.	 Wang GCY, Wang Y. Frequency of formation of chimeric molecules as 
a consequence of PCR coamplification of 16S rRNA genes from mixed 
bacterial genomes. Appl Environ Microbiol. 1997;63(12):4645–50.

	 19.	 de la Cuesta-Zuluaga J, Escobar JS. Considerations for optimizing 
microbiome analysis using a marker gene. Front Nutr. 2016;3:26.

	 20.	 Louca S, Doebeli M, Parfrey LW. Correcting for 16S rRNA gene copy 
numbers in microbiome surveys remains an unsolved problem. Micro-
biome. 2018;6(1):41.

	 21.	 Ludwig W, Schleifer KH. Bacterial phylogeny based on 16S and 23S 
rRNA sequence analysis. FEMS Microbiol Rev. 1994;15(2–3):155–73.

	 22.	 Van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindström K, 
Eardly BD. Discordant phylogenies within the rrn loci of Rhizobia. J 
Bacteriol. 2003;185(10):2988–98.

	 23.	 Chan JZM, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. 
Defining bacterial species in the genomic era: insights from the genus 
Acinetobacter. BMC Microbiol. 2012;12:302.

	 24.	 Nowell RW, Green S, Laue BE, Sharp PM. The extent of genome flux and 
its role in the differentiation of bacterial lineages. Genome Biol Evol. 
2014;6(6):1514–29.

	 25.	 Sun Z, Zhang W, Guo C, Yang X, Liu W, Wu Y, et al. Comparative genomic 
analysis of 45 type strains of the genus bifidobacterium: a snapshot of 
its genetic diversity and evolution. PLoS One. 2015;10(2):e0117912.

	 26.	 Velsko IM, Perez MS, Richards VP. Resolving phylogenetic relationships 
for Streptococcus mitis and Streptococcus oralis through core- and 
pan-genome analyses. Genome Biol Evol. 2019;11(4):1077–87.

	 27.	 Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S. 
Use of 16S rRNA and rpoB genes as molecular markers for microbial 
ecology studies. Appl Environ Microbiol. 2007;73(1):278–88.

	 28.	 Daubin V, Gouy M, Perrière G. A phylogenomic approach to bacterial 
phylogeny: evidence of a core of genes sharing a common history. 
Genome Res. 2002;12(7):1080–90.

	 29.	 Lang JM, Darling AE, Eisen JA. Phylogeny of bacterial and archaeal 
genomes using conserved genes: supertrees and supermatrices. PLoS 
One. 2013;8(4):e62510.

	 30.	 Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of 
gene transfer. Mol Biol Evol. 2002;19(12):2226–38.

	 31.	 Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NPJ, Enright MC, et al. 
Recombination within natural populations of pathogenic bacteria: 
short-term empirical estimates and long-term phylogenetic conse-
quences. Proc Natl Acad Sci U S A. 2001;98(1):182–7.

	 32.	 Dams E, Yamada T, De Baere R, Huysmans E, Vandenberghe A, De 
Wachter R. Structure of 5S rRNA in actinomycetes and relatives and 
evolution of eubacteria. J Mol Evol. 1987;25(3):255–60.

	 33.	 Dewhirst FE, Shen Z, Scimeca MS, Stokes LN, Boumenna T, Chen T, 
et al. Discordant 16S and 23S rRNA gene phylogenies for the genus 
Helicobacter: implications for phylogenetic inference and systematics. J 
Bacteriol. 2005;187(17):6106–18.

	 34.	 Mun S, Lee J, Lee S, Han K, Ahn T-Y. Phylogeny of flavobacteria group 
isolated from freshwater using multilocus sequencing analysis. Genom-
ics Inform. 2013;11(4):272–6.

	 35.	 Palmer A, Painter J, Hassler H, Richards VP, Bruce T, Morrison S, et al. 
Legionella clemsonensis sp. nov.: a green fluorescing Legionella 
strain from a patient with pneumonia. Microbiol Immunol. 
2016;60(10):694–701.

	 36.	 Neto IVR, Ribeiro RA, Hungria M. Genetic diversity of elite rhizobial 
strains of subtropical and tropical legumes based on the 16S rRNA and 
glnII genes. World J Microbiol Biotechnol. 2010;26(7):1291–302.

	 37.	 Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella 
L, Olmedo G. Understanding the evolutionary relationships and major 



Page 17 of 18Hassler et al. Microbiome          (2022) 10:104 	

traits of Bacillus through comparative genomics. BMC Genomics. 
2010;11:332.

	 38.	 Baig A, Weinert LA, Peters SE, Howell KJ, Chaudhuri RR, Wang J, et al. 
Whole genome investigation of a divergent clade of the pathogen 
Streptococcus suis. Front Microbiol. 2015;6:1191.

	 39.	 Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight 
R. Using QIIME to analyze 16S rRNA gene sequences from microbial 
communities. Curr Protoc Bioinformatics. 2011;Chapter 10:Unit 10.7. 
https://​doi.​org/​10.​1002/​04712​50953.​bi100​7s36.

	 40.	 Faith DP. Conservation evaluation and phylogenetic diversity. Biol 
Conserv. 1992;61(1):1.

	 41.	 Lozupone C, Knight R. UniFrac: a new phylogenetic method 
for comparing microbial communities. Appl Environ Microbiol. 
2005;71(12):8228–35.

	 42.	 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, 
et al. Reproducible, interactive, scalable and extensible microbiome 
data science using QIIME 2. Nature Biotechnol. 2019;37(8):852–7.

	 43.	 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, 
et al. Introducing mothur: open-source, platform-independent, com-
munity-supported software for describing and comparing microbial 
communities. Appl Environ Microbiol. 2009;75(23):7537–41.

	 44.	 Bruen TC, Philippe H, Bryant D. A simple and robust statisti-
cal test for detecting the presence of recombination. Genetics. 
2006;172(4):2665–81.

	 45.	 Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW. 
GARD: a genetic algorithm for recombination detection. Bioinformatics. 
2006;22(24):3096–8.

	 46.	 Zhu Q, Kosoy M, Dittmar K. HGTector: an automated method facilitating 
genome-wide discovery of putative horizontal gene transfers. BMC 
Genomics. 2014;15(1):717.

	 47.	 Ogier JC, Pagès S, Galan M, Barret M, Gaudriault S. RpoB, a promising 
marker for analyzing the diversity of bacterial communities by ampli-
con sequencing. BMC Microbiol. 2019;19(1):171.

	 48.	 Shimodaira H. An approximately unbiased test of phylogenetic tree 
selection. Syst Biol. 2002;51:492–508.

	 49.	 Dadheech PK, Selmeczy GB, Vasas G, Pádisak J, Arp W, Tapolczai K, et al. 
Presence of potential toxin-producing cyanobacteria in an oligo-meso-
trophic lake in Baltic lake district, Germany: an ecological, Genetic and 
toxicological survey. Toxins (Basel). 2014;6(10):2912–31.

	 50.	 Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable 
regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformat-
ics. 2016;17:135.

	 51.	 Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of 
bacterial 16S rRNA genes using short sequencing reads: evaluation of 
effective study designs. PLoS One. 2013;8(1):e53608.

	 52.	 Chen C, Zhao S, Ben K. Phylogenetic analysis of the family Thermaceae 
with an emphasis on signature position and secondary structure of 16S 
rRNA. FEMS Microbiol Lett. 2003;221(2):293–8.

	 53.	 Buelow E, Bayjanov JR, Majoor E, Willems RJL, Bonten MJM, Schmitt 
H, et al. Limited influence of hospital wastewater on the microbiome 
and resistome of wastewater in a community sewerage system. FEMS 
Microbiol Ecol. 2018;94(7):fiy087.

	 54.	 Farrell MJ, Govender D, Hajibabaei M, Van Der Bank M, Davies TJ. Bacte-
rial diversity in the waterholes of the Kruger National Park: an eDNA 
metabarcoding approach. Genome. 2019;62(3):229–42.

	 55.	 Ham B, Choi BY, Chae GT, Kirk MF, Kwon MJ. Geochemical influence on 
microbial communities at CO2-leakage analog sites. Front Microbiol. 
2017;8:2203.

	 56.	 Claassen-Weitz S, Gardner-Lubbe S, Nicol P, Botha G, Mounaud S, 
Shankar J, et al. HIV-exposure, early life feeding practices and delivery 
mode impacts on faecal bacterial profiles in a South African birth 
cohort. Sci Rep. 2018;8(1):5078.

	 57.	 Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed 
analysis of 16S ribosomal RNA gene segments for the diagnosis of 
pathogenic bacteria. J Microbiol Methods. 2007;69(2):330–9.

	 58.	 Kullen MJ, Sanozky-Dawes RB, Crowell DC, Klaenhammer TR. Use of 
the DNA sequence of variable regions of the 16S rRNA gene for rapid 
and accurate identification of bacteria in the Lactobacillus acidophilus 
complex. J Appl Microbiol. 2000;89(3):511–6.

	 59.	 Stone M. Cross-validatory choice and assessment of statistical predic-
tions. J R Stat Soc. 1974;36:111–47.

	 60.	 Liu C, Du MX, Abuduaini R, Yu HY, Li DH, Wang YJ, et al. Enlighten-
ing the taxonomy darkness of human gut microbiomes with a 
cultured biobank. Microbiome. 2021;9:119. https://​doi.​org/​10.​1186/​
s40168-​021-​01064-3.

	 61.	 Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylog-
enomics of 10,575 genomes reveals evolutionary proximity between 
domains Bacteria and Archaea. Nat Commun. 2019;10(1):5477.

	 62.	 Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. 
Precise phylogenetic analysis of microbial isolates and genomes from 
metagenomes using PhyloPhlAn 3.0. Nat Commun. 2020;11:1–10. 
https://​doi.​org/​10.​1038/​s41467-​020-​16366-7.

	 63.	 Hashimoto JG, Stevenson BS, Schmidt TM. Rates and consequences of 
recombination between rRNA operons. J Bacteriol. 2003;185(3):966–72.

	 64.	 Espejo RT, Plaza N. Multiple ribosomal RNA operons in bacteria; their 
concerted evolution and potential consequences on the rate of evolu-
tion of their 16S rRNA. Front Microbiol. 2018;9:1232.

	 65.	 Kitahara K, Miyazaki K. Revisiting bacterial phylogeny: Natural and 
experimental evidence for horizontal gene transfer of 16S rRNA. Mob 
Genet Elements. 2013;3(1):e24210. https://​doi.​org/​10.​4161/​mge.​24210.

	 66.	 de Oliveira Martins L, Page AJ, Mather AE, Charles IG. Taxonomic resolu-
tion of the ribosomal RNA operon in bacteria: implications for its use 
with long-read sequencing. NAR Genomics Bioinforma. 2020.

	 67.	 Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD. Translation: the 
universal structural core of life. Mol Biol Evol. 2018;35(8):2065–76.

	 68.	 Brodersen DE, Clemons WM, Carter AP, Wimberly BT, Ramakrishnan V. 
Crystal structure of the 30 S ribosomal subunit from Thermus thermo-
philus: structure of the proteins and their interactions with 16 S RNA. J 
Mol Biol. 2002;316(3):725–68.

	 69.	 Klein DJ, Moore PB, Steitz TA. The roles of ribosomal proteins in the 
structure assembly, and evolution of the large ribosomal subunit. J Mol 
Biol. 2004;340(1):141–77.

	 70.	 Kumar Y, Westram R, Kipfer P, Meier H, Ludwig W. Evaluation of 
sequence alignments and oligonucleotide probes with respect to 
three-dimensional structure of ribosomal RNA using ARB software 
package. BMC Bioinformatics. 2006;7:240.

	 71.	 Tung CS, Joseph S, Sanbonmatsu KY. All-atom homology model of the 
Escherichia coli 30s ribosomal subunit. Nat Struct Biol. 2002;9(10):750–5.

	 72.	 Smit S, Widmann J, Knight R. Evolutionary rates vary among rRNA 
structural elements. Nucleic Acids Res. 2007;35(10):3339–54.

	 73.	 Wuyts J, Van de Peer Y, De Wachter R. Distribution of substitution rates 
and location of insertion sites in the tertiary structure of ribosomal RNA. 
Nucleic Acids Res. 2001;29(24):5017–28.

	 74.	 Ben Ali A, Wuyts J, De Wachter R, Meyer A, Van De Peer Y. Construction 
of a variability map for eukaryotic large subunit ribosomal RNA. Nucleic 
Acids Res. 1999;27(14):2825–31.

	 75.	 Rousset F, Pélandakis M, Solignac M. Evolution of compensatory substi-
tutions through G·U intermediate state in Drosophila rRNA. Proc Natl 
Acad Sci U S A. 1991;88(22):10032–6.

	 76.	 Vawter L, Brown WM. Rates and patterns of base change in the small 
subunit ribosomal RNA gene. Genetics. 1993;134(2):597–608.

	 77.	 Wheeler WC, Honeycutt RL. Paired sequence difference in ribosomal 
RNAs: evolutionary and phylogenetic implications. Mol Biol Evol. 
1988;5(1):90–6.

	 78.	 Smith AB. RNA sequence data in phylogenetic reconstruction: testing 
the limits of its resolution. Cladistics. 1989;5(4):321–44.

	 79.	 Álvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic 
inference. Mol Phylogenet Evol. 2003;29(3):417–34.

	 80.	 Rzhetsky A. Estimating substitution rates in ribosomal RNA genes. 
Genetics. 1995;141(2):771–83.

	 81.	 Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, et al. 
Secondary structure model for bacterial 16S ribosomal RNA: phy-
logenetic, enzymatic and chemical evidence. Nucleic Acids Res. 
1980;8(10):2275–93.

	 82.	 Innan H, Stephan W. Selection intensity against deleterious mutations 
in RNA secondary structures and rate of compensatory nucleotide 
substitutions. Genetics. 2001;159(1):389–99.

	 83.	 Higgs PG. Compensatory neutral mutations and the evolution of RNA. 
Genetica. 1998;102–103(1–6):91–101.

	 84.	 Savill NJ, Hoyle DC, Higgs PG. RNA sequence evolution with secondary 
structure constraints: comparison of substitution rate models using 
maximum-likelihood methods. Genetics. 2001;157(1):399–411.

https://doi.org/10.1002/0471250953.bi1007s36
https://doi.org/10.1186/s40168-021-01064-3
https://doi.org/10.1186/s40168-021-01064-3
https://doi.org/10.1038/s41467-020-16366-7
https://doi.org/10.4161/mge.24210


Page 18 of 18Hassler et al. Microbiome          (2022) 10:104 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	 85.	 Westhof E, Yusupov M, Yusupova G. The multiple flavors of GoU pairs in 
RNA. J Mol Recognit. 2019;32(8):e2782.

	 86.	 Nasrallah CA. The dynamics of alternative pathways to compensa-
tory substitution. BMC Bioinformatics. 2013;14 Suppl 15(Suppl 15):S2. 
https://​doi.​org/​10.​1186/​1471-​2105-​14-​S15-​S2. Epub 2013 Oct 15.

	 87.	 Golden M, Murrell B, Martin D, Pybus OG, Hein J. Evolutionary analyses 
of base-pairing interactions in DNA and RNA secondary structures. Mol 
Biol Evol. 2019.

	 88.	 Kimura M. The role of compensatory neutral mutations in molecular 
evolution. J Genet. 1985;64(1):7–19.

	 89.	 Teichmann SA. The constraints protein-protein interactions place on 
sequence divergence. J Mol Biol. 2002;324(3):399–407.

	 90.	 Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW. Evolutionary 
rate in the protein interaction network. Science. 2002;296(5568):750–2.

	 91.	 Zhang J, Yang JR. Determinants of the rate of protein sequence evolu-
tion. Nat Rev Genet. 2015;16(7):409–20.

	 92.	 Lane WJ, Darst SA. Molecular evolution of multisubunit RNA polymer-
ases: sequence analysis. J Mol Biol. 2010;395(4):671–85.

	 93.	 Lane WJ, Darst SA. Molecular evolution of multisubunit RNA polymer-
ases: structural analysis. J Mol Biol. 2010;395(4):686–704.

	 94.	 Mallik S, Kundu S. Modular organization of residue-level contacts 
shapes the selection pressure on individual amino acid sites of riboso-
mal proteins. Genome Biol Evol. 2017;9(4):916–31. https://​doi.​org/​10.​
1093/​gbe/​evx036.

	 95.	 Nikolaeva DD, Gelfand MS, Garushyants SK. Simplification of ribosomes 
in bacteria with tiny genomes. Mol Biol Evol. 2020.

	 96.	 Harish A, Caetano-Anollés G. Ribosomal history reveals origins of mod-
ern protein synthesis. PLoS One. 2012;7(3):e32776.

	 97.	 Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P. Architecture of a 
transcribing-translating expressome. Science. 2017;356(6334):194–7.

	 98.	 Demo G, Rasouly A, Vasilyev N, Svetlov V, Loveland AB, Diaz-Avalos R, 
et al. Structure of RNA polymerase bound to ribosomal 30S subunit. 
Elife. 2017;6:e28560.

	 99.	 Wang C, Molodtsov V, Firlar E, Kaelber JT, Blaha G, Su M, et al. 
Structural basis of transcription-translation coupling. Science. 
2020;369(6509):1359–65.

	100.	 Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC. 
Modeling a minimal ribosome based on comparative sequence analy-
sis. J Mol Biol. 2002;321(2):215–34.

	101.	 Pilla SP, Bahadur RP. Residue conservation elucidates the evolution of 
r-proteins in ribosomal assembly and function. Int J Biol Macromol. 
2019;140:323–9.

	102.	 Tóth-Petróczy Á, Tawfik DS. Slow protein evolutionary rates are 
dictated by surface - core association. Proc Natl Acad Sci U S A. 
2011;108(27):11151–6.

	103.	 Karlin S, Mrazek J. Predicted highly expressed genes of diverse prokary-
otic genomes. J Bacteriol. 2000;182(18):5238–50.

	104.	 Townsend JP. Profiling phylogenetic informativeness. Syst Biol. 
2007;56(2):222–31.

	105.	 Graybeal A. Evaluating the phylogenetic utility of genes : a search for 
genes informative about deep divergences among vertebrates. Syst 
Biol. 1994;43:174–93.

	106.	 Dahllof I, Baillie H, Kjelleberg S. rpoB-based microbial community 
analysis avoids limitations inherent in 16S rRNA gene intraspecies 
heterogeneity. Appl Environ Microbiol. 2000;66(8):3376–80.

	107.	 Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel 
basis for bacterial identification. Mol Microbiol. 1997;26(5):1005–11.

	108.	 Higgins SA, Panke-Buisse K, Buckley DH. The biogeography of Strep-
tomyces in New Zealand enabled by high-throughput sequencing of 
genus-specific rpoB amplicons. Environ Microbiol. 2021;23(3):1452–68. 
https://​doi.​org/​10.​1111/​1462-​2920.​15350. Epub 2020 Dec 21.

	109.	 Vos M, Quince C, Pijl AS, de Hollander M, Kowalchuk GA. A comparison 
of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial 
diversity. PLoS One. 2012;7(2):e30600.

	110.	 Ki JS, Zhang R, Zhang W, Huang YL, Qian PY. Analysis of RNA polymerase 
beta subunit (rpoB) gene sequences for the discriminative power of 
marine vibrio species. Microb Ecol. 2009;58(4):679–91.

	111.	 Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformat-
ics. 2014;30(14):2068–9.

	112.	 Van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from 
networks. Methods Mol Biol. 2012;804:281–95.

	113.	 Brohée S, van Helden J. Evaluation of clustering algorithms for protein-
protein interaction networks. BMC Bioinformatics. 2006;7:488.

	114.	 Roshan U, Livesay DR. Probalign: multiple sequence alignment 
using partition function posterior probabilities. Bioinformatics. 
2006;22(22):2715–21.

	115.	 Tregar S. Writing Perl Modules for CPAN. 2002.
	116.	 Kosakovsky Pond SL, Frost SDW, Muse SV. HyPhy: hypothesis testing 

using phylogenies. Bioinformatics. 2005;21(5):676–9.
	117.	 Guindon S, Gascuel O. A simple, fast, and accurate algorithm to 

estimate large phylogenies by maximum likelihood. Syst Biol. 
2003;52(5):696–704.

	118.	 Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. 
Distributed by the author. Seattle: Department of Genome Sciences, 
University of Washington; 2005.

	119.	 Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic 
computing. Bioinformatics. 2010;26(12):1569–71.

	120.	 Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 
1981;53:131–47.

	121.	 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von 
Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phy-
logenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

	122.	 Katoh K. MAFFT: a novel method for rapid multiple sequence alignment 
based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.

	123.	 Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. 
Geneious Basic: An integrated and extendable desktop software plat-
form for the organization and analysis of sequence data. Bioinformatics. 
2012;28(12):1647–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts199.

	124.	 Fushiki T. Estimation of prediction error by using K-fold cross-validation. 
Stat Comput. 2011;21(2):137–46.

	125.	 Jelínek J, Hoksza D, Hajič J, Pešek J, Drozen J, Hladík T, et al. rPredictorDB: 
a predictive database of individual secondary structures of RNAs and 
their formatted plots. Database (Oxford). 2019;2019:baz047.

	126.	 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. 
Gene ontology: tool for the unification of biology. Nat Genetics. 
2000;25(1):25–9.

	127.	 Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, 
et al. InterProScan: protein domains identifier. Nucleic Acids Res. 
2005;33:W116-20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/1471-2105-14-S15-S2
https://doi.org/10.1093/gbe/evx036
https://doi.org/10.1093/gbe/evx036
https://doi.org/10.1111/1462-2920.15350
https://doi.org/10.1093/bioinformatics/bts199

	Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Intra-genus homologous gene clustering and recombinationHGT
	Intra-genus phylogenetic concordance and nucleotide substitution
	Phylogenetic concordance and gene biochemical characteristic
	Inter-genus phylogenetic concordance and recombinationHGT

	Discussion
	rRNA and protein coding ribosomal genes show weak concordance with the species phylogeny
	16S rRNA hypervariable regions show weak concordance with the species phylogeny: implications for microbiome studies

	Conclusion
	Methods
	Sequence data annotation
	Homologous gene clustering and phylogenetic analyses
	Core gene phylogeny concordance with the species phylogeny
	rRNA gene alignment, recombinationHGT analyses, and phylogenetic analyses
	Phylogenetic concordance and nucleotide substitution
	Concordance with the species phylogeny and gene biochemical characteristic
	Inter-genus phylogenetic concordance

	Acknowledgements
	References


