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Metagenomic strain detection with SameStr: 
identification of a persisting core gut microbiota 
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Abstract 

Background:  The understanding of how microbiomes assemble, function, and evolve requires metagenomic tools 
that can resolve microbiota compositions at the strain level. However, the identification and tracking of microbial 
strains in fecal metagenomes is challenging and available tools variably classify subspecies lineages, which affects 
their applicability to infer microbial persistence and transfer.

Results:  We introduce SameStr, a bioinformatic tool that identifies shared strains in metagenomes by determining 
single-nucleotide variants (SNV) in species-specific marker genes, which are compared based on a maximum vari-
ant profile similarity. We validated SameStr on mock strain populations, available human fecal metagenomes from 
healthy individuals and newly generated data from recurrent Clostridioides difficile infection (rCDI) patients treated 
with fecal microbiota transplantation (FMT). SameStr demonstrated enhanced sensitivity to detect shared dominant 
and subdominant strains in related samples (where strain persistence or transfer would be expected) when compared 
to other tools, while being robust against false-positive shared strain calls between unrelated samples (where neither 
strain persistence nor transfer would be expected). We applied SameStr to identify strains that are stably maintained 
in fecal microbiomes of healthy adults over time (strain persistence) and that successfully engraft in rCDI patients 
after FMT (strain engraftment). Taxonomy-dependent strain persistence and engraftment frequencies were positively 
correlated, indicating that a specific core microbiota of intestinal species is adapted to be competitive both in healthy 
microbiomes and during post-FMT microbiome assembly. We explored other use cases for strain-level microbiota 
profiling, as a metagenomics quality control measure and to identify individuals based on the persisting core gut 
microbiota.

Conclusion:  SameStr provides for a robust identification of shared strains in metagenomic sequence data with suf-
ficient specificity and sensitivity to examine strain persistence, transfer, and engraftment in human fecal microbiomes. 
Our findings identify a persisting healthy adult core gut microbiota, which should be further studied to shed light on 
microbiota contributions to chronic diseases.
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Background
Disturbances of the human gut ecosystem have been 
implicated in many metabolic, inflammatory, and infec-
tious diseases, based on altered taxonomic or func-
tional microbiota compositions in affected individuals. 
However, attempts to identify consistent, disease-spe-
cific microbiome markers have been less successful, as 
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reported associations vary and have frequently not been 
consistent between studies [1, 2]. Among many other fac-
tors [3], taxonomic and functional variations between 
microbial subspecies or strains that are members of the 
human microbiome [4] can produce inconsistent find-
ings, but have not been comprehensively character-
ized. The species Ruminococcus gnavus, for example, 
has been linked to inflammatory bowel diseases [5], but 
disease associations appear to be specific to only one of 
two described subspecies clades [6] and may be depend-
ent on strain-specific variations in carbohydrate utiliza-
tion [7] or pro-inflammatory polysaccharide production 
[8], emphasizing the need for health-related microbiome 
studies to focus at subspecies level microbiota varia-
tions. Moreover, many of the ecological forces that shape 
microbiomes in health and disease, or after perturbation 
and therapeutic modulation, involve microbial inter-
actions, such as competition, inhibition, or predation, 
which can be strain-dependent [9–11] and require com-
positional microbiota analyses to provide strain-level tax-
onomic resolution.

Shotgun metagenomics has the potential for a maxi-
mum phylogenetic resolution that can theoretically 
resolve even individual microbial genomes in a metagen-
omic sample [12]. Consequently, several bioinformatic 
methods have been introduced to identify microbial 
strains in metagenomes, based on the generation of 
metagenome-assembled genomes (MAGs, see [13], 
Strainberry [12], and STRONG [14]) or the mapping of 
individual metagenomic reads to universal (see Strain-
Finder [15] and mOTUs2 [16]) or taxon-specific marker 
genes (see StrainPhlAn [17]), or whole-genomes (see 
InStrain [18]) to detect phylogenetically informative, 
strain-specific, single nucleotide variant (SNV) profiles. 
Microbiota strain profiling has been successfully applied 
to study strain-specific adaptations to human body sites 
[4]; associations with individual human hosts, families, 
and geography [17, 19]; and transmission along the gas-
trointestinal tract [20], from mothers to infants [21–23] 
and from the donors to the recipients of fecal microbi-
ota transplantation (FMT) [15, 24, 25]. Yet, strain-level 
microbiota analysis is hampered by inconsistent “strain” 
definitions [26, 27] and available methods exhibit vari-
able sensitivities and specificities, which have not been 
comprehensively compared and validated. For example, 
the taxonomic classification of strains based on univer-
sal marker gene phylogenetic comparisons can produce 
inconsistent assignments relative to established taxono-
mies [15, 24]. Detection may also be limited to the domi-
nant strain in a metagenomic sample [17] or depend 
on the availability of completely sequenced reference 
genomes for comparison [28] Finally, non-stringent simi-
larity thresholds can result in distinct subspecies lineages 

to become assigned to the same strain, which is prob-
lematic if the strain is used to infer microbial persistence 
or transfer. In this case, for example, human intestinal 
microbiomes may contain the same “strain,” i.e., a sub-
species lineage with widespread prevalence in the human 
population, without having experienced direct microbial 
transfer.

To address these limitations, we developed SameStr 
as a new tool for the detection of shared strains in 
metagenomic samples. SameStr leverages the Strain-
PhlAn approach to map metagenomic reads to clade-spe-
cific marker genes [17], which compared to other tools 
affords increased taxonomic resolution [29]. However, 
SameStr extends the detection of shared strains to sub-
dominant members of multi-strain species populations. 
This is achieved by considering multiple alleles instead 
of the consensus sequence at polymorphic positions in 
the metagenomic marker gene alignments. We validated 
SameStr using new and available metagenomes, includ-
ing temporally linked sample pairs (i.e., collected from 
the same individual at different time points) or physically 
linked sample pairs (i.e., collected from different, con-
nected individuals, such as FMT donors and recipients). 
We demonstrate increased sensitivity for the detection 
of subdominant shared strains and increased specificity 
for the detection of species-specific strains, which are 
not shared between unrelated sample pairs, over previ-
ous methods. We applied SameStr to identify a core gut 
microbiota of strains that persist over time in healthy 
adults and to determine the contributions of recipi-
ent- and donor-derived strains to the post-FMT patient 
microbiota, illustrating SameStr’s utility to study micro-
biome stability and transfer across different settings. We 
further show that persisting strains in healthy adults fre-
quently belonged to the same species as donor-derived 
strains in post-FMT patients, suggesting the existence of 
a healthy adult core gut microbiota that is transferable 
from donors to rCDI patients by FMT.

Results
Detection of shared strains in metagenomic samples 
with SameStr
We developed the SameStr tool based on a workflow 
related to StrainPhlAn [17] to identify shared microbial 
strains in distinct metagenomic samples using within-
species phylogenetic sequence variations (Fig.  1A). In 
brief, metagenomic input data are first quality-filtered 
and trimmed to reduce sequencing errors and then 
mapped to the MetaPhlAn reference database of spe-
cies-specific marker genes [30], in order to limit the 
interference of higher-level taxonomic sequence vari-
ations with strain detection. Individual alignments for 
each sample and species are filtered and merged. Strains 
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shared between samples are identified by comparing 
alignments, using a maximum variant profile similar-
ity (MVS), which is calculated as the fraction of identi-
cal nucleotide positions in both alignments divided 
by the total length of the shared alignment (Fig.  1B). A 
comparison of SameStr’s resource requirements (total 
CPU time, CPU time per sample, and average RAM use), 

compared to metagenomic sequence preprocessing with 
Kneaddata and taxonomic analysis with MetaPhlAn is 
shown in the supplement (Fig. S1). In contrast to Strain-
PhlAn, which determines a consensus sequence for each 
marker alignment and compares metagenomes based on 
the consensus variant similarity (CVS) that only reflects 
the dominant strain in each sample, SameStr considers 

Fig. 1  Species-specific shared strain detection in metagenomic samples with SameStr. A Schematic of the SameStr workflow. SameStr has 
been implemented modularly, including optional wrapper functions for quality preprocessing and alignment of whole-genome shotgun (WGS) 
metagenomic reads to species-specific MetaPhlAn markers (align), functions for the conversion to nucleotide variant profiles (convert), extraction 
of markers from genome sequences (extract), sample and reference pooling (merge), extensive global, per-sample, marker and position filtering 
(filter) and comparison of SNV profiles (compare) based on maximum variant similarity (MVS). SameStr outputs (summarize) tables denoting 
pairwise comparison results, including species alignment similarity and overlap, and co-occurrence of taxa at distinct taxonomic levels (based 
on MetaPhlAn) and at the strain level. B SameStr identifies shared strains in metagenomic samples by calculating a pairwise MVS, using all 
single-nucleotide variants detected in the read alignments of these samples to species-specific marker genes. C To assess the MetaPhlAn-based 
phylogenetic resolution (db_v20) and validate the 99.9% similarity threshold of shared strains, which is used by SameStr, 458 bacterial genomes 
from 20 of the most abundant and prevalent fecal microbiota species in our rCDI cohort (Table S4) were compared with MetaPhlAn2 [30] and 
based on average nucleotide identities (ANIs) as determined with FastANI [31]. MetaPhlAn2 and FastANI-based pairwise sequence similarities are 
strongly correlated (Spearman’s r = 0.93, p < 2.2e−16, n = 9813), demonstrating comparable phylogenetic resolution. Genome similarities exhibit a 
multimodal distribution (two-dimensional density kernel contours): reference genomes share peak sequence similarities at 97.5%, 99.0%, and above 
99.9% identity that reflect the presence of distinct species, subspecies, and strains in the reference dataset
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all detected single nucleotide variants to calculate MVS, 
including polymorphic positions with different rela-
tive allelic frequencies (default: ≥ 10%), thereby includ-
ing non-dominant strains into the sample comparison. 
SameStr calls shared strains in two metagenomic sam-
ples if the corresponding species alignments share a 
minimum overlap (default: ≥ 5 kb) and MVS (default: ≥ 
99.9%) over all detected sites. A similarity threshold of 
99.9% for comparing MetaPhlAn marker genes (db_v20) 
was previously shown to differentiate between microbial 
strains within species and subspecies [17, 32, 33] and is 
further validated by our phylogenetic comparison of ref-
erence genomes based on whole-genome average nucleo-
tide identity (ANI) (Fig. 1C).

Validation of sensitivity and specificity of SameStr 
in comparison to other strain prediction tools
We first evaluated SameStr’s performance on synthetic, 
simulated metagenomes from species containing mul-
tiple strains. Mock sequence data from 100 individual 
isolates from 20 frequent and abundant bacterial gut spe-
cies (Table S4) were mixed in various combinations to 
simulate metagenomes containing species composed of 
multiple strains and variable complexity and sequenc-
ing depth. For each species, simulated shotgun sequence 
data from a reference genome (at a 5-fold sequencing 
depth and showing typical sequencing error profiles, 
see “Materials and methods”) were compared to simu-
lated metagenomes. These included the same reference 
genome (showing an independent typical error profile) at 
variable sequencing depths (target strain coverage), com-
bined with additional sequence data from between 1 and 
4 other available genomes from the same species at vary-
ing sequencing depths (noise coverage).

SameStr’s strain predictions based on maximum vari-
ant profile similarity (MVS) were compared to those 
of a StrainPhlAn-equivalent consensus variant similar-
ity (CVS)-based approach across a total of 3276 simu-
lated combinations (Fig. 2A). SameStr outperformed the 
consensus-based approach for the detection of domi-
nant target strains (≥ 50% relative strain abundance at 
≥ 5-fold target strain sequencing depth) in multi-strain 

species populations, detecting 85% of shared strains com-
pared to 59% with the CVS-based approach. SameStr 
also detected 57% of shared strains among subdominant 
strains (15–50% relative strain abundance at ≥ 5-fold tar-
get strain sequencing depth), compared to only 2% for 
the consensus-based method. The better performance of 
SameStr compared to consensus-based methods in even 
the identification of dominant strains might be due to the 
lower sensitivity of the MVS-based approach to sequenc-
ing errors and wrong consensus calls at polymorphic 
and/or low-coverage positions of the metagenomic read 
alignment. Importantly, advantages in accuracy were not 
accompanied by reduced specificity, as both approaches 
were robust against false-positive shared strain calls even 
in complex multi-strain species mixtures (see 0-fold tar-
get strain coverage in Fig. 2A).

The StrainFinder tool has been developed to study 
strain-level microbiota dynamics in the course of fecal 
microbiota transplantation (FMT) [15]. StrainFinder 
used phylogenetic comparisons of 31 widely distributed, 
single-copy marker genes from the AMPHORA database 
[34] to define metagenomic operational taxonomic units 
(mg-OTUs) and call distinct strains based on sequence 
variations within these species equivalents [15]. We com-
pared the performances of SameStr and StrainFinder 
with respect to (i) taxonomic sensitivity, i.e., the number 
of microbial genera and species assessed for shared strain 
detection (Fig.  2B), and (ii) specificity for the detec-
tion of ‘unique’ shared strain events, i.e., the frequency 
of shared strain predictions in unrelated sample pairs, 
which would interfere with our goal to use shared strains 
to infer strain persistence or transfer (Fig. 2C). Using the 
published datasets and taxonomic profiles from the origi-
nal StrainFinder publication [15], SameStr consistently 
detected more species and genera, both across the entire 
dataset (154 vs. 116 genera and 399 vs. 306 species/mg-
OTUs) and per sample (50.54 ± 15.0 vs. 23.78 ± 16.67 
genera and 97.62 ± 39.6 vs. 48.48 ± 33.88 species/mg-
OTUs; values shown as mean ± sd) (Fig.  2B). Differen-
tially detected taxa included prominent members of the 
gastrointestinal tract microbiota, such as Bacteroides 
spp. (6.54 ± 5.35 species vs. 3.87 ± 4.70 mg-OTUs per 

(See figure on next page.)
Fig. 2  Sensitivity and specificity comparison to other strain prediction tools. A SameStr detects dominant and subdominant strains at low 
sequencing depth (mean-fold target strain coverage) and relative abundance (i.e., high noise coverage) in simulated metagenomes (n = 3276) of 
multi-strain species populations, compared to consensus variant profile similarity (CVS)-based methods. B Using MetaPhlAn’s clade-specific marker 
gene database (db_v20), SameStr identifies more genera and species per metagenomic sample (n = 65) than StrainFinder, which uses mg-OTUs 
that are defined based on phylogenetic comparisons of universally distributed bacterial genes from the AMPHORA database. C Fewer shared 
strain calls demonstrate the increased specificity of SameStr compared to StrainFinder, which allows for the differentiation of related (n=555) and 
unrelated (n=1,525) sample pairs. D Cumulative relative abundance and fraction of species for which strain-level resolution was achieved with 
SameStr in fecal metagenomes from a reference cohort of 67 longitudinally sampled healthy adults (n = 202). E SameStr’s MVS-based method 
detects shared strains in a larger fraction of species in related (same individual, n = 281) but not in unrelated (different individuals, n = 20,020) 
sample pairs of the control cohort (n = 202 individuals) compared to CVS-based methods
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Fig. 2  (See legend on previous page.)
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sample), Clostridium spp. (4.81 ± 4.05 species vs. 2.43 ± 
3.25 mg-OTUs per sample), and Lactobacillus spp. (5.06 
± 3.33 species vs. 1.41 ± 2.37 mg-OTUs per sample).

For the detection of shared strains, we divided the 
original FMT dataset from Smillie et al. into related and 
unrelated sample pairs. Related sample pairs included 
corresponding FMT recipient and donor samples, pre 
and post-FMT patient samples, and distinct samples 
from the same donor or post-FMT patient. SameStr 
detected on average 14.77 (median = 12, range = 0–67) 
shared strains in 555 related sample pairs and 0.45 
(median = 0, range = 0–8) shared strains in 1525 unre-
lated sample pairs. By comparison, StrainFinder reported 
on average 93.13 (median = 73, range = 0–384) shared 
strains in related but also 35.16 (median = 25, range = 
0–238) shared strains in unrelated sample pairs (Fig. 2C). 
These findings suggest that StrainFinder classifies sub-
species lineages with broader prevalence in human popu-
lations as shared strains, which based on SameStr’s more 
conservative definition of “unique” shared strains would 
be considered false-positive predictions.

To further assess SameStr’s rate of false-positive shared 
strain predictions in fecal metagenomes, we downloaded a 
reference dataset (‘control’) from the curatedMetagenom-
icData package [35], consisting of 202 fecal metagenomes 
from four different studies, including 67 healthy adults 
that were sampled multiple times over a period of up to 1 
year (see “Materials and methods” and Table S2). On aver-
age, strain-level resolution was obtained for 26.2% ± 6.8 
of species or 71.4% ± 15.9 relative abundance per sam-
ple (Fig. 2D). This control dataset was divided into related 
sample pairs from the same individual, which would be 
expected to share strains, and unrelated sample pairs from 
distinct individuals, which would not be expected to share 
strains. Compared to the consensus-based method that is 
used by StrainPhlAn, SameStr detected more shared strains 
in 281 related sample pairs (range = 4–43, median = 14) 
but not in 20,020 unrelated sample pairs (range = 0–4, 
median = 0) (Fig.  2E), demonstrating increased sensitiv-
ity without compromising the low rates of false-positive 
shared strain detections that both approaches showed.

In summary, SameStr can detect shared strains in syn-
thetic and real metagenomes, including from single- and 
multi-strain species populations, with improved accu-
racy for low-abundant and subdominant strains com-
pared to StrainPhlAn and taxonomically more accurate 
and restrictive predictions of shared strains compared to 
StrainFinder.

Identification of strain persistence and engraftment 
in healthy individuals and rCDI patients after FMT
To gain insights into (i) microbiome stability in healthy 
individuals and (ii) microbiome transfer in the course 

of FMT, we applied SameStr to measure strain persis-
tence and engraftment in our reference dataset of fecal 
metagenomes from healthy adult individuals and a 
combined FMT dataset with fecal samples from FMT-
treated rCDI patients and their donors from our pre-
viously described cohort [36] and the study by Smillie 
et al. [15].

To study strain persistence in the fecal microbiota of 
healthy individuals, we used the reference cohort of 67 
healthy adults described above and determined shared 
strains in sample pairs collected from the same individu-
als over periods of up to one year (Fig. 3A, see Fig. S2 for 
individual cases and samples). Contributions of tempo-
rally persistent strains that were shared between multiple 
samples from the same individual were relatively stable 
over time and comprised on average 22.6% ± 6.3 (mean 
± sd) of all detected species in the later sample, which 
accounted for 73.1% ± 18.3 relative abundance. Strain 
persistence was detected with variable frequencies for 
different microbial genera (Fig. 3B) and species (Fig. S3). 
Based on the assignment of microbial species to different 
functional and lifestyle feature categories (see “Materi-
als and methods” for details, Table S5), strain persistence 
was less frequent in oral and/or oxygen-tolerant genera 
(Fig. 3B) and species (Fig. S3).

To study strain persistence and engraftment in the 
course of FMT, we generated new metagenomic sequence 
data from our previously described cohort of FMT-
treated rCDI patients [36, 37], which we combined with 
other available data [15] and applied SameStr to detect 
shared strains between pre- and post-FMT patients 
and post-FMT patients and donors (Fig.  3C, Table S7). 
Recipient and donor-derived species fractions and rela-
tive abundances in post-FMT patients were determined 
as being represented by shared strains between pre- and 
post-FMT patients or post-FMT patients and donors, 
respectively (Fig. 3D, see Fig. S4 for individual cases and 
samples). During the first week after FMT, both donor 
and recipient-derived strains contributed large rela-
tive abundances to the post-FMT microbiota (days 1–7: 
42.5% ± 30.3 vs. 18.9% ± 22.3), but donor-derived micro-
biota fractions remained more stable over the following 
weeks and months, whereas recipient-derived microbiota 
fractions continuously decreased (days 70–84: 26.5% ± 
21.9 vs. 4.9% ± 9.0). Donors and recipients before FMT 
frequently carried the same microbial species, but this 
rarely resulted in the detection of both recipient and 
donor-derived strains after FMT (Table S8). Conse-
quently, coexisting recipient and donor strains from the 
same species accounted for only small and decreasing 
species fractions (0.46% ± 0.68) and relative abundances 
(5.19% ± 11.54) in post-FMT patients (Fig.  3D). Donor 
strain engraftment frequencies varied taxonomically and 
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were less frequent in oral and/or oxygen-tolerant genera 
(Fig. 3B) and species (Fig. S3).

We next compared the healthy adult and FMT 
cohorts and found strains that frequently persisted 
in healthy individuals to belong to the same genera 
and species as donor strains that frequently engrafted 
in patients after FMT (Fig.  3E, see Fig. S5 for species 

comparison; Table S9-S10). Frequently persisting and 
engrafting genera included abundant (>5%) members of 
the healthy adult gut microbiota, such as Bacteroides, 
Blautia, Coprococcus, and Eubacterium (Fig.  3E), and 
similar observations were made at the species level 
(Fig. S5). Thus, FMT appears to specifically lead to the 
engraftment of persisting and abundant healthy gut 
microbiota members in rCDI patients.

Fig. 3.  Identification of strain persistence and donor strain engraftment in healthy individuals and rCDI patients after FMT. A Longitudinal species 
and strain persistence in healthy adults from the reference (Control) cohort are shown as relative abundances of shared species and species 
fractions in 95 sample pairs from 59 individuals and modeled using binomial smoothing. Strain proportions are based on corresponding species. 
Species fractions indicate insufficient resolution for strain prediction. B Taxonomic variations in the frequency of species (dark blue), and strain (light 
blue) persistence in healthy individuals (n = 59) and FMT recipients (n = 19), and of donor species (dark green) and strain (light green) engraftment 
in post-FMT patients are shown, as summarized on the genus level for the 50 most prevalent genera (see Fig. S3 for species). Newly detected 
species and strains are shown in dark and light yellow, respectively. C Comparison of shared strain numbers between rCDI patients and donors. 
Distinct rCDI patients who received stool from the same donor share more strains than other post-FMT patients. D Donor-derived strains and 
species (exclusively shared with the donor but with insufficient resolution for strain prediction) account for large and stable relative abundances 
and species fractions in FMT-treated rCDI patients. Data for triads of successfully FMT-treated rCDI patients (n = 30) in reference to their pre-FMT 
(n = 19) and donor (n = 14) metagenomes are modeled across cases using binomial smoothing. E The frequencies of strain persistence in healthy 
individuals and of donor strain engraftment in rCDI patients after FMT are positively correlated at the genus level (Spearman’s r = 0.72, p < 1e−8), 
including for abundant members of the healthy adult fecal microbiota (see Fig. S5 for species-level comparison)
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Identification of healthy individuals and FMT recipients 
and donors using shared strain profiles
The detection of species overlaps between the per-
sisting core gut microbiota in healthy adults and the 
engrafted donor microbiota in rCDI patients after 
FMT, prompted us to test if individuals were identifi-
able based on shared strain profiles in fecal metagen-
omes. To this end, we first trained and tested a logistic 
regression classifier (60% / 40% data split for training 
and testing) to identify sample pairs from the same 
individuals in our healthy adult reference dataset, 
based on overlapping taxonomic microbiota compo-
sitions. Microbiota profiles at the family, genus, and 
species level were determined with MetaPhlAn2 and 
at the strain level with SameStr; total and shared taxa 
and strains were used as input for the classifier (Fig. 4A, 
Table S6). A perfect classification (auPR = 1, auROC = 
1) of 8120 hold-out sample pairs (n = 112 sample pairs 
from the same individuals) was achieved with shared 

strain profiles, whereas shared family and genus pro-
files were insufficient (auPR ≤ 0.18, auROC ≤ 0.87) and 
even shared species profiles performed poorly (auPR = 
0.47, auROC = 0.93). We next tested the same logistic 
regression classifier that was trained on healthy indi-
viduals for the identification of related sample pairs 
from the FMT cohort (n = 580 related compared to 
n = 3606 unrelated sample pairs), i.e., pre- and post-
FMT samples from the same patients, corresponding 
post-FMT patient and donor samples, and post-FMT 
samples from different patients that received FMT 
from the same donor. Again, our classifier performed 
well using shared strain profiles as input (auPR = 
0.94, auROC = 0.93) but not higher-level taxa profiles 
(Fig. 4B, Table S6). Thus, our findings demonstrate that 
the fecal microbiota of healthy adults harbors identifi-
able personal strain profiles, at least over periods of up 
to one year, which are transferable from donors to rCDI 
patients after FMT.

Fig. 4  Identification of healthy individuals and FMT recipients and donors using shared strain profiles. Receiver-operating characteristic (ROC) and 
precision-recall (PR) curves of logistic regression classifiers demonstrate sensitive and accurate identification of (A) longitudinally collected sample 
pairs from the same healthy individuals (n = 112 from a total of n = 8120 sample pairs) and (B) related FMT patient and donor sample pairs (n = 
580, including pre- and post-FMT patient samples, post-FMT patient and donor samples, and post-FMT patient samples that received FMT from the 
same donor, from a total of n = 4186 sample pairs)
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Shared strain network analysis for the identification 
of mislabeled metagenomes
The published metagenomic sequence data used for 
this study included several samples that, while present-
ing with inconspicuous species-level taxonomic micro-
biota compositions, showed unexpected and inconsistent 
shared strain profiles that led to their removal from the 
analysis (Table S11). To illustrate these inconsistencies, 
shared strain profiles, as generated with SameStr, were 
visualized as unsupervised networks, which assigned 

related samples to distinct clusters linking, for example, 
samples from the same individual (Fig. 5A) or from FMT 
recipients and donors (Fig. 5B). However, in three cases > 
2× more shared strains were detected between suppos-
edly unrelated samples than between any of the other > 
20,000 unrelated sample pairs from our dataset. In every 
case, suspicious sample pairs had been submitted as part 
of the same study and inconsistencies could be resolved 
by switching or changing sample labels (see Fig. 5 legend 
for details), suggesting sample mix-up or mislabeling. We 

Fig. 5  SameStr-based unsupervised strain sharing networks identify potentially mislabeled samples. Shared strain profiles were visualized as 
unsupervised networks with individual samples as nodes and shared strain numbers as edges. A These networks connect samples from Louis et al. 
[38] by individual, with the exception of two samples (AS64_24 and AS66_24) that appear to be mixed up. B In a case of multiple rCDI patients 
treated with FMT from the same donor [15], shared strains were detected between pre- (blue) and post-FMT (yellow) patient samples, as well as 
between post-FMT and donor (green) samples and among post-FMT samples. Pre-FMT samples did not share strains with donor samples, with 
the exception of FMT15, which shares (> 15) strains with all three donor samples and exhibits ɑ/β-diversity compositions that are comparable to 
other post-FMT samples (data not shown). As this sample was collected on the day of the FMT procedure, FMT15 could in fact represent a post-FMT 
sample that was accidentally mislabeled as a pre-FMT sample (Smillie, personal communication)
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have reported similar findings of potentially mislabeled 
samples in a meta-analysis of neonatal metagenomes 
[23], indicating that inconsistencies in public metage-
nomes might be common. Microbiota strain profiling 
with SameStr or equivalent tools could represent a viable 
strategy for the quality control of metagenomic sequence 
data from fecal microbiome projects.

Discussion
We introduce SameStr as a new bioinformatic tool for 
the identification of shared microbial strains in metagen-
omic shotgun sequence data, which allows for the detec-
tion and quantification of strain persistence and transfer 
and improves our ability to track and understand sub-
species population dynamics in complex microbiomes. 
In contrast to related methods that define strains more 
broadly and allow for the presence of the same strain in 
different, unrelated individuals [15, 16], SameStr applies a 
more conservative definition of strains as “unique” phylo-
genetic lineages that should only be shared by either tem-
porally or physically related samples. It thereby affords 
the specificity to infer persistence or transmission from 
the detection of shared strains in distinct metagenomes. 
Recent fecal metagenomics-based epidemiological stud-
ies identified subspecies lineages or clades of, for exam-
ple, Prevotella copri and Ruminococcus gnavus with 
widespread prevalence in the human population, which 
could be linked to dietary habits [39, 40] and host health 
background, i.e., inflammatory bowel disease [6], respec-
tively. Strain-level microbiota profiling with SameStr pro-
vides the phylogenetic resolution to track even individual 
strains within these subspecies clades in the human pop-
ulation, illustrating new opportunities to shed light on 
the role of these and other microbiome members for 
human lifestyle adaptation and disease development.

Methodically, SameStr is related to the StrainPhlAn 
tool, as both use the taxon-specific marker gene database 
from MetaPhlAn [30] to identify and compare microbial 
species-specific single nucleotide variant profiles. How-
ever, SameStr’s approach to determine maximum vari-
ant profile similarities between metagenomic samples, 
including polymorphic alleles, demonstrates increased 
sensitivity for the detection of shared strains among 
multi-strain species populations, especially between 
subdominant strains. Dominant and secondary mater-
nal strains of Bifidobacterium and Bacteroides species 
have been shown to compete for colonization in neo-
nates after birth, contingent on their strain-specific car-
bohydrate-degrading capabilities [22], emphasizing the 
importance of considering multiple strains per species 
for the detection of strain sharing and microbial transfer. 
Other clinical use cases, specifically for SameStr’s con-
servative shared strain calls, could include, for example, 

the identification of strain sharing between the intestinal, 
reproductive, and/or urinary tract or bloodstream, which 
could be used to better characterize endogenous reser-
voirs of opportunistic pathogens and microbial transloca-
tion between human body niches as a cause of infection 
and disease [41, 42].

We applied SameStr to study strain persistence in the 
intestinal microbiota of healthy individuals, as well as 
strain persistence and engraftment in patients after fecal 
microbiota transplantation, using combined datasets 
from multiple studies, including healthy adults sampled 
over durations of up to one year and rCDI patients, sam-
pled before and after FMT together with their donors. 
We detected strain persistence for many of the same 
bacterial taxa, such as Bacteroides species, as previously 
reported based on temporal single nucleotide polymor-
phism (SNP) stability [43] and strain-resolved species-
specific MAGs [19] in fecal metagenomes from healthy 
individuals. Persistence has been negatively correlated to 
the genetic capacity for oxygen tolerance and sporulation 
before [19] and, based on comparative genome analy-
ses, the loss of sporulation has been genetically linked 
to typical features of host-adaptation, such as genome 
reduction and metabolic specialization [44], confirm-
ing our functional predictions for species that are fre-
quently represented by persisting strains, as well as our 
concept of a persisting core gut microbiota of strict 
anaerobe, non-spore-forming bacteria in the healthy 
human gut. We also identified a surprising taxonomic 
association between strain persistence and engraftment, 
as strains with a high persistence rate in healthy indi-
viduals belonged to the same bacterial species as donor 
strains with a high engraftment rate in rCDI patients 
after FMT. Given that persistence in the complex gut 
microbiomes of healthy individuals, as well as engraft-
ment in the dysbiotic microbiomes of rCDI patients, 
requires strains to compete with other persisting, resi-
dent, and/or newly incoming strains, our analysis likely 
identified bacterial species of high ecological competi-
tiveness and fitness. This is further supported by Hilde-
brand et al., who used the concept of tenacity to describe 
strain persistence in human individuals and described 
tenacious bacteria, such as Bacteroides species, as host-
adapted, frequently dispersed by vertical transmission 
from mothers to infants, and most negatively affected by 
antibiotic perturbation [19]. In this context, the lack of 
sporulation genes in tenacious bacteria likely reflects an 
adaptive mechanism to increase persistence by avoiding 
excessive intra-species strain competition [19]. Using dif-
ferent methodologies, Watson et  al. similarly concluded 
that FMT selects for high-fitness populations of the gut 
microbiome, based on the observation that a high preva-
lence of a microbial species in healthy individuals is more 
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predictive for colonization success after FMT than a high 
relative abundance of the same species in a FMT donor 
[45]. Based on these considerations, the identification 
and characterization of stably persisting strains in healthy 
individuals could present a viable and more useful strat-
egy to determine different constitutions of personalized, 
adapted core microbiomes of the human gut, than more 
commonly used β-diversity metrics based on species or 
higher-level taxon persistence. As key microbiome attrib-
utes, such as colonization resistance against pathogens 
[46] or resilience towards other perturbations [47] should 
be determined by the fitness of its core members, char-
acterization of the persisting gut microbiota might con-
stitute an ecological approach to define a healthy human 
gut microbiome [48].

Our analyses suggest additional practical applications 
for metagenomics strain profiling that extend previous 
concepts of microbiome-based forensic markers for per-
sonal identification [49]. Franzosa et al. identified combi-
nations of taxonomic (operational taxonomic units and 
species), genomic (genome fragments), and functional 
(genes) markers as ‘metagenomic codes’ that could be 
used to match > 80% of fecal sample pairs that were col-
lected over periods of 30-300 days from the same individ-
uals [50]. Similarly, a majority of > 300 individuals could 
be identified in a mixed human cohort (auPR = 0.87, 
auROC = 0.95), using rare fecal metagenomic oligomers 
(k-mers of 18–30-bp length) [51]. Yet our shared strain-
based personal identification method outperformed both 
previous attempts by demonstrating a 100% success rate 
for the detection of matching sample pairs (n = 112 from 
a total of 8120 sample pairs) from the same healthy indi-
viduals and, in addition, correctly identified most sam-
ple pairs from linked FMT donors and recipients (auPR 
= 0.94, auROC = 0.93 for n = 580 from a total of 4186 
sample pairs). Standard practice for microbiome projects 
dictates the removal of human reads from metagenomic 
sequence data to de-identify samples before release. Our 
findings attest to the persistence and FMT-dependent 
transferability of personalized gut microbiome strain 
profiles and suggest that filtered public metagenomes 
retain personal information that could make study par-
ticipants and FMT donors retrospectively identifiable.

The SameStr platform has a few limitations. First, as 
strains are identified based on SNV profiles in clade-spe-
cific marker genes, their detection is dependent on the 
underlying database and limited to previously described, 
sequenced, and comparatively analyzed taxa [30]. How-
ever, taxonomic assignments based on universal instead 
of species-specific marker genes, which are less depend-
ent on available genome sequence information, can 
show discrepancies from established taxonomic sys-
tems [52], which could explain the increased taxonomic 

resolution and accuracy of SameStr’s taxonomic strain 
classifications compared to those from the StrainFinder 
tool. Moreover, SameStr can be easily adapted for use 
with updated (e.g., MetaPhlAn3, mpa_v30_CHOC-
OPhlAn_201901 [29]) or alternative, user-provided, 
marker sequences. Second, we developed SameStr spe-
cifically for the metagenome-based detection of strain 
sharing between fecal microbiomes. SameStr can be 
used to identify species that are represented by multiple 
strains, based on the detection of multiple alleles within 
a species-specific marker gene alignment of a single sam-
ple, with multi-strain species populations exhibiting ≥ 
0.1% polymorphic positions  of all detected alignment 
sites. However, it does not provide similar insights into 
strain population structures as related tools [15]. Third, 
in order to reliably detect strain-specific SNV profiles, 
SameStr required a sequencing depth of the genome 
corresponding to this strain of > 5-fold in our validation 
experiments, irrespective of whether this strain was the 
only representative or a minor component of a multi-
strain species population. Assuming an average genome 
length of 2.5 Mbp and a metagenomic sequencing depth 
of 5 Gbp per sample (corresponding to 2000 genomes of 
average length), we estimate that SameStr is limited to 
the detection of shared or coexisting strains that make up 
at least 0.25% of all genomes in the metagenomic sam-
ple or 0.25% species relative abundance in case of single-
strain species.

In conclusion, we present SameStr as a new bioinfor-
matic tool for the species-specific, conservative identifi-
cation of unique shared subspecies taxa in metagenomic 
shotgun sequence data, including subdominant members 
of multi-strain species populations. We demonstrate 
increased sensitivity, specificity, and taxonomic accu-
racy of detected strains in fecal metagenomes compared 
to related tools, which affords reliable detection of tem-
poral strain persistence and transfer after fecal micro-
biota transplantation. We identify a persisting fecal core 
microbiota in healthy individuals, which taxonomically 
overlaps with the engrafted donor microbiota in rCDI 
patients after FMT, demonstrating the utility of SameStr 
to gain new insights into human gut microbiome stabil-
ity and modulation. Application of this approach to other 
microbiome projects will improve our understanding 
of microbiome organization and function and should 
advance most areas of microbiome research.

Materials and methods
Study cohort
Metagenomic shotgun sequence data were generated 
from a previously published cohort of FMT-treated rCDI 
patients [36, 37]. The sample set included eight rCDI 
patient samples, collected 1–2 days before treatment, and 
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eleven patient samples, collected between 1 week and up 
to 1 year after FMT. FMT was performed at Sinai Hospi-
tal of Baltimore, Baltimore, MD, USA, by single infusion 
of fecal filtrate from healthy donors into the jejunum and 
colon of rCDI patients. Study design, patient selection 
criteria, donor screening, infusion protocol, and sample 
collection have previously been reported [36].

DNA isolation and sequencing
Metagenomic DNA extraction and sequencing of the 27 
fecal samples was conducted at the Institute for Genome 
Sciences, University of Maryland School of Medicine. 
DNA was extracted from 0.25 g of stored fecal samples 
(− 80 °C), using the MoBio Microbiome kit automated 
on a Hamilton STAR robotic platform after a bead-beat-
ing step on a Qiagen TissueLyser II (20 Hz for 20 min) 
in 96 deep-well plates. Metagenomic libraries were con-
structed using the KAPA Hyper Prep (KAPA Biosystems/
Roche, San Francisco, CA, USA) library preparation kit 
according to the manufacturer’s protocols. Sequencing 
was performed on the Illumina HiSeq 4000 platform to 
generate 150-bp paired-end reads.

Published sequence data acquisition
Publicly available fecal metagenomic sequence data, 
longitudinally collected from healthy adult individu-
als, were obtained through curatedMetagenomicsData 
[35], including 202 metagenomes of 67 subjects (59 with 
known sampling days) from four different studies [38, 
53–55]. Individuals were sampled at least twice within 
a year and had not reported medical conditions that 
would suggest extensive medication or strong microbi-
ota perturbations between time points. For each subject, 
sequence data downloaded from the SRA were concat-
enated in case of multiple available accessions (Table S2). 
A total of 65 additional fecal metagenomes were obtained 
from 18 cases of FMT-treated rCDI patients who had not 
been treated with FMT before [15].

Quality control and preprocessing of metagenomic 
sequencing data
All raw paired-end metagenomic sequence reads were 
quality-processed with Kneaddata v0.6.1 (KneadData 
Development Team, 2017) in order to trim sequence 
regions where base quality fell below Q20 within a 
4-nucleotide sliding window and to remove reads that 
were truncated by more than 30% (SLIDINGWIN-
DOW:4:20, MINLEN:70). To remove human sequence 
contamination, trimmed reads were mapped against the 
human genome (GRCh37/hg19) with Bowtie2 v2.2.3 [56]. 
Output files consisting of surviving paired and orphan 
reads were concatenated and used for further processing 
(Table S3).

Metagenomic strain‑level profiling with SameStr
The following individual analysis steps are part of the 
SameStr protocol to identify shared strains in metagen-
omic samples (Fig. 1):

1.	 Taxonomic microbiota analysis. Preprocessed 
sequence reads from each sample were mapped 
against the MetaPhlAn clade-specific marker gene 
database (db_v20, mpa_v20_m200) using Met-
aPhlAn2 v2.6.0 [57]. We additionally generated taxo-
nomic profiles for rarefied data, which were subsam-
pled to 5 M reads (after QC) per sample (seqtk v1.0) 
before processing with MetaPhlAn2, confirming 
representativeness of microbial communities as indi-
cated by strong correlations of Shannon Index (diver-
sity, vegan v2.5.7) between data.

2.	 Detection of SNV profiles in marker gene alignments. 
Using the SameStr tool, MetaPhlAn2 marker gene 
alignments were filtered for ≥ 90% sequence identity, 
a base call quality of Q20, and mapping length of 40 
bp. The frequencies of all four nucleotides were tabu-
lated with Samtools v0.1.19 [58] and kpileup v1.0 [15], 
retaining unmapped alignment sites as gap positions. 
Marker gene alignments were trimmed by 20 nucleo-
tides at both ends, concatenated for each species, and 
combined from all samples. In order to address atypical 
vertical coverage and wrong base calls for each sample, 
alignment positions that diverged from the mean cov-
erage by more than five standard deviations and alleles 
that were represented by < 10% of all mapped reads at 
this position were zeroed in the alignment.

3.	 Determination of maximum variant profile similarity 
(MVS). To consider individual strains from multi-strain 
species populations for the detection of shared strains, 
MVS were calculated between all species/alignment 
pairs Mi and Mj as the fraction of the sum of alignment 
positions with at least one shared allele Callele divided by 
the sum of positions with coverage in both alignments 
Ccov, where the vector of shared alleles Callele was cal-
culated as the pairwise Boolean product of 4 vectors of 
nucleotide counts at all positions between alignments 
Mi and Mj. For consensus variant profile similarity 
(CVS) calculation, shared alleles were calculated as the 
pairwise Boolean product of a single vector represent-
ing the consensus sequence of the alignment at all posi-
tions between alignments Mi and Mj.

4.	 Comparison of reference genomes. Species-specific 
marker gene regions were extracted from a total of 
458 available genome sequences in the NCBI RefSeq 
and Genome databases from the 20 most abundant 
and prevalent species in our rCDI cohort (Table S4). 
For this, marker gene regions were extracted from ref-
erence genomes with a StrainPhlAn utility [17], based 
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on BLASTn v2.6.0 comparisons, and used to generate 
multiple sequence alignments with MUSCLE v3.8.31 
[59]. After removing gap positions, marker gene align-
ments were tabulated, concatenated, trimmed, and 
used to calculate the single-genome equivalent of 
MVS. MVS-based genome similarities were compared 
to average nucleotide identities (ANI), as calculated for 
entire genomes with FastANI v1.3 [31].

5.	 Shared strain detection in distinct metagenomes. 
Based on our reference genome comparison (Fig. 1C) 
and in agreement with previous reports [21], a MVS 
threshold of 99.9% was applied to detect shared 
strains that would be identified in related but not 
unrelated microbiomes. Shared strain predictions 
were additionally limited to sample pairs with at least 
5000 overlapping alignment positions.

6.	 Validation of SameStr on mock species populations. 
Simulated shotgun sequence data were generated 
with ART read simulator v2.5.8 [60] and combined in 
various proportions to generate metagenomes from 
mock multi-strain species populations. Metagen-
omic paired-end sequence read error profiles were 
independently generated for each genome and simu-
lation, using the Illumina HiSeq-20 error profile. For 
each species (Table S4), five reference genomes were 
randomly selected, including one target genome for 
shared strain detection and four other genomes to 
simulate a background noise of additional strains 
from the same species. Both the sequencing depths 
(fold coverage) of the target strain and its abundance 
relative to all other strains (noise coverage) were var-
ied for each simulation. Marker gene alignments and 
comparisons for MVS or CVS calculation and shared 
strain detection were performed as described above.

Classification of related and unrelated sample pairs
For the prediction of related samples (distinct samples 
from the same individual or connected samples from 
FMT donors and recipients) based on strain sharing, the 
number of detected and shared taxa between sample pairs 
from the healthy adult reference dataset were determined 
at the family, genus, species, or strain level with Met-
aPhlAn or SameStr, respectively, as described above. Data 
were divided into training and hold-out data (60%/40%) 
and shared taxon or strain fractions used to train simple 
logistic regression models (tidymodels v0.1.2). The clas-
sifier that was trained on strain persistence in healthy 
adults was then used to predict related sample pairs from 
the FMT cohorts. To assess the performance of the pre-
dictor, precision-recall (tidymodels v0.1.2) and receiver 
operating characteristic (ROC) curves were generated 
(tidymodels v0.1.2) and visualized (plotROC v2.2.1).
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Additional file 1: Figure S1. Computational Resource Requirements. (A) 
Total CPU time, (B) average CPU time per sample, and (C) average use of 
RAM by the Kneaddata, MetaPhlAn3 (mpa_v30_CHOCOPhlAn_201901), 
and SameStr programs during the processing of three datasets of different 
sizes. SameStr, on average, added 4.3 CPU minutes per sample to the 
computational effort of the entire workflow.

Additional file 2: Figure S2. Microbial Tracking across Individual 
Metagenomic Samples of Healthy Controls. Microbial tracking at the 
species (top) and strain level (bottom) in healthy controls. Healthy adults 
from the reference (Control) cohort harbor a core microbiota of persisting 
strains and species (insufficient sequencing depth for strain calls) shared 
between fecal metagenomes sampled up to one year apart.

Additional file 3: Figure S3. Predicting Donor Strain Engraftment in rCDI 
Recipients after FMT. The frequencies of species (dark blue) and strain 
(light blue) persistence in healthy individuals and rCDI recipients, and of 
donor species (dark green) and strain (light green) engraftment in post-
FMT patients, differ between bacterial species, with retained recipient 
species and strains mostly being classified as oral and/or oxygen-tolerant 
species. Newly detected species and strains are shown in dark and light 
yellow, respectively.

Additional file 4: Figure S4. Microbial Tracking across Individual 
Metagenomic Samples of FMT-treated rCDI patients. Donor-derived strains 
and species (exclusively shared with donor but insufficient resolution for 
strain prediction) account for large and stable relative abundances across 
all post-FMT patient samples, whereas contributions of recipient-derived 
strains are comparatively smaller.

Additional file 5: Figure S5. Predicting Donor Strain Engraftment in rCDI 
Recipients after FMT. The same species that are represented by frequently 
persisting strains in healthy individuals are also represented by strains that 
frequently engraft from donors in rCDI patients after FMT and belong to 
species that have a high relative abundance in the healthy adult control 
cohort.
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