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Abstract 

Background:  The  gut microbiome (GM) can influence many biological processes in the host, impacting its health 
and survival, but the GM can also be influenced by the host’s traits. In vertebrates, Major Histocompatibility Complex 
(MHC) genes play a pivotal role in combatting pathogens and are thought to shape the host’s GM. Despite this—and 
the documented importance of both GM and MHC variation to individual fitness—few studies have investigated the 
association between the GM and MHC in the wild.

Results:  We characterised MHC class I (MHC-I), MHC class II (MHC-II) and GM variation in individuals within a natural 
population of the Seychelles warbler (Acrocephalus sechellensis). We determined how the diversity and composition 
of the GM varied with MHC characteristics, in addition to environmental factors and other host traits. Our results show 
that the presence of specific MHC alleles, but not MHC diversity, influences both the diversity and composition of the 
GM in this population. MHC-I alleles, rather than MHC-II alleles, had the greatest impact on the GM. GM diversity was 
negatively associated with the presence of three MHC-I alleles (Ase-ua3, Ase-ua4, Ase-ua5), and one MHC-II allele (Ase-
dab4), while changes in GM composition were associated with the presence of four different MHC-I alleles (Ase-ua1, 
Ase-ua7, Ase-ua10, Ase-ua11). There were no associations between GM diversity and TLR3 genotype, but GM diversity 
was positively correlated with genome-wide heterozygosity and varied with host age and field period.

Conclusions:  These results suggest that components of the host’s immune system play a role in shaping the GM 
of wild animals. Host genotype—specifically MHC-I and to a lesser degree MHC-II variation—can modulate the GM, 
although whether this occurs directly, or indirectly through effects on host health, is unclear. Importantly, if immune 
genes can regulate host health through modulation of the microbiome, then it is plausible that the microbiome 
could also influence selection on immune genes. As such, host–microbiome coevolution may play a role in maintain-
ing functional immunogenetic variation within natural vertebrate populations.
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Background
Most animals harbour a complex microbial commu-
nity including bacteria, archaea, viruses, and microbial 
eukaryotes, collectively known as the host’s microbiome. 

Members of this diverse community have coevolved with 
their host’s over evolutionary time and can play a funda-
mental role in their host’s biology [1]. Consequently, it is 
important to understand the ecological and evolutionary 
processes that shape host-associated microbial commu-
nities [2]. This is particularly true of the vertebrate gut, 
where the gut microbiome (GM) contributes to many key 
biological processes in the host, from enabling nutrient 
uptake [3] to pathogen defence [4]. As such, studies on 
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domestic or laboratory animals have demonstrated that 
disrupting the GM can have negative consequences for 
host health and survival [5]. However, the factors that 
govern the diversity and composition of the GM remain 
unclear, particularly in natural populations where organ-
isms are exposed to greater levels of environmental and 
microbial complexity compared to domestic or labora-
tory animals [6].

Studies on wild vertebrates are now attempting to 
unravel the importance of extrinsic factors, such as the 
environment, season and diet in shaping GM variation 
among species, populations, and individuals e.g. [7–9]. 
Within a population, individual variation in the GM has 
also been linked to a multitude of host factors including 
sex [10], age [11], body condition [12], cognition [13], 
sociality [14], and hormones [15, 16]. Host genetics may 
also play an important role in determining individual 
GM variation within a population [17]. For example, 
increased genetic relatedness predicts decreased GM dis-
similarity [10, 18] and compositional changes [19, 20].

Immunogenetic variation may play an important role 
in driving individual differences in the GM (reviewed 
in [21]). Microbial complexity presents a unique chal-
lenge to the host immune system, which has evolved to 
prevent pathogenic microbes from proliferating, while 
still enabling beneficial microbes (i.e., those that form 
mutualistic/commensal interactions) to remain [22, 23]. 
In humans, inappropriate immune responses can lead 
to detrimental compositional changes to the GM via a 
loss of diversity and stability, as well as an increase in the 
proliferation of pathogenic bacteria [24]. Such changes 
in GM composition can lead to serious health outcomes 
[5, 25], so accurate regulation of microbes by the host is 
essential. Variation in GM composition has been asso-
ciated with variation in immune receptor genes (which 
detect antigens, inducing an immune response) [26], 
making them key candidate genes that might influence 
the relationship between host genotype and the GM. For 
example, pattern recognition receptor genes involved in 
the innate immune response, including Toll-like recep-
tors (TLR), nucleotide-binding oligomerization-like 
receptors, RIG-I-like receptors and C-type lectin recep-
tors, play an important role in recognising and regulat-
ing the GM in humans and captive animals (reviewed in 
[26, 27]).

In vertebrates, Major Histocompatibility Complex 
(MHC) genes, which play a key role in antigen detec-
tion in the adaptive immune response [28], may also 
shape GM variation. A specialised group of host cell-
surface glycoproteins encoded by MHC genes, recognise 
and bind protein antigens (including microbial derived 
peptides), presenting them to T lymphocytes and B cell 
receptors. If the combined MHC-peptide complex is 

recognised as non-self, the T and B cells are activated, 
triggering an appropriate immune cascade [29]. After 
such a reaction, the adaptive immune system produces 
memory cells, enhancing any future immune response 
(an acquired response) if the host re-encounters that spe-
cific antigen. MHC class I (MHC-I) molecules, which are 
expressed on the surface of virtually all somatic cells, pri-
marily present intracellular peptides to cytotoxic CD8+ T 
cells, while MHC class II (MHC-II) molecules are present 
on antigen-presenting cells and mainly present extracel-
lular antigens to helper CD4+ T cells, including those 
from bacterial species in the intestinal tract [30, 31]. 
Functional variants of MHC genes can confer differential 
antigen recognition and affect fitness [32, 33], with path-
ogen-mediated selection thought to drive the extraordi-
nary within- and among-population variation observed 
at the MHC [34, 35]. Likewise, individuals with different 
MHC genotypes are likely to respond differently to dif-
ferent microbial species, including commensals in the gut 
[36], which could contribute to the inter-individual GM 
variation seen in natural vertebrate systems. Comparing 
functional immunogenetic variation with the diversity 
and composition of the GM could provide further under-
standing of the selective pressures acting on the mainte-
nance of host genetic variation, with the GM being one 
possible factor driving selection at MHC genes.

Various studies on captive animals have found links 
between individual MHC variation and GM composi-
tion [37–39]. However, captivity can profoundly alter an 
organism’s microbiome [40] and the complexities associ-
ated with natural populations cannot be captured in such 
studies [6]. Few studies have investigated associations 
between the microbiome and individual MHC variation 
in wild animals. Those that have, have primarily focused 
on MHC-II variation, as this is central to humoral immu-
nity against extracellular microbes [41]. For example, in 
the reddish-grey mouse lemur (Microcebus griseorufus), 
the presence of specific MHC supertypes was associated 
with changes in GM composition, but not diversity [42]. 
In threespine sticklebacks (Gasterosteus aculeatus), GM 
diversity and MHC-II diversity were negatively corre-
lated, and changes in GM composition and diversity were 
associated with specific MHC-II alleles [43]. In contrast, 
in two species of giant salamander, the Ozark hellbender 
(Cryptobranchus alleganiensis bishopi) and eastern hell-
bender (C. a. alleganiensis), although the composition 
of the cutaneous microbiome was associated with spe-
cific MHC-II alleles, cutaneous microbiome diversity 
and composition were positively correlated with indi-
vidual MHC-II divergence [44]. Lastly, studies on Leach’s 
storm petrel (Oceanodroma leucorhoa), and the blue pet-
rel (Halobaena caerulea), found that variation in body 
surface (feather and glandular) bacterial communities, 
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responsible for the production of volatile cues involved in 
mate choice, was associated with MHC-II variation [45, 
46]. However, very few studies have tested for an associa-
tion between MHC-I genes (or any other host immune 
genes) and the microbiome in a natural population (but 
see [19, 42]). This is despite the fact that MHC-I variation 
could impact the GM indirectly, for example via differ-
ences in individual susceptibility to intracellular infec-
tions (such as viruses) that could then impact the health 
and/or GM of the host [47].

The isolated population of Seychelles warblers (Acro-
cephalus sechellensis) on Cousin Island has been inten-
sively monitored since 1985 [48, 49]—and represents an 
excellent study system in which to investigate associa-
tions between MHC variation and the GM in the wild. 
The age, sex, status and territory of nearly every individ-
ual is known, and DNA samples have been collected since 
1990 [50]. This population harbours reduced genetic var-
iation as a result of a past genetic bottleneck [51]. How-
ever, variation still exists across the genome [52] and, 
importantly, at both MHC-I [53] and MHC-II [54] loci, 
as well as at some TLR genes [55]. Differences in indi-
vidual fitness have been linked to this genetic variation, 
for example, individual condition [56] and reproduc-
tive success [57] are negatively correlated with genome-
wide homozygosity. Likewise, differential survival and 
reproductive success are associated with variation in the 
viral-sensing TLR3 gene [50]. Lastly, survival is positively 
associated with a specific MHC-I allele (Ase-ua4) and 
MHC-I diversity [58], and the occurrence of extra-pair 
paternity is negatively related to MHC-I diversity of the 
social male [59]. But whether there is functional variation 
at MHC-II in the Seychelles warbler and if this is related 
to variation in fitness remains unresolved.

Here, we aim to test whether immunogenetic varia-
tion, alongside other host and environmental factors, is 
associated with individual GM variation in the Seychelles 
warbler. Specifically, we test if bacterial diversity and 
community composition are associated with MHC-I and 
MHC-II gene diversity, or the presence of specific alleles 
at MHC-I, MHC-II, or TLR3 loci. It is difficult to make 
clear predictions about such associations. Individual GM 
diversity might be negatively associated with immuno-
genetic variation [43] if this genetic diversity enables 
hosts to recognise and instigate an immune response 
against more bacterial species. Alternatively, GM diver-
sity might be positively associated with greater, or opti-
mal, immunogenetic diversity. This could occur via two 
different pathways: first, directly, with greater immuno-
genetic diversity helping to eliminate highly competi-
tive (potentially pathogenic) bacterial taxa, while still 
tolerating a network of commensal/mutualistic bacterial 
species—for example, there is evidence that following 

peptide-binding, the MHC can also enable tolerance 
towards certain microbial species including gut commen-
sals; this can be induced through mechanisms involving 
regulatory T cells or immunoglobulin A [60–62]- and 
second, indirectly, with greater, or optimal, immunoge-
netic diversity conferring increased host health and fit-
ness, which in turn may be associated with greater GM 
diversity [24]. We also predict that GM composition and 
diversity will differ in relation to the presence or absence 
of specific immune alleles via differences in immunity 
and tolerance. This is expected to be most marked for 
MHC-II alleles, as these are expressed extracellularly 
on antigen-presenting cells that can extend into the gut 
lumen and are therefore important in the recognition of 
gut microbes [22].

Methods
Study species and sample collection
The Seychelles warbler is a small insectivorous passer-
ine, endemic to the Seychelles archipelago. They are 
facultative cooperative breeders, defending strict year-
round territories [48]. The population on Cousin Island 
(4°20’S,55°40’E; 0.29  km2)—which has been extensively 
monitored since 1985 [48, 49] has a carrying capacity of 
ca. 320 adult individuals, existing in ca. 115 territories 
[48, 63, 64]. There is virtually no migration to or from 
Cousin [65]. Individuals can live for a maximum of 19 
years, with a median post-fledging lifespan of 5.5 years 
[66]. A comprehensive population census is conducted 
bi-yearly during the major breeding season (June–Sep-
tember) in the south-east monsoon, and the minor 
breeding season (January–March) in the north-west 
monsoon [67]. Territory quality (as defined by insect prey 
availability) varies quantifiably within and between years 
[68]; thus, it is possible to separate the influence of envi-
ronmental factors from host-intrinsic factors when inves-
tigating individual GM variation.

Individuals are either caught as chicks in the nest or 
by mist net. Each bird is given a metal British Trust for 
Ornithology (BTO) ring and a unique combination of 
three colour rings, allowing it to be individually identifia-
ble. Birds are aged based on hatch date, behaviour, or eye 
colour; grey eyes indicate an age < 5 months, light brown 
eyes are characteristic of sub-adults (5–12 months), and 
adults (> 12 months) have red-brown eyes [48, 69]. Blood 
samples (25 μl) are collected by brachial venipuncture 
and stored in 0.8 ml of absolute ethanol at either room 
temperature or 4°C.

In total, 343 faecal samples were collected from 293 
captures, across two years and three consecutive field 
seasons: the major 2017, minor 2018, and major 2018 
breeding seasons. Captured birds were immediately 
placed into a clean bag. In the first major breeding season 
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of our study (2017), this was a laundered cotton bag; 
however, for all following seasons, birds were placed into 
a single use plastic-lined, flat-bottomed paper bag con-
taining a plastic tray covered by a metal grate, accord-
ing to an established protocol [70]. The metal grate and 
tray were sterilised with a 10% bleach solution between 
use. Individuals were removed from the bag once they 
had defaecated or after a maximum of 30 min. A sterile 
flocked swab was used to transfer faecal material into a 
sterile microcentrifuge tube containing 1 ml of absolute 
ethanol. If the bird defaecated outside of the bag or tray, 
then a sample was still collected. Control samples from 
possible sources of contamination such as the bag, grate, 
and  tray  were taken throughout each sampling season, 
using sterile flocked swabs (n = 1 per type). In addition 
to this, four swab samples were taken from fieldworkers’ 
hands throughout each sampling season; the gDNA from 
different hand samples was pooled into one sample prior 
to sequencing. Faecal samples were stored in the field 
at 4°C for a maximum of 3 months (mean days ± SEM: 
38.1 ± 1.3), before being transported to the lab, where 
they were stored at −80°C prior to extraction. There was 
no association between faecal GM diversity (measured 
as Shannon, Chao1 and Faith’s phylogenetic diversity) 
or composition (measured as weighted UniFrac), and 
extraction time (time in days from collection to extrac-
tion) or sequencing run (n = 195, P > 0.05).

Molecular methods
Genomic DNA (gDNA) was extracted from blood using 
the DNeasy blood and tissue kit (Qiagen). Individuals 
were genotyped at 30 polymorphic microsatellite loci 
[52, 64], and standardised individual microsatellite het-
erozygosity (Hs) was calculated using the R 3.6.1 function 
Genhet 3.1 [71]. Sex was determined via PCR [64, 72]. 
Variation at one non-synonymous SNP within the leu-
cine-rich repeat domain of TLR3 exon 4 was determined 
following [50].

MHC sequencing and bioinformatics
In total, 314 samples were MHC sequenced, includ-
ing 229 samples from individuals that had GM data and 
31 samples from individuals previously MHC screened 
at either MHC-I [73] or MHC-II [54] using older tech-
niques. The remainder included 30 repeated samples, 23 
negative controls (making up at least 5% of each plate) 
and four samples (one per plate) from one great reed 
warbler (Acrocephalus arundinaceus) individual to serve 
as a positive control.

MHC-I exon 3 and MHC-II exon 2 were amplified and 
sequenced using previously validated primer sets [48, 49] 
(Additional file 1: Table S1), with the addition of Illumina 
index sites. Additionally, six random hexamers (N) were 

added to the first round PCR (PCR1) primers to increase 
diversity and improve cluster separation [74]. The two 
primer pairs amplifying MHC-I each included a motif-
specific primer situated within exon 3, and one general 
primer situated in intron 3, and so amplified 262 bp of 
the full exon (274 bp). These primers had been designed 
to preferentially amplify functional variants, while avoid-
ing known pseudogenes [53, 75]. The primers for MHC-
II, situated within the flanking introns 1 and 2 of exon 2, 
amplify a 291-bp fragment. These sequences were then 
edited to the 270 bp MHC-II exon 2 [54]. The term ‘allele’ 
is used to describe the different variants amplified for 
each class of MHC, consistent with other publications 
investigating MHC diversity; however, alleles cannot be 
assigned to specific (duplicated) loci within each MHC 
class. Previous work suggests that, in the Seychelles war-
bler, there are a minimum of four duplicated MHC-I loci 
and six MHC-II loci [53, 54]. Sequencing of the MHC-I 
and MHC-II exons was carried out using 2x 250-bp 
paired-end sequencing on an Illumina MiSeq platform 
(Illumina, San Diego) (see Additional file 1: Supplemen-
tary methods for details).

Processing and MHC genotyping of raw Illumina 
MiSeq data were conducted using the Amplicon 
Sequencing Assignment (AmpliSAS) tool [76]. First, 
FastQC was used to check read quality, before merg-
ing pair-ended reads together using AmpliMERGE 
(10,257,832 merged sequences). AmpliCLEAN was then 
used to remove low-quality reads (Phred score of <30) 
and any that were missing either primers or barcodes 
(e.g., from residual PhiX). MHC-I and MHC-II sequences 
were separated resulting in 3,044,897 raw MHC-I 
sequences and 6,144,575 raw MHC-II sequences. All 
downstream bioinformatics and analysis were conducted 
separately for MHC-I and MHC-II. Cutadapt 1.6 [77] 
was used to remove MHC-specific primers, the six ran-
dom hexamers, and short reads (<100 bp). For MHC-II 
sequences, remaining intron regions were also removed, 
leaving a 270-bp fragment spanning the full exon. Ampli-
CHECK was used for preliminary data exploration, using 
Illumina-based default settings. Finally, AmpliSAS was 
used for demultiplexing, clustering, and filtering reads. 
First, a subset of 30 duplicated samples were used to opti-
mise parameters for MHC-I and MHC-II, testing both 
minimum dominant frequency settings for the cluster-
ing step, and minimum amplicon depth for the filtering 
step, as recommended in [76]. Based on these results 
(Additional file 1: Table S2, S3) Illumina default cluster-
ing settings were used (1% substitution errors, 0.001% 
indel errors, 25% minimum dominant frequency) for 
both MHC classes. For the filtering step, chimaeras 
and sequences that only appeared in one sample were 
removed, and the minimum amplicon frequency was set 
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as 1.6% for MHC-I and 1.8% for MHC-II. This resulted 
in 1,267,410 raw MHC-I sequences and 1,385,049 raw 
MHC-II sequences. Due to computational limitations, 
the MHC-II dataset was split into two halves and ana-
lysed using AmpliSAS separately, before being combined 
using AmpliCOMBINE in the web version of AmpliSAS.

For MHC-I, the majority of putative alleles were 262 
bp, although three sequences that were <262 bp were 
present in >80% individuals. These were not homologous 
to any known MHC gene when checked using blastn and 
were removed from downstream analysis. The majority 
of MHC-II putative alleles were the full 270 bp length, 
although there were also sequences between 267 and 269 
bp, which were similar to MHC genes (see results). All 
MHC-II sequences <267 bp in length were not similar to 
any known MHC genes and, as putative sequencing arte-
facts, were removed from downstream analysis. MHC-I 
and MHC-II putative alleles were first checked against all 
known Seychelles warbler alleles. Any unknown putative 
alleles were then checked against the GenBank (NCBI) 
nucleotide database (accessed on June 25, 2020) to assess 
similarity to known MHC alleles from other related spe-
cies. Additionally, samples of insufficient read depth 
based on rarefaction curves, which equated to a mini-
mum read depth of 150 per amplicon for MHC-I, and 100 
per amplicon for MHC-II, were removed. For 30 individ-
uals sequenced twice to confirm repeatability, the sample 
with the greatest read depth was retained. After process-
ing, the total number of reads assigned to an allele was 
1,071,525 for MHC-I (mean ± SEM = 4391.5 ± 149.3 
per sample) and 1,123,211 for MHC-II (mean ± SEM = 
4603.3 ± 888.2 per sample) in the Seychelles warbler.

Microbial extraction, sequencing, and bioinformatics
In total, 400 faecal samples were sequenced across three 
sequencing runs (two plates per sequencing run). This 
included 343 unique faecal samples (from 235 individu-
als) and 14 control samples, the latter of which included 
six extraction negative controls, four positive controls 
(using a microbial community standard), and four sam-
pling controls. Additionally, 43 faecal samples were 
sequenced twice (20 within the same run and 23 across 
different runs) to determine sequencing accuracy and 
repeatability within, and between runs.

Faecal samples were centrifuged for 10 min at 10,000 
rpm, and the supernatant was removed. To remove any 
residual ethanol, the resulting pellet was washed with 
100 μl RNase/DNA-free molecular grade water by cen-
trifuging at 10,000 rpm for 10 min. The supernatant 
was then removed, and the washing step repeated a 
further two times. Microbial DNA was extracted from 
0.05–0.1 g of each sample using the DNeasy PowerSoil 
Kit (Qiagen), according to an optimised version of the 

manufacturer’s instructions. Modifications consisted of 
a heat block step (65°C for 10 min) prior to bead-beat-
ing and elution of DNA in a final volume of 60 μl elu-
tion buffer. To further assess sequencing accuracy and 
repeatability between runs, a ZymoBIOMICS microbial 
community standard (D6300) was extracted as a positive 
control using a ZymoBIOMICS DNA miniprep kit (Zymo 
Research), according to the manufacturer’s instructions. 
The observed microbiome profiles of the positive control 
represented the expected microbial community (8 ASVs). 
The accuracy and repeatability of the DNeasy PowerSoil 
Kit extraction method were assessed and validated in a 
separate study which also utilised the ZymoBIOMICS 
microbial community standard (D6300).

Extracted gDNA was quantified using a Qubit 4.0 Fluo-
rometer (Invitrogen) with a Qubit dsDNA HS assay kit 
(Invitrogen). Aliquots of gDNA were shipped on dry ice 
to the Centre for Genomic Research, University of Liv-
erpool, for library preparation, pooling and sequencing. 
Bacterial barcoding was performed with a 2-step ampli-
fication process using the primers 515F (5’TGC​CAG​
CMGCC​GCG​GTAA3’) and 806R (5’GGA​CTA​CHVGGG​
TWT​CTAAT3’) [78], which amplify the V4 region of the 
16S rRNA gene (see Additional file  1: Supplementary 
methods for details). Paired-end sequencing was carried 
out using 2x 250-bp paired-end sequencing on an Illu-
mina MiSeq platform (Illumina, San Diego).

For each sequencing run, raw reads were first trimmed 
using Cutadapt 1.2.1 [77] to remove Illumina adapter 
sequences. Reads were further trimmed using Sickle 
1.200 with a minimum window quality score of 20, 
resulting in 12,308,047, 9,397,303 and 9,831,508 demul-
tiplexed reads for the three runs, respectively (mean 
± SEM per sample: 102,567.1 ± 10,454.8, 67,123.6 ± 
6,633.1, 70,225.1 ± 5,423.5). Sequences were then ana-
lysed using QIIME2 2019.10 [79]. Based on overall qual-
ity scores, the first 10 bases of each read were trimmed, 
and sequences truncated to 210 bp for both forward 
and reverse reads. The DADA2 plugin 2019.10.0 was 
used to join paired-end reads, denoise, remove chimae-
ras and residual PhiX reads, dereplicate and call ampli-
con sequence variants (ASVs) [80, 81]. Following this, 
results from the three separate runs were merged, result-
ing in a total of 22,997,693 reads (mean ± SEM per sam-
ple: 57,494.3 ± 3424.8) with 36,182 ASVs. A mid-point 
rooted phylogeny was then constructed using the masked 
alignment MAFFT [82] and the Fast Tree approach [83]. 
Taxonomic assignment of ASVs was performed by train-
ing a naïve-Bayes classifier on the SILVA 132 16S dataset 
using 99% sequence similarity [84, 85]. Plastid-like and 
archaeal sequences were removed, as well as amplicons 
which only had one read across the whole dataset (single-
tons) which likely represent sequencing errors. In total, 
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ASVs from 19 genera were present in the negative con-
trol samples (Additional file 2). Of these, 15 genera were 
present at < 3% overall abundance in the negative control 
samples (and had greater read counts in the faecal sam-
ples) and so were not considered as contaminants intro-
duced at extraction. Furthermore, two genera had fewer 
than 500 reads across faecal samples, and one genus was 
found at equal abundance in negative extraction controls 
and faecal samples from different sequencing runs, and 
so it could not be determined which sample was con-
taminated; as such, these sequences were retained in 
analysis. A visual assessment of samples showed that two 
ASVs were present at relatively high sequencing depth 
in negative extraction controls—these were also preva-
lent in faecal samples with low sequencing depth and 
DNA concentration and so were removed as probable 
contaminants. These two ASVs were additionally con-
firmed as contaminants using the prevalence and filtering 
methods in the DECONTAM package [86]. One of these 
ASVs was from the genus Defltia (relative abundance of 
90.5% in a negative extraction control from the first run), 
and one was from the genus Limnobacter (relative abun-
dance of 99.9% in a negative extraction control from the 
third run). The removal of these ASVs resulted in a total 
of 21,863,215 reads (mean ± SEM per sample: 54,795.0 
± 3,439.6) with 34,869 ASVs. Following cleaning, visual 
assessment of the positive controls revealed that only the 
eight expected ASVs were present, while visual assess-
ment of the collection controls showed they had quite 
different bacterial profiles when compared to the faecal 
samples, with few overlapping ASVs at high abundance. 
This indicates that neither the sequencing nor the sam-
pling methods significantly impacted taxa present in the 
faecal samples. The final sample metadata, ASV and tax-
onomy tables were all exported from QIIME2 into R 3.6.1 
where they were processed using phyloseq 1.28.0 [87]. 
Sample completeness and rarefaction curves were gen-
erated using iNEXT 2.0.20 [88]; completeness plateaued 
at approximately 10,000 reads and 34 samples (including 
all six negative extraction controls) with fewer reads were 
excluded from downstream analyses (Additional file  1: 
Fig S1). Overall, 320 unique samples (93%) were retained 
from 224 individuals.

The repeatability of GM sequencing was tested by com-
paring samples that were sequenced multiply within and 
across sequencing runs and that had sequencing depth of 
>10,000 reads (37 out of the initial 43 samples). Individ-
ual repeatability was tested for individuals that had mul-
tiple samples collected from the same capture or were 
caught multiple times in the same field season and that 
had a sequencing depth of >10,000 reads (115 samples 
from 51 individuals). The individual repeatability dataset 
was further filtered to remove ASVs that had a total read 

count of <50 across samples and could potentially repre-
sent sequencing errors. Euclidean dissimilarity between 
pairs of samples was compared using one metric of alpha 
diversity (the Shannon diversity index) and two metrics 
of beta diversity (unweighted and weighted UniFrac of 
between and within duplicated samples) using Kruskal–
Wallis tests.

Statistical analyses
Unless otherwise stated, all analyses were conducted in 
R 3.6.1. To characterise the Seychelles warbler GM, sam-
ples sequenced twice for repeatability analysis (sample 
duplicates) were filtered such that only the sample with 
the greatest read-depth was retained. Samples collected 
from the same bird during the same catch session (catch 
duplicates) were filtered to retain the single sample with 
the smallest potential exposure to external contamina-
tion, i.e., samples collected from cleaned trays were prior-
itised over those collected from other substrates, then the 
sample with the highest read depth was prioritised. The 
removal of sample and catch duplicates resulted in 281 
samples (from 224 individuals). This resulted in a total 
of 16,562,592 reads (mean ± SEM per sample: 58,941.6 
± 3997.7) with 34,869 ASVs in the faecal dataset. For all 
alpha diversity, beta diversity and differential abundance 
analyses, microbiome samples taken from chicks were 
excluded due to a small sample size (n = 11). Individuals 
with incomplete MHC genotype data (n = 25) were also 
excluded. Lastly, to prevent pseudo-replication, where an 
individual had multiple samples taken at different capture 
events, a single sample was selected at random, giving an 
overall sample size of 195 samples from 195 individuals 
from Cousin Island. Prior to downstream analysis the 
dataset was further filtered to remove ASVs that had a 
total read count of <50 across samples and could poten-
tially represent sequencing errors. This resulted in a total 
of 10,680,281 reads (mean ± SEM per sample: 54,770.7 
± 4,170.4) with 9,628 ASVs in the cleaned, non-rarefied 
dataset.
Alpha diversity
All 195 samples were rarefied to a depth of 10,000 reads, 
based on sample completeness curves, leaving a total of 
1,950,000 reads and 27,547 ASVs across samples in the 
rarefied dataset. Analyses were run using both rarefied 
and non-rarefied data; however, as results were compa-
rable between datasets and library size was highly vari-
able across samples, only the outcome of models using 
the rarefied dataset are presented. Three metrics of alpha 
diversity were calculated: Chao1 [89] (microbial species 
richness), Shannon diversity index [90] (species richness, 
taking into account sample evenness) and Faith’s phylo-
genetic diversity index [91] (the phylogenetic diversity 
of a sample). Chao1 and Shannon diversity indices were 
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calculated using phyloseq 1.28.0 [87], and Faith’s phylo-
genetic diversity was calculated using btools 0.0.1 [92]. 
Both Chao1 and Faith’s phylogenetic diversity were log-
transformed in models to improve residual fit.

Linear models with a Gaussian distribution were 
constructed using glmmTMB 0.2.3 [93] to determine 
whether the alpha diversity of the GM differed with (1) 
the presence/absence of individual immune genes and 
(2) immune gene diversity. For each diversity metric two 
models were run. The first model included the presence/
absence of all the MHC-I and MHC-II alleles that were 
present in at least 15% of sampled individuals and that 
were the correct length (see above). This included Ase-
dab3, Ase-dab4, Ase-dab5, Ase-ua1/10, Ase-ua3, Ase-
ua4, Ase-ua5, Ase-ua6, Ase-ua7, Ase-ua8, Ase-ua9, and 
Ase-ua11 (Ase-ua1 and Ase-ua10 were perfectly corre-
lated, so only Ase-ua1 was included). The second model 
contained MHC-I diversity, MHC-II diversity, and the 
squares of each of these terms, since optimal, rather than 
a greater diversity, of MHC alleles could be more ben-
eficial [94]. Both models also included individual het-
erozygosity (Hs) and TLR3 genotype (TLR3AA, TLR3AC 
or TLR3CC). The field period sampled (major 2017, major 
2018, minor 2018), sex (male, female), and age (fledg-
ling, old fledging, sub-adult, adult) were also included, as 
these factors have been shown to influence GM variation 
in other studies. Alpha diversity (Shannon, log Chao1, log 
Faith) was entered as the response variable. In all models, 
continuous factors were standardised (scaled and cen-
tred) using arm 1.10-1 [95]. Biologically relevant interac-
tions were initially included in models but were removed 
prior to model averaging to enable interpretation of 
first-order effects, as all were non-significant (P < 0.1). 
Field period and territory quality were correlated (linear 
model; F2,185 = 117.2, P < 0.001), so only field period was 
included in the models. Collinearity between independ-
ent variables was tested using variance inflation factors 
ensuring an upper limit of three. Collinearity between 
the presence/absence of immune alleles was further 
assessed using GGally 2.0.0 [96]. DHARMA 0.2.4 [97] 
was used to confirm that there was no over or under dis-
persion, or residual spatial or temporal autocorrelation in 
the models. Model averaging—an information-theoretic 
approach using the dredge function in MUMIn 1.43.6 
[98]—was used to select plausible models. All models 
within seven AICc of the top model were included in the 
averaged model, to obtain the final conditional model 
[99].

Beta diversity
The unrarefied dataset was further filtered to remove 
ASVs that appeared in fewer than five samples, based 
on an assessment of overall ASV prevalence and 

abundance (Additional file  1: Fig S2). Overall, 1,934 
ASVs were retained following filtering. To account for 
uneven sequencing depth across samples, reads were 
normalised using the cumulative sum scaling function 
[100] in metagenomeSeq 1.26.3 [101]. This method 
includes adding  a pseudocount and transforming the 
data (log (x + 0.0001). Therefore, to preserve zeros 
from the original counts, post-transformation values 
were corrected by subtracting the log of the pseudo-
count [102]. Two beta diversity metrics that incorpo-
rate phylogenetic distance were then calculated using 
phyloseq 1.28.0 [103]; these were unweighted UniFrac 
distance (based on the presence/absence of microbial 
taxa) and weighted UniFrac distance (a quantitative 
measure which accounts for differences in the abun-
dances of microbial taxa) [104]. Marginal Permuta-
tional Analysis of Variance tests (PERMANOVAs) 
were used to assess whether GM community composi-
tion differed with immune gene characteristics, using 
the adonis2 function in Vegan 2.5.6 [105] with 10,000 
permutations. As with alpha diversity models, two sets 
of PERMANOVA tests were constructed for each beta 
diversity metric, with the first set of models includ-
ing the presence/absence of MHC alleles, and the 
second set of models including MHC diversity; other 
variables were included as in alpha diversity models. 
To clarify whether significant differences detected 
in PERMANOVA tests were caused by differences in 
mean values, rather than variation in dispersion across 
groups [106], homogeneity of group dispersions was 
tested using the betadisper function in Vegan 2.5.6 
[105]. Principle coordinate analysis (PCoA), based on 
weighted and unweighted UniFrac distances, was used 
to visualise the differences in composition between 
groups.

Differential abundance analysis
To assess whether particular ASVs were differentially 
abundant between groups of individuals with different 
immune gene characteristics, DESeq2 1.24.0 [107] was 
used. For this analysis, unrarefied reads were filtered 
following the same protocol as used for beta diversity 
analysis, but untransformed, as DeSeq2 uses its own 
variance stabilising transformation to account for vari-
ation in library size across samples. Overall, 1,934 ASVs 
were retained following filtering. DeSeq2 estimates the 
log2-fold change in microbial abundance between sample 
groups using a negative binomial distribution to model 
ASV counts. Only variables that were associated with 
significant compositional shifts in PERMANOVA tests 
(Ase-ua7, Ase-ua11, Ase-ua1/10, field period, and age 
class) were included in this analysis to avoid over-para-
metrization (Table 1). To account for the large number of 
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zero counts for individual ASVs, the “poscounts” estima-
tor was included when estimating size factors. As part 
of the DeSeq2 pipeline, differential ASV abundance was 
assessed using negative binomial Wald tests and P values 
were adjusted using the Benjamini and Hochberg false-
discovery rate correction, with a significance cut-off of P 
< 0.01. Two ASVs did not converge due to a high number 
of zero counts across samples; these were removed from 
the analysis.

Results
Seychelles warbler GM profile
The overall bacterial phyla and class profile of the Sey-
chelles warbler GM was similar to other passerine spe-
cies [108]. We identified 40 bacterial phyla across the 
281 samples combined; however, of these, Proteobacteria 
(42% of total reads), Firmicutes (22%), and Actinobacte-
ria (17%) dominated, with all other phyla being present at 
lower relative abundances (summing to <5% of the total 
read count). The dominant bacterial classes were Gam-
maproteobacteria (25%), Alphaproteobacteria (16%), Act-
inobacteria (16%), Bacilli (16%), and Clostridia (6%) (Fig 
1). At lower taxonomic levels, we identified 126 classes, 

372 orders, 745 families, 1,827 genera, 2,586 species and 
34,869 ASVs across the 281 samples combined.

The core microbiome was further characterised at the 
family level by extracting bacterial families that appeared 
in at least 50% of samples with a minimum relative abun-
dance of 0.1% (Additional file 1: Table S4). This resulted 
in the detection of 28 core families, with ASVs from these 
families making up 75% of all reads. Of the core families, 
eight were present in at least 80% of samples, and four 
accounted for >5% of all reads; this latter group consisted 
of Enterobacteriaceae (23% of total reads), Streptococ-
caceae (10%), Rhizobiaceae (6%), and Enterococcaceae 
(5%). Of the assigned genera, 20 were present in at least 
50% of samples and ASVs from these genera made up a 
total of 28% of all reads. However, of these, only two gen-
era (Microbacterium and Enterococcus) were present in 
more than 80% of samples.

Despite the presence of a core microbiome, the abun-
dance of individual bacterial taxa was highly variable 
across individuals as is typical in a wild species (Fig.  1) 
[109–111]. Additionally, there was considerable individ-
ual variation in alpha diversity when measured as Chao1 
(mean = 323.2 ± 14.63 SEM), Shannon (mean = 4.0 ± 

Table 1  The effect of host-associated variables on gut microbiome composition in the Seychelles warbler (n = 195). Unweighted and 
weighted UniFrac were used as beta diversity metrics in separate PERMANOVA models. A Including the presence/absence of MHC 
alleles or B MHC diversity. Significant terms are in bold and underlined. **P < 0.01 and *P < 0.05
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0.07), and Faith’s phylogenetic diversity (mean = 18.8 
± 0.62). Individual repeatability of the GM was tested 
using samples taken from the same individual during the 
same catch or field season, and three metrics of diversity 
(Shannon, unweighted, and weighted UniFrac). Pairwise 
beta diversity distances between different individuals 
were significantly greater (more dissimilar) than within-
individual comparisons of samples taken during the 
same catch or field season (n = 51, unweighted UniFrac; 
χ1 = 21.28, P <0.001: weighted UniFrac; χ1 = 6.06, P = 
0.014; Additional file 1: Fig S3). Likewise, pairwise Shan-
non diversity distances between different individuals 
were significantly greater (more dissimilar) than within-
individual comparisons (n = 49, χ1 = 4.51, P= 0.034; 
Additional file 1: Fig S3). Note that in this analysis, two 
samples with unusually low Shannon diversity (0.9 com-
pared to a mean of 4.0) were not included.

Repeatability of GM sequencing for the same sam-
ple was tested using three metrics of diversity (Shan-
non, unweighted, and weighted UniFrac). As expected, 
pairwise distances between samples were significantly 
greater (or more dissimilar) than within-sample compari-
sons, i.e., pairwise distances when gDNA from the same 

sample was sequenced twice (n = 37, P < 0.001) (Addi-
tional file 1: Fig S4).
MHC characteristics
244 individuals were successfully genotyped at MHC-I 
exon 3 and MHC-II exon 2 genes. The repeatability of 
MHC-I genotypes was 95.0% and of MHC-II was 90.1%, 
based on 26 and 24 duplicate samples, respectively 
(Additional file  1: Table  S2, S3). The great reed warbler 
positive control sample had four MHC-I and four MHC-
II alleles—all of which mapped with 100% similarity to 
previously sequenced great reed warbler MHC alleles.

On average, individuals had 5.0 MHC-I alleles: 2–7 
alleles per individual. Of these, 10 MHC-I alleles were 
present in >5% but <95% individuals, and another 10 
were present in ≤5% of individuals (Fig.  2). Nine of 
the ten common alleles matched previously sequenced 
alleles [53], with an average of 98% sequence similar-
ity. Ase-ua2 was not present in the current sequencing 
cohort. When comparing 29 individuals also genotyped 
using reference strand-mediated conformation analysis 
[73], and excluding Ase-ua2, there was 95% similarity 
between genotyping methods.
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Fig. 1  The relative abundance of bacterial A phyla and B classes in Seychelles warbler faecal samples. Each column represents a single faecal 
sample (281 faecal samples, collected from 224 Seychelles warblers). Samples are separated by age class: CH = chick, FL = fledgling, OFL = old 
fledgling, SA = sub-adult, A = adult. Y-axis shows the relative abundance (%) of the 10 most abundant bacterial taxa. All other taxa are collapsed 
into the low abundance category.
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Including all MHC-II alleles, individuals had on aver-
age 5.8 alleles (range 3–11) out of a total of 24 alleles 
(Fig. 2a). However, of these 24 MHC-II alleles, only 14 
were of the full exon length (270 bp), six alleles had a 
1-bp deletion (269 bp in length), two alleles had a 2-bp 
deletion (268 bp) and two alleles had a 3-bp deletion 
(267 bp). Of the 10 alleles which contained indels, three 
of these also contained stop codons, and all were miss-
ing the Cys74 residue, which along with Cys10 residue 
creates a disulphide bridge, which is important for con-
formation of the mature MHC protein; therefore, these 
alleles were removed as putative pseudo- or non-func-
tional alleles. Concentrating on putatively functional 
MHC-II alleles, there were 2.9 alleles on average per 
individual (range 1–5 alleles per individual). Of these, 
only three were present in >5% but < 95% of individu-
als (Fig.  2b). Of the other putatively functional alleles, 
two were present in virtually all individuals, while nine 
alleles had a frequency <5%.

For downstream analysis, only alleles of the full, cor-
rect length (i.e. MHC-I: 262 bp, MHC-II: 270 bp) were 
included when calculating diversity or for presence/
absence. Again, for the presence/absence of alleles, only 

alleles present in >5% but <95% of individuals were 
included. Of those alleles included in the final pres-
ence/absence analyses, all 10 of the MHC-I and three 
of the MHC-II alleles translated into unique amino acid 
sequences.

The effect of MHC and other host variables on GM alpha 
diversity
The presence of four MHC alleles was associated with 
reduced diversity and richness of the GM (Fig. 3). Indi-
viduals with the Ase-ua5 allele had significantly lower 
alpha diversity for all calculated metrics, compared to 
individuals without (Additional file 1: Table S6, Fig 3), 
indicating that Ase-ua5 negatively influences the rich-
ness (β ± SE = −0.32 ± 0.13, z = 2.40, P = 0.016), 
evenness (β ± SE = −0.55 ± 0.25, z = 2.22, P = 0.027) 
and the phylogenetic diversity (β ± SE = −0.22 ± 0.09, 
z = 2.36, P = 0.018) of the GM. Likewise, the presence 
of the Ase-ua3 allele was also associated with a decrease 
in Shannon diversity (β ± SE = -0.51 ± 0.24, z = 2.16, 
P = 0.031), Chao1 richness (β ± SE = −0.41 ± 0.16, z 
= 2.62, P = 0.009: Additional file  1: Table  S6a, Fig 3) 
and phylogenetic diversity of the GM (β ± SE = −0.25 

Fig. 2  Variation in MHC-I exon 3 and MHC-II exon 2 in 244 Seychelles warblers. Each bar represents the frequency (%) of each A MHC-I allele and 
B MHC-II allele. Bars represent MHC alleles included (yellow) or not included (purple) in presence/absence analysis. Dashed lines indicate 5 or 95% 
frequency cut-offs
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± 0.10, z = 2.39, P = 0.017: Additional file 1: Table S6a, 
Fig.  3). The presence of the Ase-ua4 allele was associ-
ated with reduced GM richness (β ± SE = −0.34 ± 
0.14, z = 2.35, P = 0.019) and phylogenetic diversity (β 
± SE = −0.21 ± 0.10, z = 2.15, P = 0.032; Additional 
file 1: Table S6a, Fig. 3), but there was no significant dif-
ference in the evenness of the GM between individu-
als with or without the Ase-ua4 allele (Additional file 1: 
Table S6a, Fig 3). None of the remaining MHC-I alleles 
or TLR3 genotype were associated with alpha diver-
sity (Additional file 1: Table S6a, Fig. 3). Likewise, most 
MHC-II alleles were not associated with changes in GM 
diversity. However, the presence of one allele, Ase-dab4, 
was associated with a reduction in Shannon diversity (β 
± SE = −0.45 ± 0.23, z = 1.98, P = 0.048; Additional 
file 1 Table S6a, Fig 3), but not Chao1 richness or Faith’s 
phylogenetic diversity (Additional file 1: Table S6a, Fig 
3). There was no significant effect of MHC-I or MHC-
II diversity, or diversity2 on alpha diversity (Additional 
file 1: Table S6b). By contrast, individual heterozygosity 
was positively associated with Shannon diversity (β ± 
SE = 0.35 ± 0.16, z = 2.21, P = 0.027; Additional file 1: 

Table S6a, Fig. 3), but not Chao1 or Faith’s phylogenetic 
diversity, though these both showed the same pattern.

Males had reduced phylogenetic diversity compared 
to females (β ± SE = −0.13 ± 0.06, z = 2.13, P = 0.034, 
Additional file 1: Table S6, Fig 3), and the same pattern 
was evident when comparing richness. There was also 
an association between GM diversity and age, with old 
fledglings having reduced evenness, richness and phy-
logenetic diversity compared to adults (Shannon; β ± 
SE = −0.57 ± 0.27, z = 2.10, P = 0.036: logChao1: β 
± SE = -0.45 ± 0.16, z = 2.62, P = 0.009; logFaiths: 
β ± SE = −0.26 ± 0.11, z = 2.45, P = 0.015; Addi-
tional file 1: Table S6, Fig 3). There was no association 
between GM diversity and field period (Additional 
file  1: Table  S6a, Fig.  3), suggesting that environmen-
tal variation across field periods had little influence on 
the observed variation in alpha diversity values across 
individuals.

The effect of host variables on GM composition
In addition to effects on alpha diversity, compositional 
differences in the GM of individuals with, or without, 

Fig. 3  Effects MHC alleles, TLR3 genotype, genome-wide heterozygosity, and host variables on alpha diversity in 195 Seychelles warblers. Alpha 
diversity metrics are A Shannon diversity, B Chao1, and C Faith’s phylogenetic diversity (PD). Estimates and standard errors are based on linear 
conditional model-averaged estimates. An estimate >0 indicates increased alpha diversity, while <0 indicates decreased alpha diversity. Significant 
terms (P < 0.05) are highlighted in purple, and terms approaching significance (P < 0.1) are indicated with a purple point. Estimates are in reference 
to MHC allele = absent, TLR3 genotype = TLR3AA, sex = female, age class = fledgling, field period = major 2017
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specific MHC-I alleles were identified, although the 
alleles that showed an effect were not the same as those 
associated with shifts in GM alpha diversity. PER-
MANOVA tests showed that the overall composition of 
the GM was significantly different for individuals with 
the Ase-ua7 allele, the Ase-ua11 allele, or for Ase-ua1 
(and Ase-ua10 as these alleles were co-occurring) ver-
sus those without them (Table 1, Fig. 4), but only when 
weighted UniFrac distances were used as a beta diver-
sity metric. None of the differences detected in PER-
MANOVA tests were due to differential dispersion (all 
betadisper tests: P > 0.05), indicating that the results 
reflected differences in mean values across groups. How-
ever, although statistically significant, the presence/
absence of specific alleles only explained a minimum of 
1.4% and a maximum of 1.7% (per allele) of the variation 
in GM composition, suggesting that each allele only had a 
small influence on overall GM composition (Table 1). The 
remaining MHC-I and MHC-II alleles, as well as MHC-I 
and MHC-II diversity (or diversity2) had no effect on GM 
composition (Table 1). Additionally, TLR3 genotype and 
Hs were not associated with any of the beta diversity met-
rics (Table 1).

Age class was associated with a compositional shift in 
the GM in PERMANOVAs based on unweighted UniFrac 
distances (Table  1) and explained 1.9% of the variance 
in GM composition. Based on the Principal Coordinate 
analysis plots, this difference was due to old fledglings 
being slightly more differentiated compared to other age 
classes (Additional file 1: Fig S5). However, this effect was 
absent in models based on weighted UniFrac, which takes 
the abundance of ASVs into account (Table 1). This sug-
gests that the changes in composition with age class may 

be due to differences in the presence/absence of differ-
ent bacterial taxa in the GM, rather than differing abun-
dances of the same taxa. There were no differences in 
beta diversity between males and females (Table 1). There 
were significant compositional differences in the GM 
between field periods, which overall explained either 1.7 
or 2.1% variance for unweighted and weighted UniFrac 
distance, respectively (Table 1).

The influence of host variables on the abundance 
of specific ASVs
The co-occurring Ase-ua1/10 alleles were associated with 
the greatest change in ASV abundance, with 67 ASVs 
(across 31 bacterial orders) being significantly more 
abundant when these alleles were absent and 32 ASVs 
(across 15 orders) being more abundant when they were 
present (Additional file  3; Fig.  5c). Fewer taxa were dif-
ferentially abundant between groups of individuals with/
without Ase-ua11. In this instance, 12 ASVs (across 7 
orders) were significantly more abundant when the allele 
was absent, and 32 ASVs (across 17 orders) were more 
abundant when the allele was present (Additional file 3; 
Fig. 5b). Overall, 30 ASVs (across 13 orders) were signifi-
cantly more abundant when the allele Ase-ua7 was absent 
and 22 ASVs (across 16 orders) were more abundant 
when the allele was present (Additional file 3; Fig. 5a).

Many ASVs were significantly less abundant in old 
fledglings compared to other age groups (old fledglings 
compared to fledglings: 24 vs 150; old-fledgling com-
pared to sub-adults: 59 vs 134; old-fledglings compared 
to adults: 18 vs 168; Additional file 1: Fig S6). In compari-
son, the numbers of differentially abundant taxa between 
other age groups were more even (fledglings compared to 
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Fig. 4  Beta diversity of Seychelles warbler gut microbiome composition according to the presence of three MHC-I alleles. The principal coordinate 
plots are based on weighted UniFrac distances according to the presence or absence of the MHC-I AAse-ua7 allele, BAse-ua11 allele, or CAse-ua1/10 
allele. Points represent a single faecal sample from a single individual (n = 195). Sample sizes are specified in brackets in the legend, and colours 
indicate the presence (blue) or absence (yellow) of the MHC-I allele. Ellipses represent a 95% confidence interval around the cluster centroids



Page 13 of 22Davies et al. Microbiome           (2022) 10:41 	

sub-adults: 47 vs 55; fledglings compared to adults: 22 vs 
33; sub-adults compared to adults: 22 vs 86; Additional 
file 1: Fig S6).

Concentrating on extrinsic associations with GM, 
225, 227, and 144 ASVs were significantly differentially 
abundant between the three field periods, respectively 
(Additional file  1: Fig S7). The majority of ASVs were 
underrepresented in the minor 2018 season compared to 
either major season (60 in the minor 2018 vs 167 in the 
major 2017 season, and 37 in the minor 2018 season vs 
188 in the major 2018 season). Of these, 150 ASVs from 
the minor season differed in abundance across analyses.

Discussion
In this study, we screened GM variation and MHC class 
I and II characteristics of individuals in a natural popula-
tion of the Seychelles warbler. This enabled us to assess 
how the diversity and composition of the bacterial com-
ponent of the GM is associated with individual immu-
nogenetic variation i.e. MHC and TLR3 genotypes. Our 
results indicate that differences in GM diversity are asso-
ciated with the presence of certain MHC alleles (spe-
cifically, lower diversity is associated with four of the 13 
tested MHC alleles). Furthermore, differences in GM 
composition are associated with the presence/absence of 
four (different) MHC-I alleles, including the differential 
abundance of certain bacterial taxa. While we found no 
effect of MHC diversity or TLR3 genotype on the GM, 
we did find a positive association between bacterial GM 

diversity and individual genome-wide heterozygosity. 
Lastly, GM characteristics were also associated with sev-
eral other host specific or extrinsic variables, namely sex, 
age, and sampling period.

MHC variation in the Seychelles warbler
Here, we screened variation at the MHC-I exon 3 and 
MHC-II exon 2 genes using next-generation sequencing. 
We found reduced functional allelic diversity at MHC-
II compared to MHC-I, consistent with what has been 
found in other passerines [112]. Previous studies on the 
Seychelles warbler have provided evidence that balanc-
ing selection has maintained variation at both the MHC-I 
[53] and MHC-II [54]. However, the latter study did not 
fully resolve individual MHC-II characteristics because 
of difficulties with the cloning and reference strand-
mediated conformation analysis techniques used. In the 
present study, we were able to confirm (class-I) and fully 
characterise (class-II) individual MHC variation. Our 
results, showing that variation has been maintained at 
both sites in this species despite reduced genome-wide 
variation [51], support the idea that balancing selection 
is maintaining variation at both MHC classes. Given the 
MHC’s role in antigen detection, this is likely to be path-
ogen-mediated selection.

GM variation is associated with MHC variation
We found that GM diversity was negatively associ-
ated with the presence of three (of 10) MHC-I alleles 

Fig. 5  Differentially abundant ASVs in the gut microbiomes of Seychelles warblers, according to the presence/absence of the MHC-I alleles A 
Ase-ua7, B Ase-ua11, or C Ase-ua1/10. ASVs are grouped at the level of bacterial order and coloured according to bacterial phylum. Differential 
ASV abundance was assessed using negative binomial Wald tests, and P values were adjusted using the Benjamin and Hochberg false-discovery 
rate correction with a significance cut-off of P < 0.01. ASVs shown with a log2-fold change greater than zero are significantly more abundant in 
individuals without this allele and ASVs with a log2 fold change smaller than zero are significantly more abundant in individuals with a copy of this 
allele.
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(Ase-ua3, Ase-ua4, Ase-ua5) and one (of three) MHC-II 
alleles (Ase-dab4). All three MHC-I alleles were consist-
ently associated with a reduction in GM bacterial rich-
ness and phylogenetic diversity. Ase-ua3 and Ase-ua5 
were additionally associated with reduced evenness in 
the GM. This suggests that these alleles may lead to the 
selective elimination of certain bacterial taxa from the 
gut, resulting in a reduced community of species with a 
narrower phylogenetic range. This is similar to another 
study that identified MHC-II motifs associated with 
reduced GM diversity in threespine sticklebacks [43]. It 
is likely that MHC-II alleles—such as Ase-dab4 in the 
Seychelles warbler—directly impact GM diversity, since 
MHC-II molecules are produced in antigen-presenting 
cells, which are abundant in the lamina propria behind 
the gut epithelium [22]. Such dendritic cells can extend 
between epithelial cells where they phagocytose particles, 
including microbes, from the gut lumen [113]. Antigens 
from these microbes are then exported to the cell surface 
by MHC-II molecules, so that they can be presented to B 
and T cell populations [114] and, if recognised, instigate 
an immune response.

Our study expands on previous work by investigat-
ing how variation at MHC-I genes impact GM variation 
in a natural population (see also [42]). Laboratory stud-
ies comparing transgenic and wild-type rats [39] have 
previously shown that the expression of human MHC-I 
genes (specifically HLA-B27, typically associated with 
arthritis) alters GM composition and that this may be 
related to immune-mediated disease state. Likewise, in 
congenic mice [60], the lack of MHC-I-mediated antigen 
presentation resulted in shifts in composition and struc-
ture of the GM. In addition to the simplification of the 
GM in captive populations [6], animal models are typi-
cally engineered to be homozygous/heterozygous or to 
have different expression at specific alleles. In compari-
son, natural populations normally contain a diverse array 
of alleles and allelic combinations, and are exposed to a 
wider range of microbial taxa; thus, biologically relevant 
indirect effects of host genes on the GM may not be 
observed in captivity. This is particularly important when 
considering associations between GM characteristics and 
individual MHC-I variation. MHC-I molecules typically 
respond to intracellular microbes, rather than extracel-
lular microbes, and play a central role in anti-viral and 
anti-tumour immunity [31]. As such, we would not nec-
essarily expect these molecules to recognise bacterial 
antigens, although cross reactivity via the presentation 
of exogenously derived antigens can occur [115]. Instead, 
MHC-I variation may indirectly affect GM characteristics 
by impacting other aspects of the host’s health and physi-
ology. In the Seychelles warbler, we know that survival 
is associated with a specific MHC-I allele (Ase-ua4) [58] 

and, although we do not know what drives this effect (i.e. 
we have not identified the selective factor responsible), 
any such interaction could also shape changes in the GM. 
In our study, the Ase-ua4 allele was associated with a 
reduction in GM richness and phylogenetic diversity but 
did not significantly change the composition of the GM. 
Numerous studies have linked MHC-I variation with sus-
ceptibility to malarial infection in passerines [116, 117] 
and other taxa [32]. Malaria infections alter the GM via 
disruption to immune homeostasis [118] and could play 
a role in the Seychelles warbler, in which a single strain 
of the malarial parasite (Haemoproteus nucleocondensus) 
has been identified [119]. Alternatively, MHC-I might 
alter an individual’s susceptibility to another, as yet, uni-
dentified pathogen, that could also drive differences in 
the diversity of the GM [47, 120].

As well as MHC alleles directly, or indirectly (through 
fitness) driving the differences in the GM we see here, 
it is possible that these associations arise due to other 
causes. GM taxa have been shown to be heritable [121], 
and other genes have been associated with GM varia-
tion in wild populations [19]. It may also be that varia-
tion at other loci in linkage disequilibrium with the MHC 
genes investigated here could drive the associations 
observed here. This is especially important to consider 
in bottlenecked species, such as the Seychelles warbler, 
where there will be considerable linkage disequilibrium 
throughout the genome. However, given the important 
role of the MHC genes in the acquired immune response, 
and because the alleles identified encode putatively func-
tional variation in the peptide binding region of the MHC 
molecules, it is logical to suspect that the MHC variation 
is involved in driving the changes in GM variation seen 
here.

Given the negative, but lack of positive, associations 
identified between MHC alleles and GM alpha diver-
sity, it is surprising that there was no significant effect of 
overall MHC diversity on the GM. One might expect the 
cumulative negative effect of each allele (Fig. 3) to cause 
at least a weak negative correlation between GM diver-
sity and MHC diversity. However, with the multitude of 
factors involved in determining both the host’s GM and 
immune response, this lack of association could simply 
be due to limited power to detect weak effects, as is often 
the case when examining associations between immu-
nocompetence and MHC variation [122]. Assessing how 
the functional divergence of MHC alleles within an indi-
vidual—which provides information about the range of 
antigens that can be detected [123]—rather than just the 
number of MHC genes has provided additional resolu-
tion in other MHC studies e.g. [124]. This approach can 
provide extra clarity in species with high MHC diver-
sity where multiple alleles may be functionally similar 
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with overlapping antigen binding properties [125, 126] 
particularly when considering the diversity of bacterial 
taxa that are present within the GM. However, in the 
bottlenecked population of the Seychelles warbler, the 
very limited number of alleles present in the MHC-I are 
all highly divergent and cannot be further reduced into 
functional supertypes. This is likely because functionally 
divergent MHC alleles were selected for through the bot-
tleneck this species underwent [53]

We also observed compositional differences in the GM 
associated with four MHC-I alleles (Ase-ua7, Ase-ua11, 
and the co-occurring Ase-ua1/10 alleles) but not with 
any MHC-II alleles. Alleles linked to compositional dif-
ferences were different to those that were negatively asso-
ciated with GM alpha diversity. This pattern could arise if 
different ASVs are tolerated, or removed by MHC-medi-
ated responses, but overall GM richness remains simi-
lar across individuals with or without a particular allele, 
causing compositional but not alpha diversity differences. 
In contrast, where a greater number of taxonomically 
similar ASVs and/or less abundant taxa—which may 
have a reduced impact on compositional differences—are 
removed by MHC-mediated responses, this may result in 
reduced alpha diversity but a largely similar composition 
in individuals with, compared to those without, these 
alleles. The biggest compositional shift was associated 
with Ase-ua1/10, whose presence/absence caused the 
greatest number of differentially abundant ASVs. This is 
perhaps not surprising, as individuals with both alleles 
would be able to recognise a larger number of antigens, 
thus providing a broader immune response compared 
to a single allele. However, the presence/absence of Ase-
ua1/10 only explained 0.5–1.4% (depending on the met-
ric of beta diversity) of the variance in GM composition 
suggesting that, separately, each allele has a relatively 
small impact on the GM overall.

Several ASVs were not assigned beyond the level of 
bacterial family and many bacterial taxa have not been 
fully characterised, making it difficult to draw conclu-
sions about the functional significance of compositional 
changes in the GM for the host. However, there were 
several potentially interesting, shared candidate taxa that 
were differentially abundant between individuals with/
without the Ase-ua1/10 and Ase-ua11 alleles. For exam-
ple, individuals with these alleles had a reduced abun-
dance of ASVs from the order Lactobacillales, a lactic 
acid-producing bacterial taxon, generally thought to be a 
beneficial member of the GM. Indeed, members of this 
order are used as probiotics in poultry farms to boost the 
immune response of chickens [127]. In contrast, indi-
viduals with the Ase-ua1/10 and Ase-ua11 alleles had 
an increased abundance of ASVs from Bacteroidales, 
an order commonly associated with chronic intestinal 

inflammation [128]. Two of these ASVs were from the 
genus Bacteroides, while species from this genus can be 
mutualistic, opportunistic pathogenic infections can 
occur in humans and other animals [129]. Likewise, a 
third ASV from the genus Alistipes has a pathogenic role 
in various human and animal diseases [130]. The patterns 
of change associated with Ase-ua7 were different to those 
arising from the presence/absence of Ase-ua1/10, and 
Ase-ua11, with fewer ASVs from the orders Lactobacil-
lales and Bacteriodales being differentially abundant. 
Instead, several ASVs in the order Clostridiales were 
significantly more abundant when the Ase-ua11 or Ase-
ua1/10 alleles were present (and less abundant when the 
Ase-ua7 allele was present), suggesting that this order 
could have been selectively tolerated or that ASVs in 
this order proliferated when other competing taxa were 
removed.

Direct tolerance of gut commensals by the host 
immune system can occur by several means, secre-
tions produced by the microbes themselves can induce 
tolerance by the host immune system, or tolerogenic 
responses can be genetically encoded by the host [131]. 
For example, genetically encoded tolerance mechanisms 
can occur through differential MHC expression on key 
tolerogenic inducing cells, such as the group 3 innate 
lymphoid cells [132]. Immunoglobulin A repertoire in 
the gut can be controlled by MHC genotype, mediating 
the response against commensal microbes [60]. Mucosal 
dendritic cells can also induce tolerogenic T and B cell 
responses, and regulatory T cells can directly recognise, 
and tolerate, commensal antigens [61, 62]. However, it is 
not clear how the presence of different polymorphisms 
in the MHC binding region could facilitate these mech-
anisms. More likely, coevolution between host and GM 
resulted in the MHC repertoire that has evolved to tol-
erate commensal taxa, with MHC alleles that eliminate 
commensal antigens being under weakened (or even neg-
ative) selection compared to those that eliminate patho-
genic microbial antigens.

Cumulatively, the variance in composition explained by 
overall MHC allele presence or absence was low (6.3% or 
8.9% for unweighted or weighted UniFrac, respectively). 
However, this is not unusual when investigating the fac-
tors that influence GM composition across individuals 
within a single population; for example, environmental 
and host factors explained between 0.4 and 10% variance 
in red squirrels (Tamiasciurus hudsonicus) [110]. Even 
sampling period, the most significant predictor of beta 
diversity in our study, explained only 2% of variation in 
the GM. One explanation for the low level of explained 
variance could be the greater presence of transitionary 
microbiota in the avian gut i.e. dietary, or environmental 
microbes that are ingested and pass through the intestine 
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without interacting with the host [133]. Adaptations 
for flight have placed constraints on avian morphology, 
leading to shorter intestinal lengths, and consequently, 
shorter food retention times [134]; this may reduce the 
potential for bacterial species to adapt to the avian gut 
and to variation in host ecology. Secondly, if many bac-
terial taxa carry out the same function in the host gut, 
there could be a high turnover of species without any 
consequences for the host [135]. This can give rise to high 
inter-individual variation in the GM and may explain why 
the variables analysed here (or indeed in many within-
population studies of the GM) explain a low proportion 
of the overall variance. Indeed, functional GM diversity 
may be more important than species diversity for host 
fitness [136]. To address this, future work incorporating 
metagenomic analysis would allow greater resolution of 
bacterial species and a more accurate assessment of the 
functional composition of the GM [137].

Apart from the acquired immune response, the GM 
may also be affected by the innate immune response 
(underpinned by genes such as TLRs) [27]. However, 
we detected no effect of TLR3 genotype (one of the few 
TLRs to have functional variation in this system [55]) on 
the GM; this is despite survival and reproductive suc-
cess being significantly associated with TLR3 variation in 
the Seychelles warbler [50]. This is perhaps not surpris-
ing, given TLR3’s role in recognising viral dsRNA [138], 
rather than any bacterial conserved structures.

Individual heterozygosity was positively correlated 
with GM bacterial richness in the Seychelles warbler, 
though this was not associated with differences in GM 
phylogenetic diversity or composition. A decrease in 
individual heterozygosity (or increase in homozygo-
sity) may reflect increased inbreeding. In the Seychelles 
warbler, increased inbreeding is associated with poorer 
individual condition (via reduced telomere length [56]) 
and reproductive success, with maternal homozygosity 
negatively predicting offspring survival in years with 
high mortality [57, 139]. Thus, we may be detecting an 
indirect effect of increased inbreeding, whereby the 
decreased fitness or health of individuals in turn nega-
tively impacts GM diversity [140]. However, it is also 
possible that this association could be driven by reduced 
heterozygosity of currently unknown, specific functional 
loci directly reducing GM diversity. In future studies, it 
could be informative to use either quantitative trait locus 
mapping [141], or genome-wide association studies to 
identify candidate genes associated with GM variation, 
e.g. [19, 142]. The Seychelles warbler could be particu-
larly useful for this, as it underwent a bottleneck in the 
1960s, resulting in a 25% reduction in genome-wide var-
iation [51], thus making it a more tractable study system 

in which to disentangle the associations between host 
genetic variation and the GM.

It is difficult to assess the impact of the identified rela-
tionships between GM variation and MHC alleles on 
host fitness. Typically, greater GM alpha diversity is 
thought to be beneficial, as it correlates with increased 
health and survival in humans [24]. However, other stud-
ies have shown that high alpha diversity can indicate 
dis-regulation and GM instability [143]. Similarly, the 
function of many bacteria in the GM of wild animals is 
unknown. Given the key role that MHC genes play in 
pathogen resistance, it is possible that the observed nega-
tive correlation between GM alpha diversity and pres-
ence of specific MHC alleles is beneficial to the host. 
For example, Seychelles warblers with the Ase-ua4 allele 
had reduced GM alpha diversity, and this same allele 
conferred a survival advantage in individuals [50,58]. To 
fully unpick the consequences of these GM/MHC rela-
tionships in the Seychelles warbler, longitudinal data and 
analyses accounting for within- and between-individual 
differences are needed to fully test whether there are fit-
ness differences between individuals with different MHC 
alleles and GM characteristics. This is no small under-
taking, and will require extensive and powerful datasets, 
which are not yet available.

The GM may drive the evolution of immune genes
Variation in the GM can affect traits important to the 
host’s own fitness [144], including host immune func-
tion [145], the severity of diseases [146] and, ultimately, 
survival [109, 147], and this could provide the potential 
for evolutionary adaptation in the host [148]. Balancing 
selection is thought to be central in maintaining diversity 
at MHC genes [149–151]. Thus, the GM could act as a 
selective pressure, shaping host phenotypes (reviewed 
in [152, 153]), ultimately resulting in host-microbiome 
co-evolution and adaptation, or speciation [9, 154]. For 
example, if components of the GM interact with MHC 
variation, leading to the differential selection of MHC 
alleles, this could explain how variation at MHC genes 
has been maintained in the previously bottlenecked Sey-
chelles warbler [51, 53], despite the very limited macro-
parasite fauna in this population [54]. We detected no 
effect of MHC diversity (or optimality) on the GM, and 
therefore no evidence of MHC heterozygote advantage 
in relation to the GM [155]. However, specific alleles 
were associated with differences in GM composition; 
this is consistent with either rare allele [156] or fluctuat-
ing selection [32] mechanisms, although differentiating 
between the two is extremely difficult [35]. Identifying 
the function of GM taxa that are associated with MHC 
alleles, whether they be pathogenic, beneficial, or 
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commensal, could help infer the significance and direc-
tion of these associations.

Effects of age, sex and field period on the GM
In addition to genetic factors, several other key vari-
ables influenced the GM. Our results indicated a rela-
tionship between GM composition and age class in the 
Seychelles warbler. Old fledglings had reduced GM alpha 
diversity and compositional differences compared to all 
other age group comparisons (which did not differ from 
one another). In the Seychelles warbler, old fledglings 
are newly independent and start to forage for themselves 
and so may be eating different—perhaps lower quality—
food items compared to older birds. This may explain 
the reduced number of differentially abundant taxa pre-
sent in this age group, compared to others, including 
a reduced abundance of ASVs in the order Planctomy-
cetes, which are typically transient colonisers of the gut 
(but see [157]). Alternatively, exposure to stress via glu-
cocorticoids alters host GM in other species [16]. Thus, 
increased stress in young individuals as they encounter 
new situations and pathogens could contribute to differ-
ences between age groups. Indeed, mortality is greatest 
during the first year of life in the Seychelles warbler [57].

While sex is an important determinant of individual 
variation in natural populations, its importance as a 
driver of GM variation varies across vertebrate species 
[10, 14, 110, 158]. Sex was only associated with a minor 
difference in the GM of the Seychelles warbler, with 
males having marginally reduced diversity, but no differ-
ence in composition compared to females. It is, perhaps, 
not surprising that the effect of sex on the GM was so 
limited, given that Seychelles warblers of both sexes have 
the same diet and exhibit limited differences in morphol-
ogy and behaviour. In threespine sticklebacks, GM–MHC 
associations were sex-dependent [43]; however, we found 
no evidence of this in the Seychelles warbler.

Within a species, seasonal changes in diet can be an 
important factor driving GM variation [12, 110, 159]. 
In the Seychelles warbler, field period explains 1.7–2.1% 
of the variance in GM composition. Although the tem-
perature on Cousin Island is relatively stable, there are 
measurable differences between seasons and years [160], 
which could lead to variation in the type and abundance 
of insect prey species. This may explain the observed dif-
ference in GM composition, but not diversity, between 
field periods. For example, mean island-wide territory 
quality increased by 80% in the major 2017 field period 
and 75% in the minor 2018 field period, compared to the 
later major 2018 field period. Alternatively, increases in 
food availability between seasons could also act indirectly 
on the GM by buffering individuals against stress or sus-
ceptibility to pathogens.

Conclusions
Our results show that variation has been maintained at 
MHC-I and MHC-II genes in the Seychelles warbler, and 
that the presence of specific alleles, but not MHC diver-
sity, was associated with differences in GM diversity and 
composition. It is possible that such GM–MHC interac-
tions might explain previous results in this population 
showing that specific MHC alleles are associated with 
higher survival. However, further longitudinal data are 
needed to establish whether these associations equate 
to fitness differences between individuals and to better 
understand host immunogenetic–GM coevolution.
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Additional file 1: Table S1. Primer sequences used for MHC sequenc-
ing. Degenerate bases are shown according to IUPAC codes: Y = C/T, N 
= any base. Table S2. Repeatability of MHC-I (n = 26) and MHC-II (n = 
24) genotyping for different dominant frequency thresholds. Minimum 
amplicon frequency was kept constant at 0.3%. Threshold with the great-
est repeatability is in bold. Table S3. Repeatability of MHC-I (n = 26) and 
MHC-II (n = 24) genotyping for different minimum amplicon frequen-
cies. Minimum dominant frequency threshold was kept constant at 25%. 
Minimum amplicon frequency with the greatest repeatability for each 
MHC class is in bold. Table S5. Core families present in 281 faecal samples, 
collected from 224 Seychelles warblers. Core microbiome is defined as 
bacterial families that appeared in at least 50% of samples, with a mini-
mum relative abundance of 0.1%. Total number of reads, and % of all reads 
are included. Table S5. The effect of host-associated variables on gut 
microbiome diversity in the Seychelles warbler (n = 195). GLMMs for three 
metrics of alpha diversity: Shannon diversity, Chao 1(log transformed) and 
Faiths phylogenetic diversity (log transformed): A) including the presence/
absence of MHC alleles or, B) MHC diversity. A Linear model was used to 
generate conditional model-averaged estimates (β), their standard error 
(SE), z value, P value, and relative importance (ω) are shown for all predic-
tors featuring in the top model set (ΔAICc ≤ 7). All continuous factors were 
standardised. Estimates are in reference to MHC allele = absent, TLR3 gen-
otype = TLR3AA, sex = female, age class = fledgling, field period = Major 
2017. Significant terms are in bold and underlined. *** P < 0.001, ** P < 
0.01, * P < 0.05. Figure S1. (A) Sample completeness and (B) rarefaction 
curves in Seychelles warbler faecal samples. Each line represents a single 
faecal sample (281 faecal samples, collected from 224 Seychelles war-
blers). Curves were generated using the R package iNEXT 2.0.20, with 50 
bootstrap replicates per sample. The dashed line represents the number 
of reads used as a cut-off for retaining samples in downstream analysis (all 
samples with fewer than 10,000 reads were removed). Figure S2. Preva-
lence and total abundance of all ASV’s separated by phylum. Each phylum 
is shown in a separate plot, and a different colour. Dashed lines represent 
the values used as cut-offs for filtering rare taxa before alpha and beta 
diversity analyses (minimum abundance = 50), and additional filtering for 
beta diversity (prevalence threshold = 2.5%). Figure S3. Individual repeat-
ability of alpha and beta diversity measures in the Seychelles warbler. This 
was tested by sequecnoing multiple samples taken from the same indi-
viduals; these samples were collected during the same field season (n = 
115 faecal samples from 51 individuals. Pairwise Euclidean distances were 
calculated between samples taken from different individuals, versus those 
from within the same individual, in the same season for A). Shannon dis-
similarity B) unweighted UniFrac dissimilarity and C) weighted UniFrac dis-
similarity. Boxes span the interquartile (25% - 75%) range. Whiskers extend 
to 1.5 times the interquartile range. The median is marked by a horizontal 
line and the mean is marked by a diamond. Dark blue points in A) indicate 
pairwise comparisons involving two outliers. Significant differences are 
shown, and P-values are derived from Kruskal–Wallis tests: *** P < 0.001, 
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* P < 0.05. Figure S4. The repeatability of sequencing methods. This was 
tested by sequencing 37 faecal samples taken from individual Seychelles 
warblers twice. A) Relative abundance (%) of the 10 most abundant taxa at 
the phylum level for the 37 duplicated samples. Each column represents 
one sample, black lines separate duplicated samples. All other taxa within 
each sample are collapsed into the low abundance category. B) The 
pairwise Euclidean dissimilarity between different samples, versus within 
pairs of duplicated samples (same DNA sequenced twice) for i. Shannon 
dissimilarity ii. unweighted UniFrac dissimilarity and iii. weighted UniFrac 
dissimilarity. Boxes span the interquartile (25% - 75%) range. Whiskers 
extend to 1.5 times the interquartile range. The median is marked by a 
horizontal line and the mean is marked by a diamond. Significant differ-
ences are shown, and P-values were derived from Kruskal–Wallis tests: *** 
P < 0.001. Figure S5. Beta diversity of Seychelles warbler gut microbiome 
composition in different age classes. The principal coordinate plots are 
based on A) unweighted UniFrac distances, and B) weighted UniFrac dis-
tances. Points represent a single faecal sample from a different individual 
(n = 195). Sample sizes are specified in brackets in the legend, and colours 
indicate the age class which was either fledgling (yellow), old-fledgling 
(green), sub-adult (indigo) and adult (purple). Ellipses represent a 95% 
confidence interval around the cluster centroids. Figure S6. Differentially 
abundant ASV’s in the gut microbiome of Seychelles warblers between 
different age categories (FL = fledgling, OFL = old fledgling, SA = sub-
adult, A = adult). ASVs are grouped at the level of bacterial order and 
coloured according to bacterial phylum. Differential ASV abundance was 
assessed using negative binomial Wald tests and P values were adjusted 
using the Benjamini and Hochberg false-discovery rate correction with 
a significance cut-off of P < 0.01. ASVs shown with a log2 fold change 
greater than zero are significantly more abundant in the age classes on 
the left and ASVs with a log2 fold change smaller than zero are signifi-
cantly more abundant in age classes on the right. Figure S7. Differentially 
abundant ASV’s in the gut microbiome of Seychelles warblers, between 
seasons. Comparisons are A) Major 2017 vs Minor 2018, B) Major 2018 vs 
Minor 2017, or C) Major 2017 vs Major 2018. ASVs are grouped at the level 
of bacterial order and coloured according to bacterial phylum. Differential 
ASV abundance was assessed using negative binomial Wald tests and P 
values were adjusted using the Benjamini and Hochberg false-discovery 
rate correction with a significance cut-off of P < 0.01. ASVs shown with 
a log2 fold change greater than zero are significantly more abundant in 
seasons on the left and ASVs with a log2 fold change smaller than zero are 
significantly more abundant in seasons on the right.

Additional file 2. The identity of 19 amplicon sequencing variants (ASVs) 
identified in the negative extraction controls. A taxonomic breakdown 
and the number of reads associated with each ASV is provided. ASVs 
were either filtered from the dataset before further analysis or retained. 
In the second tab is a detailed breakdown of number of reads with each 
ASV present in each sample, along with whether it is a negative control 
or faecal sample, and whether it was sequenced in the 1st, 2nd, or 3rd 
sequencing run.

Additional file 3. Differentially abundant ASVs (Padj < 0.01) in the gut 
microbiomes of Seychelles warblers, according to the presence/absence 
of the MHC-I alleles A) Ase-ua7 B) Ase-ua11 or C) Ase-ua1/10. Differential 
ASV abundance was assessed using negative binomial Wald tests and P 
values were adjusted using the Benjamini and Hochberg false-discovery 
rate correction with a significance cut-off of P < 0.01. ASVs shown with 
a log2-fold change greater than zero are significantly more abundant in 
individuals without this allele and ASVs with a log2 fold change smaller 
than zero are significantly more abundant in individuals with a copy of 
this allele.
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