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Abstract 

Background:  Various aspects of sociality can benefit individuals’ health. The host social environment and its relative 
contributions to the host-microbiome relationship have emerged as key topics in microbial research. Yet, understand-
ing the mechanisms that lead to structural variation in the social microbiome, the collective microbial metacom-
munity of an animal’s social network, remains difficult since multiple processes operate simultaneously within and 
among animal social networks. Here, we examined the potential drivers of the convergence of the gut microbiome 
on multiple scales among and within seven neighbouring groups of wild Verreaux’s sifakas (Propithecus verreauxi) — a 
folivorous primate of Madagascar.

Results:  Over four field seasons, we collected 519 faecal samples of 41 animals and determined gut communities 
via 16S and 18S rRNA gene amplicon analyses. First, we examined whether group members share more similar gut 
microbiota and if diet, home range overlap, or habitat similarity drive between-group variation in gut communities, 
accounting for seasonality. Next, we examined within-group variation in gut microbiota by examining the potential 
effects of social contact rates, male rank, and maternal relatedness. To explore the host intrinsic effects on the gut 
community structure, we investigated age, sex, faecal glucocorticoid metabolites, and female reproductive state. We 
found that group members share more similar gut microbiota and differ in alpha diversity, while none of the envi-
ronmental predictors explained the patterns of between-group variation. Maternal relatedness played an important 
role in within-group microbial homogeneity and may also explain why adult group members shared the least similar 
gut microbiota. Also, dominant males differed in their bacterial composition from their group mates, which might be 
driven by rank-related differences in physiology and scent-marking behaviours. Links to sex, female reproductive state, 
or faecal glucocorticoid metabolites were not detected.

Conclusions:  Environmental factors define the general set-up of population-specific gut microbiota, but intrinsic 
and social factors have a stronger impact on gut microbiome variation in this primate species.

Keywords:  Propithecus verreauxi, Gut microbiome, Sociality, Age, Seasonality, Sex, Dominance, Reproduction, 
Relatedness, Ecology

© The Author(s) 2022, corrected publication 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver 
(http://​creat​iveco​mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a 
credit line to the data.

Background
The abundant and diverse microbial communities that 
live in and on humans as well as animals are key for their 
hosts’ physiology, ecology, and evolution. The gut micro-
biota include many types of bacteria and are among the 
most investigated microbial communities that, inter 
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alia, are essential for host metabolism [1, 2], mediate its 
immune system [3, 4], and even impact its behaviour [5]. 
Thus, the interest in understanding socio-ecological driv-
ers of the composition of gut microbiota is widespread.

It has been argued that the acquisition of bacteria that 
are beneficial to the host may have contributed to the 
evolution of sociality [6–8]. This link arises because vari-
ous aspects of sociality can benefit individuals’ health via 
gut bacteria transmitted through the host social environ-
ment. For example, bacteria transmitted during social 
interactions can enhance pathogen resistance and stim-
ulate host immunity [9, 10], and commensal microbes 
might outcompete pathogens for resources or produce 
by-products that inhibit them altogether [6, 11]. Frequent 
social transmission may increase microbial diversity over 
time, which has been associated with improved health 
[12]. Thus, the host social environment and its relative 
contributions to the host-microbiome relationship have 
emerged as key topics in microbial research.

Group-living animals often share more similar gut 
microbial communities with group members than with 
outsiders [13–16]. Increased physical contact between 
group members facilitates the transmission of micro-
organisms and is therefore a prevalent mechanism for 
shaping distinct group microbiomes [13, 17–22]. Indirect 
transmissions through shared environments might also 
contribute to these patterns [18, 23, 24].

Still, there is variation in the composition of gut bacte-
ria among group mates [25–27]. Explaining this variation 
remains difficult due to the bidirectional and dynamic 
host-microbiome relationship as well as the numerous 
factors that contribute to structuring gut communities 
[28–31]. In fact, the host’s diet [32–38], genetic variation 
[7, 39–41], and host interactions with the environment 
[34, 42, 43] have been found to influence the assemblage 
of gut microbiota. Additionally, several other factors, like 
age [44–47], sex [48, 49], or reproductive stage [50–53], 
can have structuring effects.

Metacommunity theory provides a promising evo-
lutionary framework for exploring the dynamics of 
host-microbiome-relationships [27, 54, 55]. Metacom-
munities are defined as assemblages of multiple species 
(e.g. microbial communities) that live in a specified place 
(e.g. a host or an ecological niche), that interact with one 
another, and that are linked to each other through dis-
persal (e.g. between hosts or islands) [27, 54]. In contrast 
to classical community ecology, metacommunity theory 
posits that not only local but also regional processes 
affect community compositions [56, 57]. In addition, 
the concept of the “social microbiome”  —  the collec-
tive microbial metacommunity of an animal’s social net-
work — has been introduced recently [20]. According to 
this concept, multiple processes operate simultaneously 

within and among animal social networks, thereby affect-
ing microbial dispersal opportunities and ultimately 
shaping individual gut microbiomes. To better under-
stand these processes and their consequences for gut 
communities, it was proposed to explore intrinsic, social, 
and environmental drivers of microbial composition at 
multiple scales, from individual and group to population 
and interspecific levels [20].

Here, we aimed to identify the intrinsic and extrinsic 
drivers of the social microbiome convergence in a wild 
population of Verreaux’s sifakas (Propithecus verreauxi) 
at multiple scales, i.e. the individual, within-group, and 
between-group level [20]. We combine one of the larg-
est gut microbiome datasets (n = 519 samples) on wild 
lemurs with a comprehensive set of behavioural, genetic, 
and phenological data. During four field trips across 
two consecutive years, we repeatedly sampled up to 41 
individuals from seven neighbouring groups for which 
detailed demographic data are available [58]. Verreaux’s 
sifakas are diurnal, frugi-folivorous primates endemic 
to Madagascar [58, 59]. They live in multi-male multi-
female groups, with group sizes ranging between 2 and 
12 individuals in our study population [58]. Previous field 
studies of Verreaux’s sifakas revealed that sifaka groups 
maintain distinct gut communities [60–62]. However, 
these studies addressed only some factors contributing 
to gut microbiome similarities within groups, had small 
sample sizes, and/or lacked data on key environmental 
variables, which could mask or alter important factors 
influencing the social microbiome. In order to obtain 
a more comprehensive understanding of the interplay 
among multiple intrinsic and extrinsic factors shaping 
gut microbiome composition, we initiated this longitu-
dinal population study. In further contrast to previous 
studies, we conducted indicator species analyses and 
generated association networks to identify bacterial taxa 
associated with specific social groups [63, 64]. We also 
used this approach to detect unique DNA sequences 
(amplicon sequence variants, ASVs) associated with vari-
ation in age, social status, and reproductive state.

On the between-group scale, we examined the lon-
gitudinal dynamics in microbial structures across the 
whole study population, and we investigated the envi-
ronmental factors that might increase similarities in the 
gut microbiota among groups, such as home range over-
lap, diet, and habitat similarities. Sifaka home ranges 
are stable across years and partially overlap with those 
of neighbouring groups, but include core areas of exclu-
sive use [65, 66]. Direct contact between the groups is 
very rare, even during intergroup encounters [65, 67], 
making horizontal transmission via social interactions 
of gut bacteria less likely. However, scent-marking and 
over-marking, i.e. placing a mark directly on top of the 
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mark of a conspecific, occur frequently when neighbour-
ing groups meet [68]. Thus, shared environments and 
scent-marking might constitute indirect social transmis-
sion routes [68], but in a different sifaka population, the 
effects of home range overlap and diet on gut microbial 
similarities between groups were not correlated [62]. 
However, only the home range overlap of four groups was 
estimated, and only about half of the population’s dietary 
patterns were recorded in that study [62].

We also expanded on prior studies by applying 18S 
rRNA gene-based analyses to examine and compare the 
consumed food plants genetically. Moreover, we included 
measures of habitat features (e.g. tree species diversity) to 
estimate similarities between habitats of adjacent groups. 
We predicted that groups inhabiting more similar habi-
tats, feeding on more similar diets, and sharing larger 
parts of their home ranges should also harbour more 
similar gut microbiota.

On the within-group level, we aimed to identify social 
drivers of microbial convergence among group members; 
specifically social interactions, male rank, and maternal 
relatedness. While sifakas devote generally little time to 
social activities [69], group members still engage in regu-
lar grooming bouts and use social thermoregulation, i.e. 
they rest in body contact with conspecifics, especially 
during cold nights [70, 71]. Furthermore, as other strep-
sirrhine primates, sifakas groom each other orally rather 
than manually, which may facilitate bacterial transmis-
sion between individuals. We therefore predicted that 
group members spending more time affiliating share 
more similar gut microbial communities with each other.

Dispersal in Verreaux’s sifakas is male-biassed and 
groups contain one clearly dominant male [72, 73]. Males 
generally groom more often than females, but there is no 
difference in grooming behaviour between dominant and 
subordinate males [74]. However, dominant males scent- 
and over-mark at significantly higher rates than females 
and subordinate males [75], and they have distinct hor-
mone patterns [70, 76]. Since host physiological pro-
cesses can interact with the bacterial gut microbiota [77, 
78], and increased scent-marking could provide more 
opportunities for horizontal microbial transmission, we 
therefore predicted that dominant males differ in their 
gut communities from all other group members.

Host genetic constitution potentially affects micro-
bial colonisation patterns, resulting in higher gut micro-
biota similarity among kin [79–84]. However, also direct 
maternal transmission to offspring in utero ([83]; but see 
[84]) or during delivery [85, 86], or physical contacts in 
the contexts of maternal care [7, 87] could drive these 
patterns. While most primate studies found no strong 
indications for kinship effects on bacterial gut micro-
biomes [18, 44, 61, 88], a recent large-scale study in 

baboons found that individuals inherited the majority of 
their gut communities from their ancestors [84]. Here, 
we predicted that maternal relatives living in the same or 
in different groups share more similar microbiota.

Finally, on the individual level, we investigated if and 
how various intrinsic factors influence individual micro-
bial diversity and composition, and thus gut community 
variation among group members. The majority of previ-
ous studies in different taxa, including Verreaux’s sifakas, 
found no or only weak effects of age and sex [18, 44, 60, 
62, 89]. Therefore, we predicted to find similar patterns. 
Moreover, only a few studies of wild animal populations 
investigated potential links between physiological vari-
ables and microbiota variation [51, 52, 90]. Since female 
reproductive state and male dominance status in Ver-
reaux’s sifakas are positively correlated with faecal glu-
cocorticoid metabolite concentrations (fGCMs) [70], we 
explored potential links between female reproductive 
states, male rank, and individual fGCMs on gut microbial 
diversity.

Methods
Study site and subjects
This study was carried out during four field seasons (April 
to May 2016/2017 and September to October 2016/2017) 
in Kirindy Forest, western Madagascar (44° 39′ E, 20° 03′ 
S). The forest is a dry deciduous forest with pronounced 
seasonality, including a short hot, wet season (November 
to March), when food availability is high, and a longer, 
cooler dry season (April to October) when food avail-
ability is low (Fig. 1A) [58]. We observed 41 individuals 
belonging to seven social groups that are habituated to 
human’s presence and individually marked with unique 
collars. One group (M) only entered the study area by the 
end of 2016, so that data for this group were only avail-
able for the study year 2017.

Home range dissimilarities and food availability
To characterise the habitat structure of the different 
home ranges, we conducted forest inventories of 10 ran-
domly selected square plots (~ 25 × 25 m; 6 plots for 
group F1) within the home range of each group in 2012 
[91] and 2016 [92]. We identified all trees with diameters 
at breast height larger than 5 cm, resulting in a data set 
comprising 12,177 trees of 168 different species found 
in 66 phenology plots (for details, see [92]). We used the 
number of trees per species within a groups’ home range 
as a proxy for evaluating habitat dissimilarity between 
groups (see below). Estimates of food availability for the 
study area were based on monthly phenology scores for 
leaves, fruit, and flowers of 690 trees, which ranged from 
0 (complete absence) to 4 (maximum abundance) (for 
details, see [91]).
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Home range overlap
In a previous study [92], we assed home range sizes of 
each group over the same four field seasons with data 
collected by GPS collars. On average, we recorded GPS 
data points for 651 days with 21,393 ± 3,119 GPS loca-
tions per group (mean ± SD; range 17,179–24,070). 
For estimating home range sizes, we used monthly 
95% fixed kernels with the adehabitatHR package [93] 
in Rstudio (R Version 3.6.1, [94]). Home range overlap 
among groups per field season was calculated with the 
function kerneloverlaphr of the adehabitatHR pack-
age. Figure  1B illustrates groups’ average home ranges 
across the study period.

Behavioural observations
Between April 2016 and March 2018, we conducted focal 
animal sampling on all individuals except infants younger 
than 9 months. Observations lasted 1 h per individual 
and were conducted for 3 h in the morning and 3 h in the 
afternoon in a randomised but counter-balanced order. 
We continuously recorded social behaviours (i.e. allo-
grooming, play, body contact, proximity of < 1 m, and 
aggression), including the identity of involved conspecif-
ics, and non-social behaviours, like feeding, locomoting, 
resting, and auto-grooming. In total, we collected 1812 
h of behavioural data with 44 h ± 12 h per individual 
(mean ± SD; range 25–56 h). We additionally recorded 

Fig. 1  Environmental conditions, home ranges, and maternal relatedness of the study population. A Monthly average temperatures and food 
availability scores. B Average home range locations and overlaps of all study groups. Areas indicate the average 95% Kernels over the complete 
study period. Within groups’ home ranges, white circles represent individual group members and their respective sex. For individuals illustrated with 
question marks, we do not know the respective mothers. The degree of maternal relatedness between all individuals is indicated by connecting 
lines. Black solid lines: relatedness coefficient (RC) = 0.50; grey solid line: RC = 0.25–0.50; grey dotted line: RC = 0.25
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the identity of feeding plants and parts. As our study 
required focal animal observations, it was not possible to 
record data blindly.

Faecal glucocorticoid metabolite (fGCM) analysis
Faecal glucocorticoid metabolite (fGCM) concentra-
tions were assessed non-invasively from faecal samples. 
During the four field seasons, we collected and analysed 
1152 samples (3.45 ± 1.1 (mean ± SD) per animal per 
month). After extraction at the field site, we determined 
fGCM concentrations with a validated enzyme immu-
noassay (EIA) for the measurement of immunoreactive 
11ß-hydrodroxyetiochoolanolone in the endocrinology 
lab of the German Primate Center. For more details on 
data collection and analysis, see Additional file 1 and [70].

Bacterial and eukaryotic bacterial gut microbiome 
analyses
We collected and analysed 519 faecal samples during 
four field seasons (12.7 ± 3.6 (mean ± SD) total samples 
per animal; 3.9 ± 0.7 (mean ± SD) samples per animal 
per field season). Samples were only collected when they 
could be assigned to an individual. We stored samples 
in 2 ml polypropylene tubes containing 1 ml RNAlater 
(Thermo Fisher Scientific, Waltham, MA, USA) at ambi-
ent temperature for 24h. Afterwards, samples were stored 
at − 20°C and shipped to Germany for further analyses.

Extraction of DNA, amplification, and sequencing of 16S 
and 18S rRNA genes
We conducted DNA extraction with the PowerSoil DNA 
isolation kit (MoBio, Carlsbad, Canada). PCR reactions 
to generate bacterial 16S rRNA gene amplicons were 
performed in triplicates for each sample, then pooled in 
equimolar amounts and cleaned. Afterwards, we con-
ducted dual-indexed paired-end sequencing with the 
Illumina MiSeq platform and v3 chemistry (see Addi-
tional file 1 for details on protocols).

Bioinformatic processing of 16S rRNA gene amplicon 
sequences
Amplicon sequence variants (ASVs) were generated 
with VSEARCH version 2.15. We removed chimeric 
sequences with VSEARCH using UCHIME3 in de novo 
(--uchime3_denovo) and reference (--uchime_ref ) mode 
against the SILVA SSU NR database (v138.1) [95]. We 
taxonomically classified ASVs with BLAST 2.9.0+ [96] 
against the SILVA SSU v138.1 database and removed 
chloroplasts and extrinsic domains from the data set. We 
used the following identity thresholds for taxonomical 
classification: species (≥ 98.7%), genus (≥ 94.5%), fam-
ily (≥ 86.5%), order (≥ 82%), class (≥ 78.5%), and phylum 

(≥ 75%) [97]. Assignments with lower identities were 
marked as unclassified at the given taxonomic rank.

Gut community analyses
The following analyses were conducted in Rstudio (R 
Version 3.6.1). First, we normalised all sequences with 
geometric means of pairwise ratios (GMPR) (v0.1.3) 
[98]—a method we chose due to its robustness for zero-
inflated sequencing data. To generate a phylogenetic tree 
all sequences of the filtered dataset were aligned with a 
maximum of 100 iterations using MAFFT [99]. The tree 
was calculated with FastTree 2.1.7 (OpeMP) [100] and 
then midpoint rooted and saved in newick format with 
FigTree (version 1.4.4) [101]. Alpha diversity was cal-
culated with Faith’s phylogenetic diversities (PD) [102] 
with the picante package (v1.8.2). For beta diversity, we 
computed generalised UniFrac distances (GuniFrac) by 
utilising the GuniFrac function of the GuniFrac pack-
age (version 1.1) [103]. Relative abundances in the form 
of bar charts were generated with ggplot2 (version 3.3.3) 
using standard R packages. Heatmaps were built with the 
ampvis2 package (version 2.6.7) [104].

Indicator species analysis and association networks
To identify ASVs that are significantly associated with 
certain “groups”, i.e. social groups, age classes, female 
reproductive stages, or rank, we conducted indicator 
species analyses using the package indicspecies (ver-
sion 1.7.9) with the multipatt function [63, 64]. There-
fore, samples were rarefied in ampvis2 to 11,895 reads, 
based on the lower threshold for the number of reads in 
a sample in rarefaction curves. We calculated point bise-
rial correlation coefficient with the r.g function and set 
the significance cut-off to p < 0.05. Cytoscape (version 
3.8.2) was used to visualise association networks, using 
the edge-weighted spring embedded layout algorithm, 
whereby “groups” were source nodes, ASVs were target 
nodes, and edges weighted positive associations between 
ASVs and source nodes.

Bioinformatic processing of 18S rRNA gene amplicon 
sequences
ASVs were generated as described above for 16S rRNA 
genes. Quality-filtered sequences were mapped to chi-
mera-free ASVs and an ASV table was created with 
VSEARCH. Finally, we taxonomically classified ASVs 
with BLASTn against the SILVA SSU NR database.

For more details on the gut microbiome analyses, see 
Electronic Supplementary Material (Additional file 1).

Statistical analyses
All statistical analyses were conducted in R (versions 
3.6.1 and 4.1.1).
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Mantel tests—Beta diversity and group membership
We examined the relationship between group member-
ship and beta diversity with Mantel tests [105] using 1000 
permutations, including the original data as one per-
mutation. Unlike PERMANOVAs, the test restricts per-
mutations such that non-independence due to repeated 
sampling of the same individuals is accounted for. We 
conducted four Mantel tests, each including only sam-
ples of one of the four field trips. The Mantel test was 
restricted such that samples selected from the same indi-
vidual were always permuted as a block. The test statistic 
yielded the mean absolute differences in dissimilarities 
within and between the groups. We determined p-values 
as the proportion of permutations that resulted in larger 
test statistics than or equal to the test statistics of the 
original data. The unpublished functions for this analysis 
were kindly provided by Dr Roger Mundry.

Mantel tests—Beta diversity and home range dissimilarities 
among groups
We examined whether groups with ecologically more 
similar home ranges share more similar gut microbi-
omes. To estimate the differences in home ranges, we 
computed Bray-Curtis dissimilarities among groups (cal-
culated with the vegdist function of the vegan package) 
based on tree species abundances within each group’s 
home range. Next, we averaged GuniFrac distances for 
each group dyad per field season. We then calculated the 
Mantel tests based on Pearson’s product-moment corre-
lation, examining the link between dyadic GuniFrac dis-
tances and dyadic habitat dissimilarity between groups 
for each field season.

LMMS
To investigate potential factors modulating Verreaux’s 
sifakas’ gut microbial composition, we computed linear 
mixed models (LMM) [106] using the function lmer of 
the lme4 package (version 1.1.26) [107] with the opti-
miser “bobyqa”. For all models, covariates were z-trans-
formed (transformed to a mean of zero and a SD of one) 
to achieve easier interpretable models [108] and to facili-
tate model convergence. If data on predictors were miss-
ing, e.g. age, we excluded the sample from the model. We 
included random slopes to keep type I error rates at the 
nominal level of 5% [109].

After fitting each lmer model, we controlled for 
assumptions of normal distributions, homoscedastic-
ity, and collinearity, and we checked for model stability. 
p-values for individual effects were based on likelihood 
ratio tests comparing the full with the respective null 
or reduced models (R function ANOVA with argument 
test set to “Chisq”) [110, 111] using the drop1 function 

[109]. Null models contained only intercepts, random 
effects, and random slopes and reduced models addi-
tionally contained assigned control factors. We obtained 
effect sizes of the full models for the entirety of fixed and 
random effects with the function r.squaredGLMM of 
the package MuMIn (version 1.43.17) [112]. Confidence 
intervals were assessed with parametric bootstrapping 
using an adjusted bootMer function from the lme4 pack-
age. Dr. Roger Mundry also kindly provided this adjusted 
function.

We fitted the following models (for an overview of all 
models, see Tables S1 & S2).

LMM I—Beta diversity within the same individual  We 
investigated whether samples from the same individual 
were more similar than samples from different individu-
als. We included only dyads of which both individuals 
were from the same group. The mean GuniFrac distances 
per ID dyad and per field season were used as a response, 
the factor “Same ID” (yes or no) was used as a predic-
tor, individual dyads and group ID were used as random 
effects, and field season was used as a control factor and 
as a random slope.

LMM II—Beta diversity and home range overlaps and 
diet dissimilarity between groups  In this model, we 
investigated whether groups with overlapping home 
ranges and groups with more similar diets share more 
similar gut microbiomes. The mean GuniFrac distances 
per group dyad per field season were used as a response, 
the mean home range overlaps per field season and the 
mean diet dissimilarity per field season were used as 
predictors, group dyad was used as a random effect, and 
field season was used as a random slope. To control for 
seasonal variation in ranging patterns (see [92]) and diet, 
we included field season as a control factor. We also com-
pared fruit and leave intake rates between the groups 
and seasons in additional LMMs described in Additional 
file 1 (Tables S3 & S4; Fig. S1).

LMM III—Beta diversity and maternal relatedness  We 
investigated the potential effect of maternal relatedness 
on gut microbiome similarity among individuals. Mater-
nal relatedness of older individuals was determined via 
genetic analyses in a prior study (1995–2005 [72]). For 
younger individuals, we used behavioural observations 
of mother-offspring dyads to determine relatedness [58]. 
We considered animals as maternally related if they were 
known to have one of the following degrees of kinship: 
RC = 0.50: mother-offspring and siblings; RC = 0.25: 
half-siblings, grandmother-grandchild, and aunt/uncle-
nephew/niece. In case we could not determine whether 
individuals were full- or half-siblings, we assigned an RC 
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of 0.375. Figure 1B illustrates all known degrees of mater-
nal relatedness within the study population. The mean 
GuniFrac distances of individual dyads per field sea-
son were used as a response, the relatedness coefficient 
between these individuals and the interaction between 
relatedness coefficient and group membership (same or 
different) were used as predictors, individual dyad as a 
random effect, and field season as a control factor and 
random slope.

LMM IV—Beta diversity and intrinsic factors, affiliation, 
and seasonality within groups  We examined potential 
correlations of microbiome similarity between group 
members and age, sex, seasonality, and time spent affili-
ating, including grooming and other activities in body 
contact (i.e. feeding, resting). The mean GuniFrac dis-
tances between group members per field season were 
used as a response, and age class dyad (e.g. adult-infant), 
sex dyad (e.g. female-female), field season, and time 
spent affiliating (in min/h) were predictors. We included 
maternal relatedness as a control factor. Individual dyads 
and group ID were used as random effects and field sea-
sons, maternal relatedness, and time spent affiliating as 
random slopes.

LMM V—Beta diversity, male rank, and group residence 
time  To examine the potential effects of male rank on 
the microbiome similarity of adult group members, we 
divided the rank into three categories: dominant males, 
subordinate adult males, and adult females. Since female 
dyads consisted mainly of mother-daughter pairs, we 
did not discern dominance relationships among them. 
The mean GuniFrac distances between group members 
per field season were used as a response; rank dyad (e. 
g. dominant male—adult female) and residence time, 
i.e. number of years two group members spent together 
in the same group (range 0.21–14.2, mean ± SD 5.60 ± 
3.45), were predictors, and field season was included as a 
control factor. Individual dyads and group ID were used 
as random effects and field seasons as a control factor 
and a random slope.

LMM VI–IX—Alpha diversity  We applied four LMMs 
to examine the correlations of Faith’s phylogenetic diver-
sity (PD) with field season, various intrinsic factors, affili-
ation, male rank, group ID, and diet. Models had to be 
separated to avoid issues with collinearity (e.g. between 
age and rank). In model VI, field season, sex, age, mean 
monthly measures of fGCMs, group ID, and mean pro-
portions of consumed leaves per field season were pre-
dictors, animal, and group ID (except for model VI) were 
random effects and field season, leave intake and fGCM 
measures were used as random slopes. Additionally, 

we included age as a random slope within ID. Fruit 
intake rates were correlated and collinear to field season 
(Table S4) and therefore excluded from the model.

In model VII, we examined the effects of time spent affili-
ating with group members and alpha diversity. We used 
the mean time spent affiliating per field season as predic-
tor, field season as a control factor, group and animal ID 
as random effects, and affiliation and field season as ran-
dom slopes.

In model VIII, we explored the potential correlations of 
male rank with individual PD. Male rank was included 
as predictor, field season as control factor and random 
slope, and group and animal ID were random effects.

In model IX, we examined the correlations of female 
reproductive state with alpha diversity. Adult females 
were retrospectively categorised as “reproducing” or “not 
reproducing”, depending on whether they gave birth in 
the respective year or not. Female reproductive state and 
the interaction between reproductive state and season 
were included in the model as predictors. The interac-
tion was included to examine differences between gestat-
ing (in the early dry season) and lactating (in the late dry 
season) females. Field season was included as a control 
factor, and random slope, group, and animal ID were ran-
dom effects. Additionally, we included female reproduc-
tive state as a random slope within the group.

More details on the statistical analyses are provided in 
Additional file 1.

Results
The 519 samples of the 16S rRNA gene-based analysis, 
contained 22,914,114 high-quality amplicon sequences 
(44,151 ± 19,080 reads (mean ± SD) per sample, range 
11,941–192,639) and 6013 bacterial ASVs. A total of 
90% of the ASVs could be taxonomically assigned at the 
phylum, class, and order level, while only 76%, 8%, and 
0.4% of ASVs could be classified at the family, genus, and 
species level, respectively. Twelve phyla were identified 
in the samples: Bacteroidota (3179 ASVs), Firmicutes 
(1462 ASVs), Actinobacteria (159 ASVs), Proteobacte-
ria (151 ASVs), Cyanobacteria (123 ASVs), Spirochaetes 
(118 ASVs), Synergistota (118 ASVs), Verrucomicrobia 
(57 ASVs), Fibrobacteres (34 ASVs), Desulfobacterota (25 
ASVs), Campylobacterota (3 ASVs), and Armatimonad-
ota (1 ASV). About 60% of all reads belonged to the five 
most common families: Prevotellaceae (23%), Lachno-
spiraceae (15%), Rikenellaceae (7%), Bacteroidaceae (6%), 
and Muribaculaceae (5%) (Fig. 2A).
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We also conducted an 18S rRNA gene-based analysis to 
identify food plants contained in the faecal samples. The 
519 samples contained 24,736,841 high-quality ampli-
con sequences (47,662 ± 32,579 reads (mean ± SD) per 
sample, range 2–199,773) within 6465 ASVs. Of those 
ASVs, 562 belonged to Tracheophytes (land plants) and 
contained 9,975,587 reads. After subsampling, 95 sam-
ples were removed due to low read numbers for Tra-
cheophytes (< 1000 reads). The remaining 424 faecal 
samples of 41 different individuals contained 553 ASVs 
and 9,938,628 high-quality amplicon sequences. We iden-
tified 71 plant families. The five families with the high-
est numbers of ASVs were Apocynaceae (84), Solanaceae 
(58), Fabaceae (56), Ebenaceae (34), and Convolvulaceae 
(32). About 86% of all reads belonged to the five families 

Salicaceae (40%), Apocynaceae (17%), Fabaceae (14%), 
Phyllanthaceae (9%), and Convolvulaceae (6%) (Fig. 2B).

Beta diversity: host and group membership
Samples from the same individuals were more simi-
lar than samples from different individuals of the same 
group (LMM I; likelihood ratio test comparing full and 
null/reduced model χ2 = 25.376, df = 1, p < 0.001, R2

m/c 
= 0.14/0.89) (Table  S5). Group membership impacted 
the gut microbiome as samples of group members for 
each field season were more similar to each other than to 
samples from individuals living in different groups (Man-
tel test: early dry 2016: nsamples = 92, nindividuals = 29, x
same group = 0.171, xdifferent group = 0.228, p < 0.001; late dry 
2016: nsamples = 116, nindividuals = 29, xsame group = 0.172, x

Fig. 2  Overview of the between-group variation in the gut composition and diversity and the potentially influencing ecological and intrinsic 
factors. A Stacked barplot and heatmap of the average relative abundances of bacterial phyla and class or phyla and families, respectively, and 
average alpha diversity per group and field season. B Stacked barplot of the average relative abundances and average richness of land plant families 
per group and field season. C ASVs associated with the different groups in 2017. The graph does not contain data on 2016 since group M only 
joined the study population in 2017, and there were no prior data available. The association network was calculated with the indicspecies package 
in R and visualised in Cytoscape with an edge-weighted spring embedded layout. Branch lengths indicate the point biserial correlation coefficient. Each 
circle or other shape indicates a bacterial ASV associated (p < 0.05) with the group it is connected to. Coloured circles indicate phyla except for the 
5 most abundant families, which are indicated by different shapes. Sizes of the circles and other shapes indicate the average relative abundance of 
each ASV among all samples
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different group = 0.225, p < 0.001; early dry 2017: nsamples = 
155, nindividuals = 39, xsame group = 0.166, xdifferent group = 
0.228, p < 0.001; late dry 2017: nsamples = 156, nindividuals 
= 36, xsame group = 0.155, xdifferent group = 0.220, p < 0.001; 
Table S6). However, visual inspection of Fig. 2A indicated 
that all groups have very similar gut compositions up to 
the family level, which is why larger differences between 
groups must appear at the genus level or beyond.

Indicator species analysis at the ASV level revealed 
that only 1.33% of all taxa (i.e. 80 ASVs) were uniquely 
associated with one social group (Table  S7). In more 
detail, groups seemed to differ to a larger degree within 
taxa of the phyla Bacterioidota (42 ASVs) and Firmi-
cutes (17 ASVs) and their most common families Bac-
teroidaceae (19 ASVs), Prevotellaceae (11 ASVs), and 
Lachnospiraceae (12 ASVs). Members of groups F and M 
differed most strongly in their microbiome compositions 
compared to the other groups (Fig. 2C).

Beta diversity: habitat dissimilarity, habitat overlap, 
and diet
Habitat dissimilarity and GuniFrac distances between 
the groups were not correlated (Mantel test: nsamples 
= 15, ngroups = 6, r = − 0.149, p = 0.553; late dry 2016: 
nsamples = 15, ngroups = 6, r = 0.008, p = 0.972; early dry 
2017: nsamples = 21, ngroups = 7, r = − 0.154, p = 0.561; 
late dry 2017: nsamples = 21, ngroups = 7, r = 0.064, p = 
0.776; Table S8). The model examining the effects of hab-
itat overlap and diet dissimilarities on groups’ GuniFrac 
distances was also not significant (LMM II: χ2 = 3.264, df 
= 2, p = 0.196, R2

m/c = 0.08/0.98) (Table S9).

The 18S rRNA gene analysis of the land plants found 
in faecal samples revealed that at least at the lower taxo-
nomic levels, i.e. until the family level, diet did not seem 
to affect between-group variation in microbiome compo-
sition. Despite obvious between-group variation in food 
plant compositions, groups’ bacterial microbiome com-
positions did not reflect these differences when visually 
inspecting the respective graphs (Fig. 2A, B). We found, 
however, seasonal dietary patterns. During the early dry 
seasons in both study years, faecal samples contained a 
large proportion of plants from the families Combreta-
ceae and Salicaceae, whereas during the late dry season 
Fabaceae and Sapindaceae were consumed in greater 
amounts (Fig. 2B).

Beta diversity: maternal relatedness
We examined the effects of maternal relatedness coef-
ficients on GuniFrac distances among all individuals, 
i.e. between both, group members and individuals from 
different groups. The interaction between the related-
ness coefficient and group membership (same or differ-
ent) was not significant (likelihood ratio test comparing 
the model with and without the interaction: χ2 = 0.105, 
df = 1, p = 0.746), which is why we excluded it from the 
model. The model without the interaction was highly sig-
nificant (LMM III:χ2 = 122.079, df = 1, p < 0.001, R2

m/c 
= 0.51/0.92) (Table S10). Maternal relatives had a more 
similar microbiome than unrelated individuals, and this 
effect was independent of whether these relatives lived in 
the same group or not (Fig. 3).

Fig. 3  GuniFrac distances of all study animals in relation to their maternal relatedness coefficient and group membership. An RC of 0.25–0.50 refers 
to dyads for which we cannot determine whether they are full- or half-siblings
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Beta diversity: seasonality, sex, age, and affiliation rates
The model examining correlations of dyadic GuniFrac 
dissimilarity with seasonality, sex, age classes, and the 
time two group members spent affiliating was signifi-
cant (LMM IV: χ2 = 30.759, df = 10, p < 0.001, R2

m/c = 
0.70/0.91) (Tables  S11). Bacterial microbiomes of group 
members increased in similarity across the study period; 
they were least similar in the early and late dry season 
2016 and most similar in the late dry season 2017. Sam-
ples of adults differed most from each other, whereas 
samples among juveniles and infants were more similar 
(Fig.  4A). Neither sex nor time spent affiliating signifi-
cantly affected microbiome similarity.

Indicator species analysis on ASV level revealed that 
less than 1% of all taxa (i.e. 49 ASVs) were uniquely 
associated with one age class (Table  S12). These taxa 
belonged mainly to the phyla Bacterioidota (22 ASVs) 
and Firmicutes (12 ASVs) and their respective families 
Bacteroidaceae (10 ASVs) and Lachnospiraceae (7 ASVs) 
(Fig. 4B). Only juveniles and infants had unique associa-
tions with taxa affiliated to the phylum Firmicutes.

Beta diversity: male rank and female reproductive state
The model examining correlations of dyadic Guni-
Frac dissimilarity with male rank was significant (LMM 

V: χ2 = 31.827, df = 4, p < 0.001, R2
m/c = 0.68/0.92) 

(Table  S13). Dominant males shared the least similar 
gut microbiota with their group members (Fig. 4C). The 
number of years two individuals spent together in the 
same group was not significantly associated with gut 
community similarity (Table S13).

Indicator species analysis revealed that 3.74% of all 
taxa, i.e. 225 ASVs, were uniquely associated with one 
rank category in adult Verreaux’s sifakas (Table  S14). 
Individuals differed most strongly in taxa of the phyla 
Bacterioidota (99 ASVs) and Firmicutes (63 ASVs) and 
their most common families Bacteroidaceae (35 ASVs), 
Prevotellaceae (29 ASVs), and Lachnospiraceae (31 ASVs) 
(Fig. 4D).

Female reproductive stage did not appear to affect their 
community composition. In the indicator species analy-
sis, we found that less than 1% of all taxa, i.e. 22 ASVs 
(total number of ASVs in adult female samples: 6000), 
were uniquely associated with one reproductive category 
(Table  S15). Fourteen of these belonged to the phylum 
Firmicutes (Fig.  4E). Eight ASVs were associated with 
reproducing females (gestating and lactating) of which 
five belonged to Bacterioidota (Table  S16). Non-repro-
ducing females (not gestating and not lactating) shared 9 
ASVs of which five belonged to Bacterioidota (Table S16).

Fig. 4  Differences in gut similarity and association networks within groups per age category, female reproductive state, and male dominance. 
A, C GuniFrac distances between group members of different or same age categories or rank categories of adult group members only. As there 
is only one dominant male per group, we could not compare two dominant individuals. We did not have enough adult female group members 
to compare their GuniFrac distances during different reproductive stages. B, D, E ASVs associated with the different age categories, adult female 
reproductive stages, or rank categories within groups, respectively. The association network was calculated and visualised in the same way as 
described in Fig. 1. The network for age categories only contains data from the late dry seasons 2016/2017 since animals were only considered 
infants, when they were < 9 months of age. Hence, during the early dry seasons, there were no infants in the population
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Alpha diversity (PD): seasonality, sex, age, group ID, fGCMs, 
and leave intake rates
The model examining correlations between PD and 
seasonality, sex, age, group ID, mean monthly fGCM 
concentrations, and monthly leave intake rates was 
significant (LMM VI: χ2 = 99.857, df = 13, p < 0.001, 
R2

m/c = 0.31/0.38) (Table  S17). PD decreased continu-
ously throughout the field seasons. Group membership 
was correlated to PD with members of group F having 
the highest and members of group M having the lowest 
diversities (Fig. 2A). Yet, group size had no influence on 
between-group variation in PD. For example, while the 
largest group (F, meangroup size = 10) harboured the high-
est diversity, the second largest group (J, meangroup size 
= 7) was on the lower end, and the smallest group (F1, 
meangroup size = 3) ranged in the middle. Sex, age, mean 
monthly fGCMs, and monthly leave intake rates were not 
correlated to PD.

Alpha diversity: affiliation, male rank, and female 
reproductive state
The models examining the correlations between PD and 
affiliation, male rank, and female reproductive state were 
not significant (affiliation: LMM VII: χ2 = 1.897, df = 1, 
p = 0.168, R2

m/c = 0.10/0.30; male rank: LMM VIII: χ2 = 
3.013, df = 2, p = 0.222, R2

m/c = 0.22/0.37; female repro-
ductive state: LMM IX: χ2 = 0.861, df = 4, p = 0.930, 
R2

m/c = 0.18/0.35) (Tables S18, S19, and S20).

Discussion
We examined social, environmental, and intrinsic drivers 
of between- and within-group variation in the gut micro-
biome of seven adjacent wild Verreaux’s sifaka groups on 
multiple scales. Throughout the 2-year-study period, bac-
terial diversity decreased for the whole study population, 
whereas microbial similarities between individuals and 
groups increased. However, none of our environmental 
predictors explained the causes for this population-wide 
pattern. As expected, throughout all field seasons group 
members shared more similar gut microbiota and groups 
differed in bacterial diversity. Between groups, neither 
home range overlap nor sharing of more similar habitats 
or diets explained variation in gut microbiome commu-
nities. Maternally related individuals shared more similar 
gut microbiota, both within and between groups. Inter-
estingly, gut communities appeared to be even more sim-
ilar in maternal relatives living in different groups than in 
maternally unrelated group members. Dominant males 
had significantly different gut microbiota compared to 
their group mates, independent of their residence time 
in the group. In contrast, variation in social interactions 
between group members was not correlated with micro-
bial similarity. On the individual scale, despite groups 

sharing distinct gut communities, animals still harboured 
unique gut microbiota. Most variation between indi-
viduals occurred among adults and maternally unrelated 
group members but was independent of sex. Bacte-
rial diversity was not correlated to any other factors but 
group and season.

Within each of the two study years, alpha diversity was 
smaller during the late than during the early dry season. 
In line with higher food availability and consumption of 
fibre-rich fruits [113], Verreaux’s sifakas’ intake in non-
structural carbohydrates and fibres was highest dur-
ing the early dry season [91]. Both macronutrients drive 
microbial diversity [114–116], explaining our findings 
that alpha diversity was higher in the early dry season. 
However, this seasonal effect contrasts with the results 
of a previous study of the same population, where alpha 
diversity was larger at the end of the dry season [60]. 
Either different methods and alpha diversity metrics or 
seasonal or annual variation in nutrients [113, 117–119] 
may have led to these different results.

While the here found relationship between season 
and bacterial diversity seems conclusive, we cannot rule 
out that this result is not a consequence of the observed 
continuous decrease in alpha and beta diversity between 
individuals over the course of the study period. In fact, 
alpha diversity was lower during the early dry season in 
2017 than during the late dry season 2016. In a differ-
ent population, such a population-level shift of the social 
microbiome was detected as well [62]. Interannual vari-
ation in hormone concentrations have been reported in 
Verreaux’s sifakas [70], but also in other species, like 
Florida scrub jays (Aphelocoma coerulescens), degus 
(Octodon degus), or snowshoe hares (Lepus americanus) 
[120–122], and might be linked to environmental factors. 
Yet, there were no major differences in temperatures or 
food availability between the study years [70], and nei-
ther fruit or leaf intake rates nor 18S rRNA gene deduced 
plant species richness were correlated to alpha diversity. 
Thus, while we cannot pin down the causes responsible 
for the continuous decline of alpha diversity, the observed 
pattern indicates that adjacent sifaka groups might share 
a mutual “micro-environment” that affects the gut micro-
biome of the whole population in a similar manner [62].

Kirindy Forest is very heterogenous in terms of forest 
structure and composition [58, 123], and sifakas’ home 
ranges differ in both feeding tree richness and abundance 
[92]. Yet, in contrast to our prediction, neither home 
range overlap nor similarity in habitat or diet reflected 
microbial similarities among groups. Instead, several 
other studies reported links between variation in habitat 
type and microbiome composition or diversity [14, 31, 
32, 36, 124, 125], but they compared the groups or popu-
lations at much larger spatial scales. The comparatively 
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minor local variation in habitat features and food sup-
plies among sifaka groups does not seem to predict 
between-group variation in microbiome composition.

Our findings also imply that the horizontal transmis-
sion of bacteria via scent-marking or sharing environ-
ments is an unlikely driving force for between-group 
variation in this species. Verreaux’s sifakas’ arboreal life-
style has been suggested to act as a buffer against envi-
ronmentally transmitted microorganisms [126]. Physical 
contact with faecal material or faecal-contaminated soil 
likely promotes a between-group exchange of gut bacte-
ria [12, 127], however, in arboreal species like sifaka this 
transmission route is less likely. Additionally, the inten-
sity of microbial transmissions can depend on bacteria’s 
viability under external environmental conditions [12, 
128]. Identifying and understanding the routes and con-
ditions of these transmissions will help to understand the 
dynamics within the social microbiome, but for now, we 
lack the groundwork [129, 130].

Intriguingly, we found that maternally related indi-
viduals shared more similar gut microbiota between and 
within groups, contradicting results of the same species 
[61] but also those of several studies in other primates 
[16, 18, 131, 132]. Only a recent large-scale study in yel-
low baboons (Papio cynocephalus) also reported the gut 
microbiota to be highly heritable and pointed out that it 
required multiple samples of the same individuals col-
lected over a decade to detect microbiome heritability 
[84], suggesting that previous studies may have had too 
small sample sizes.

In our study, unrelated group members shared less 
similar gut communities than relatives living in differ-
ent groups. It is also interesting to note that groups G, 
L, and E, whose members are partially related to each 
other (Fig. 3), also clustered in terms of microbial simi-
larities (Fig. 2C). The between-group variation could thus 
also be affected by kinship. Within groups, on the other 
hand, genetic relatedness likely adds to, but cannot be 
the only driver of microbial convergence in this species 
since related group members still shared more similar 
gut communities than relatives living in different groups. 
Because our sample size on maternally related individu-
als living in different groups is small, we welcome follow-
up studies to verify the here found patterns.

As expected, group membership predicted microbiome 
composition and diversity, confirming the results of pre-
vious studies [60, 61]. However, within-group variation 
in affiliation did not further predict microbial similarity, 
contrasting findings in chimpanzees (Pan troglodytes) 
and baboons [18, 19], but confirming findings in sooty 
mangabeys (Cercocebus atys) [133] and Verreaux’s sifa-
kas from a different population [61]. Verreaux’s sifakas 
devote relatively little time to social activities [69], and 

grooming bouts are relatively short [74], offering little 
opportunity for the horizontal transmission of bacteria. 
Meanwhile, in their small cohesive groups, cohabitation, 
and proximity to all group members, e.g. when huddling 
during cool nights, which we obviously did not protocol, 
may provide more opportunities for transmitting com-
mensal bacteria across the group and thus shaping dis-
tinctive group microbiota.

Alpha diversity was neither predicted by group size nor 
by the time group members spent affiliating, whereas in 
another Verreaux’s sifaka population a positive correla-
tion with social interactions was found [61]. The findings 
of the said study are based on a snapshot perspective of a 
small number of gut microbial samples: In addition, they 
constructed grooming networks on a community level 
to derive social network metrics for each group, whereas 
we used dyadic interaction rates by accounting for group 
membership, which we think is a more direct measure 
to assess social relationships. Hence, differences in study 
design and statistical methods may account for the dis-
crepancy between the two studies.

In contrast to a study of savannah baboons [49], domi-
nant males differed significantly in their gut composition 
from all other group members. This effect was unrelated 
to the time individuals spent in the same group, ruling 
out social co-residency as an explanation for this effect. 
Dominant males have higher androgen [76] and fGCM 
[70] concentrations than their conspecifics, and their 
chests are stained from scent gland secretions, whereas 
subordinate males’ chests are rather clean [134, 135]. 
Thus, they have distinct physiological phenotypes, which 
might be linked to their divergent gut microbial compo-
sition. Additionally, since dominant males exhibit much 
higher rates of scent- and overmarking than their conspe-
cifics [67], they are exposed to substantially more oppor-
tunities for horizontal transmissions than their group 
members, which may promote differential gut communi-
ties. Also, the information communicated via odour cues 
of their scent-marks likely differs from their conspecifics, 
as they convey their social status or serve mate-guarding 
purposes [75, 136]. In fact, stained sifakas have microbial 
communities in their gland secretions that differ signifi-
cantly from those of unstained males [137]. According to 
the “fermentation hypothesis”, bacteria contribute to the 
production of chemical signals via anaerobic fermenta-
tion [138]. If the gut microbiome was also involved in the 
process of odour production, this might explain aspects 
of inter-individual variation of gut community structures 
[139]. Likewise, social groups can have specific chemical 
signatures [140, 141] that could be linked to groups’ dis-
tinct gut microbiota. However, whereas surface microbes 
have been shown to be involved in the production of 
odorants [140, 142–144], the role of gut microbes in 
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olfactory communication remains to be explored in ver-
tebrates [145].

Within-group variation in gut communities was partly 
due to age. More precisely, faecal samples of adult group 
members differed the most in their bacterial composi-
tions, whereas comparisons between other age catego-
ries yielded lower dissimilarity scores. Indicator species 
analyses revealed little taxonomic variation across age 
classes. Due to male-biassed natal dispersal, adult sifakas 
have lower average degrees of relatedness than younger 
individuals within their groups. With maternally related 
individuals sharing more similar gut microbiota in this 
study, this kinship effect probably contributes to the age 
effect on within-group variation.

Age-related changes in gut microbiota in mammals 
occur especially during the early life stages, when the 
introduction of solid food marks important turning 
points in microbial convergence towards those of adults 
[46, 146, 147]. However, because our study only included 
weaned individuals, we presumably missed the major 
changes in gut communities during infant development.

Measures of individual physiological states, as the here 
used fGCMs or female reproductive stages, did not pre-
dict variation in inter-individual bacterial diversity or 
composition, confirming results of previous studies [49, 
60, 89]. It has been suggested that, instead of relying on 
coarse physiological markers, more dynamic physiologi-
cal measures of hormonal or immunological activity may 
offer a better understanding of host-microbiome rela-
tionships [51, 148, 149]. Future studies using such proxi-
mate physiological markers may therefore yield deeper 
insights.

Conclusions
We contribute to a more comprehensive understanding 
of the relative importance of environmental, intrinsic, 
and social factors shaping the social microbiome in wild 
primates at multiple scales, i.e. between groups, within 
groups, and among individuals. Our results indicate that 
environmental factors define the general set-up of pop-
ulation-specific gut microbiota, whereas more minor 
differences in microhabitat features or diet among local 
groups do not seem to inflict significant between-group 
variation. Kinship promotes microbial homogeneity both 
between and within groups, whereas male dominance 
rank, which is associated with a unique physiological 
phenotype in this species, drives inter-individual vari-
ation. Other physiological variables linked to stress and 
reproduction had no effects on gut microbiome similar-
ity. Overall, intrinsic and social factors have a stronger 
impact on gut microbiome variation in this primate spe-
cies than environmental factors.
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