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Altered gut metabolites and microbiota 
interactions are implicated in colorectal 
carcinogenesis and can be non-invasive 
diagnostic biomarkers
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Abstract 

Background:  Gut microbiota contributes to colorectal cancer (CRC) pathogenesis through microbes and their 
metabolites. The importance of microbiota-associated metabolites in colorectal carcinogenesis highlights the need 
to investigate the gut metabolome along the adenoma-carcinoma sequence to determine their mechanistic impli-
cations in the pathogenesis of CRC. To date, how and which microbes and metabolites interactively promote early 
events of CRC development are still largely unclear. We aim to determine gut microbiota-associated metabolites and 
their linkage to colorectal carcinogenesis.

Results:  We performed metabolomics and metagenomics profiling on fecal samples from 386 subjects including 118 
CRC patients, 140 colorectal adenomas (CRA) patients and 128 healthy subjects as normal controls (NC). We identified 
differences in the gut metabolite profiles among NC, CRA and CRC groups by partial least squares-discriminant and 
principal component analyses. Among the altered metabolites, norvaline and myristic acid showed increasing trends 
from NC, through CRA, to CRC. CRC-associated metabolites were enriched in branched-chain amino acids, aromatic 
amino acids and aminoacyl-tRNA biosynthesis pathways. Moreover, metabolites marker signature (twenty metabo-
lites) classified CRC from NC subjects with an area under the curve (AUC) of 0.80, and CRC from CRA with an AUC of 
0.79. Integrative analyses of metabolomics and metagenomics profiles demonstrated that the relationships among 
CRC-associated metabolites and bacteria were altered across CRC stages; certain associations exhibited increasing or 
decreasing strengths while some were reversed from negative to positive or vice versa. Combinations of gut bacteria 
with the metabolite markers improved their diagnostic performances; CRC vs NC, AUC: 0.94; CRC vs CRA, AUC 0.92; 
and CRA vs NC, AUC: 0.86, indicating a potential for early diagnosis of colorectal neoplasia.

Conclusions:  This study underscores potential early-driver metabolites in stages of colorectal tumorigenesis. The 
Integrated metabolite and microbiome analysis demonstrates that gut metabolites and their association with gut 
microbiota are perturbed along colorectal carcinogenesis. Fecal metabolites can be utilized, in addition to bacteria, for 
non-invasive diagnosis of colorectal neoplasia.
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Introduction
Colorectal cancer (CRC) remains a significant global 
health burden, with the gut microbiota identified as 
a key player in its development. Recent studies have 
shown that gut microbiota alteration can drive carcino-
genesis by promoting hyperproliferation of colonic cells. 
During their colonization and propagation, gut bacteria 
produce an array of metabolites, which have both direct 
and indirect influence on host metabolism and immune 
responses. It has also been proposed that perturbation of 
the gut microbiota can enhance the production of carci-
nogenic products from damaging bacteria [1]. In particu-
lar, gut microbiota and their metabolites were shown to 
induce epigenetic modifications of host cells [2], with the 
metabolites acting as crucial messengers in the crosstalk 
[3]. Fusobacterium nucleatum is a commonly reported 
CRC-enriched microbe that increases gene methylation 
and induces microsatellite instability [4, 5]. Trimeth-
ylamine, mainly produced by Escherichia coli, induces 
DNA methylation [6] that is associated with CRC [7]. 
Bilophila wadsworthia and Pyramidobacter spp are other 
examples of CRC-enriched microbes, which reportedly 
enhanced carcinogenesis by producing genotoxic hydro-
gen sulphide in the gut [8–11]. On the other hand, cer-
tain gut bacteria such as Faecalibacterium, Roseburia, 
Bifidobacterium, Eubacterium and Lactobacillus, can 
ferment dietary fibers to short-chain fatty acids (SCFA), 
which are gut-protective and negatively associated with 
CRC. SCFAs including butyrate, propionate and acetate 
protect against CRC through mechanisms such as regu-
lation of gut inflammation and immune system [12–14]. 
Butyrate and acetate can also act as inhibitors of histone 
deacetylase, thereby affecting the epigenetic modifica-
tions controlling CRC development [15].

The importance of microbiota-associated metabo-
lites in colorectal carcinogenesis highlights the need to 
investigate the gut metabolome along the adenoma-car-
cinoma sequence to determine their mechanistic impli-
cations in CRC pathogenesis. To date, only few studies 
have simultaneously performed gut metagenomics and 
metabolomics from same subjects in order to resolve 
the interplay between gut microbiota and metabolites in 
colorectal tumorigenesis [16–19]. It is still not clear how 
and which microbes and metabolites interactively pro-
mote early events of CRC development.

Here, we integrated the gut metabolome and micro-
biota profiles of patients with CRC and colorectal ade-
nomas (CRA) and compared them with those from 
healthy subjects. Our metabolite pathway enrichment 

and integrative analysis show that the gut metabolites 
and their association with gut microbiota were perturbed 
along colorectal carcinogenesis and that fecal metabolites 
can be utilized, in addition to bacteria, for non-invasive 
diagnosis of both CRA and CRC.

Materials and methods
Subjects and specimen collection
All 386 subjects underwent standard colonoscopy exami-
nations at Prince of Wales Hospital, the Chinese Univer-
sity of Hong Kong, including 118 patients with CRC, 140 
patients with CRA and 128 normal control participants. 
The average age of NC group was 64.03 years, 65.84 years 
for CRA group and 73.21 years for CRC group (Table 
S1). The distribution of gender and obesity among NC, 
CRA and CRC groups are shown in Table S1. All CRA 
and CRC subjects had intact colonic lesions at the time 
of stool collection. Stool samples were collected and 
stored at − 20 °C within 4 h and at − 80 °C within 24 h for 
long-term storage. Qiagen QIAmp DNA Stool Mini Kit 
(Qiagen) was used for DNA extraction according to the 
manufacturers’ instructions. All patients provided writ-
ten informed consent for participation in this study. The 
study protocol was approved by the Clinical Research 
Ethics Committee of the Chinese University of Hong 
Kong.

Metabolomics profiling
In order to identify metabolites that might be playing 
active roles in the relationship among gut microbiota, 
metabolites and CRC, we targeted a panel of metabolites 
that were previously implicated in human gut micro-
biota−host co-metabolism [20]. All samples were pro-
vided for gas chromatography coupled to time-of-flight 
mass spectrometer (GC-TOFMS) analysis using Micro-
bioMET (Metabo-Profile, Shanghai, P. R. China), based 
on automated alkyl chloroformate derivatization. The 
GC-TOFMS system (Pegasus HT, Leco Corp., St. Joseph, 
MO) was operated in electron ionization (EI) mode and 
was used to quantify the microbial metabolites. The raw 
data generated by GC-TOFMS were processed using 
XploreMET v2.0, (a proprietary software by Metabo-Pro-
file, Shanghai, P. R China) for automatic baseline denois-
ing, smoothing, peak picking, and peak signal alignment. 
The baseline offset was set to one. Five points were aver-
aged for peak smoothing. Compound identification was 
implemented by comparing both retention time and MS 
similarity with reference standards. Details of sample 
preparation, reference standards, instrumentation and 
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metabolites profiling are provided in Supplementary 
methods.

Metabolomics data analysis
The metabolomics data analysis was conducted with 
R and online versions of MetaboAnalyst (http://​www.​
metab​oanal​yst.​ca) [21]. Partial least square discriminant 
analysis (PLS-DA) and principal component analysis 
(PCA) were performed using the R package mixOmics 
[22]. P values in both PCA and PLS-DA plot were calcu-
lated by permutational multivariate analysis of variance 
(PERMANOVA) using distance matrices through the R 
package vegan [23]. Differential metabolites analysis were 
conducted using the R package MetaboAnalystR [24]. 
The significantly altered metabolites were determined 
by variable importance in projection (VIP) scores from 
pairwise PLS-DA analysis and pairwise comparisons 
using the Wilcoxon rank-sum test. Benjamini-Hochberg 
false-discovery rate [25] (FDR) was used to correct for 
multiple comparison. Metabolites with VIP score > 1 and 
p values < 0.05 were considered significant. Interactions 
among disease associated metabolites were estimated 
by Spearman’s rank correlation. Metabolite set enrich-
ment analysis (MSEA) was performed using the online 
tool MetaboAnalyst. All heatmaps were drawn using the 
R package Complex Heatmap [26] The workflow for the 
metabolomics analysis is shown in Fig. S1.

Metagenomic sequencing and analysis
Whole-genome shotgun sequencing of all samples was 
carried out on an Illumina HiSeq 2000 (Illumina, San 
Diego, CA) platform. Trimmomatic v_0.36 was used to 
remove low quality sequences. Human sequences were 
removed after alignment with a reference genome (hg38 
database) using Bowtie2 v_2.2.9, with default settings. 
Bacteria taxonomic profiles were obtained using Met-
aPhlAn 2.0 [27]. The average bacterial species level read 
count per sample was 2,316,872 ± 267,563. To reduce the 
effects of uneven sampling, the counts were rarefied to 
1,947,705, the minimum read count of all samples. Bacte-
rial taxa with < 20% prevalence were filtered out prior to 
downstream total sum scaling, differential abundance and 
biomarker selection analysis. Non-metric multidimen-
sional scaling (NMDS) analysis was performed on Bray-
Curtis distance from bacterial species abundances using 
the vegan R package. Differentially abundant bacterial 
species were identified by Kruskal-Wallis and Wilcoxon 
rank-sum tests. Benjamini-Hochberg false-discovery rate 
[25] (FDR) was used to correct for multiple comparison 
and adjusted p-values < 0.05 as the cut-off. The workflow 
for the metagenomics analysis is shown in Fig. S2.

Integrative analyses of metabolomics profiling 
and metagenomics sequencing
Zero-inflated negative binomial (ZINB) regression (R 
package pscl), developed for modeling over-dispersed 
count outcome variables with excessive zeros, as found 
in microbial read counts data, was used to estimate the 
associations among metabolites and bacterial species. 
The read counts of bacterial species were treated as 
dependent variables in the ZINB regressions, while the 
concentrations of metabolites were considered as inde-
pendent variables. The strengths of associations were 
measured by -log10(p-value)*sign (Beta) from the results 
of ZINB regressions, where Beta is the regression of the 
metabolite.

Biomarker identification
Concentrations of metabolites were used to build classifi-
cation models for metabolomic data while relative abun-
dances of bacterial species were used as the inputs of 
classification models. Stepwise logistic regression models 
were built to discriminate paired groups using the func-
tion “glm” of R package stats. Biomarkers identification 
was performed by stepwise selection algorithm using the 
package MASS [28] in R. First, all significantly altered 
metabolites or bacterial species were included into the 
models as potential biomarkers. Then final biomarkers 
were identified by a stepwise model selection algorithm 
based on Akaike Information Criteria (AIC), which was 
performed using the R function “stepAIC” from package 
MASS. All identified biomarkers were then verified by 
random forest with 10-fold cross validation using the R 
package caret [29]. The receiver operating characteristic 
(ROC) analysis was conducted to illustrate performances 
of classification models, using R package pROC [30].

Statistical analyses
All pairwise comparisons were performed using a two-
sided Wilcoxon rank-sum test (Mann-Whitney U test). 
Multiple group comparisons were conducted using 
Kruskal-Wallis test. Fisher’s exact test was performed 
on categorical variables. The dissimilarity tests among 
groups (PERMANOVA) were conducted on Euclidean 
distance for metabolites and Bray-Curtis distance for 
bacteria, with 10,000 permutations in the R package, 
vegan. All statistical analyses were performed using R 
version 3.6.1.

Results
Alterations of gut metabolites in stages of CRC​
Our study included 386 subjects, namely 118 patients 
with CRC, 140 patients with CRA and 128 healthy sub-
jects as normal control (NC). A total of 97 metabolites 
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were quantified from stool samples using GC-TOFMS. 
PLS-DA (Fig.  1A) and PCA (Fig.  1B) showed that there 
are differences in the gut metabolite profiles among CRC, 
CRA and NC groups (PERMANOVA, both p = 0.001), 
indicating a gut-metabolite shift in colon carcinogenesis.

To identify significantly altered metabolites that may 
be important across the stages of CRC development, we 
performed pairwise comparisons between groups. When 
NC was compared with CRC, 17 metabolites were signifi-
cantly altered. These include the enrichment of L-alanine, 
glycine, L-proline, L-aspartic acid, L-valine, L-leucine, 
L-serine, myristic acid, phenyl lactic acid, oxoglutaric 
acid, L-phenylalanine, L-alpha-aminobutyric acid, phe-
nylacetic acid, palmitoleic acid, 3-aminoisobutanoic acid 
and norvaline. In contrast, butyric acid was depleted in 
CRC patients compared with NC (Fig. 1C and Fig. S3A, 
Table S2). With the comparison of CRA with CRC, 36 
metabolites were differentially abundant, including the 
depletion of 5-dodecenoic acid, linoleic acid, alpha-lino-
lenic acid and butyric acid in CRC (Fig. 1D and Fig. S3B, 
Table S3). Interestingly, L-alanine, glycine, L-proline, 
L-aspartic acid, L-valine, L-leucine, L-serine, myristic 
acid and phenyl lactic acid were enriched in CRC com-
pared to both NC and CRA subjects (Fig. 1C and D, Fig. 
S3). Moreover, norvaline and myristic acid were found to 
show increasing trends from NC, through CRA, to CRC 
(Fig. S4), suggesting their potential contribution to the 
progression of colon tumorigenesis.

To gain insight into the functions of significantly 
altered metabolites for each paired group, we conducted 
MSEA. We observed differences in pathways associated 
with the metabolism of branched-chain amino acids 
(BCAAs) in stages leading to CRC. The top 4 enriched 
pathways in CRC compared with NC (Fig. 1E) and CRA 
(Fig.  1F) were (1) aminoacyl-tRNA biosynthesis, (2) 
valine, leucine and isoleucine biosynthesis, (3) phenyla-
lanine metabolism and (4) phenylalanine, tyrosine and 
tryptophan biosynthesis, indicating that metabolic path-
ways are altered in addition to individual metabolites in 
colorectal carcinogenesis.

Metabolites as CRC diagnostic markers
We further explored the potential use of gut microbi-
ome-associated metabolites for non-invasive diagno-
sis of CRC. Using the identified significantly altered 

metabolites (Fig.  1C and D), we built stepwise logistic 
regression models for the classifications of paired groups. 
Our model selected 20 metabolites as markers to clas-
sify CRC from NC subjects, with an area under the curve 
(AUC) of 0.80 (Fig.  2A). The same 20 markers distin-
guished CRC from CRA with an AUC of 0.7889 (Fig. 2B), 
and CRA from NC with an AUC of 0.661 (Fig.  2C). To 
discriminate CRA from NC, 11 metabolites markers 
were identified with an AUC of 0.6853 (Fig.  2D). These 
11 metabolites markers classified CRA from CRC with 
an AUC of 0.7464 (Fig. 2E), and CRC from NC with an 
AUC of 0.6764 (Fig.  2F). CRC was classified from CRA 
by 13 metabolites markers with an AUC of 0.81 (Fig. 2G). 
With these 13 markers, AUCs of 0.7168 and 0.6648 were 
obtained for CRC vs NC and CRA vs NC, respectively 
(Fig.  2H and I). Moreover, adjusting clinical features, 
namely age, gender and obesity improved the perfor-
mance of all markers with increases of about 8% in the 
AUCs (Fig. S5). The performances of the identified mark-
ers were validated by random forest with 10-fold cross 
validation (Fig. S6).

Bacterial species as CRC diagnostic markers
Bacterial dysbiosis is associated with colon tumorigen-
esis [31]. We further investigated the differential distri-
bution of bacteria along CRC stages using fecal shotgun 
metagenomics sequences from all subjects. Analysis of 
beta diversity via NMDS revealed bacterial communities 
to differ among CRC, CRA and NC groups (p = 0.001; 
Fig. 3A). Several bacterial species, including Peptostrepto-
coccus stomatis, Fusobacterium nucleatum, Parvimonas 
micra, Peptostreptococcus anaerobius and Bacteroides 
fragilis, were enriched in CRC compared to NC (Fig. 3B) 
and subjects with CRA (Fig.  3C) while others such as 
Coprobacter fastidosus, Eubacterium ventriosum, Rose-
buria interinalis and Roseburia inulivorans were depleted 
in CRC patients compared to NC (Fig. 3B) and subjects 
with CRA (Fig. 3C). Leptotrichia buccalis and Prevotella 
veroralis increased (Fig. S7A) while Lachnospiraceae bac-
terium 1_4_56FAA and Eubacterium dolichum decreased 
(Fig. S7B) sequentially from NC, through CRA, to CRC.

Furthermore, we used stepwise logistic regression 
models to identify potential diagnostic bacterial species. 
F. nucleatum, P. anaerobius, P. micra, R. inulinivorans, 
E. corrodens and X. perforans classified CRC from NC 

(See figure on next page.)
Fig. 1  Metabolomic data profiles and pathway enrichment analysis. A Principal component analysis (PCA) for CRC, CRA and NC groups. B Partial 
least squares-discriminant analysis (PLS-DA) for CRC, CRA and NC groups. C Z-score heatmap of 17 significantly altered metabolites between CRC 
and NC. D Z-score heatmap of 36 significantly altered metabolites between CRC and CRA. Significantly altered metabolites were determined using 
VIP score from pairwise PLD-DA analysis and Wilcoxon rank-sum test, with VIP > 1 and p < 0.05 as the cut-off for significance. CRC; colorectal cancer, 
CRA; colorectal adenoma, NC; normal control. E Metabolomic pathway enrichment analysis using the 17 significantly altered metabolites between 
CRC and NC. F Metabolomic pathway enrichment analysis using the 36 significantly altered metabolites between CRC and CRA. CRC; colorectal 
cancer, CRA; colorectal adenoma, NC; normal control
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with an AUC of 0.905, consistent with our previous study 
[32] (Fig. 3D). These 6 bacterial markers separated CRC 
from CRA with an AUC of 0.8877 (Fig. S8A), and CRA 
from NC with an AUC of 0.602 (Fig. S8B). CRA and NC 

were discriminated by 14 bacterial species with an AUC 
of 0.8408 (Fig.  3E). The 14 markers also classified CRC 
from NC with an AUC of 0.8207 (Fig. S8C) and CRC 
from CRA with an AUC of 0.8925 (Fig. S8D). CRC was 
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classified from CRA with an AUC of 0.9071 by 6 bacterial 
markers including F. nucleatum (Fig. 3F). The 6 markers 
discriminated CRC from NC, and CRA from NC, with 
an AUC of 0.8545 and 0.7188 respectively (Fig. S8E and 
S8F). We further verified the bacterial markers by ran-
dom forest with 10-fold cross validation. Compared with 
the metabolite markers, AUCs achieved by the bacterial 
markers were not improved by adjusting for age, gender 
and obesity (Fig. S9 and Fig. S10).

Bacterial markers improve diagnostic performance 
of metabolites markers
To investigate whether better discrimination among 
the stages of colorectal carcinogenesis can be achieved, 
we combined metabolite and bacterial markers using 

stepwise logistic regression. For classifying CRC from 
NC, 11 metabolite markers (2-hydroxybutyric acid, 
gamma-aminobutyric acid, L-alanine, L-aspartic acid, 
norvaline, ornithine, oxoadipic acid, oxoglutaric acid, 
palmitoleic acid, phenylacetic acid and pimelic acid) and 
6 bacterial species (F. nucleatum, P. anaerobius, P. micra, 
R. inulinivorans, E. corrodens and X. perforin) achieved a 
higher AUC of 0.9417 (Fig. 4A), compared with an AUC 
of 0.905 with only metabolite markers. The combined 
metabolite and bacterial markers also discriminated CRA 
from NC with an AUC of 0.6728 (Fig. S11A) and CRC 
from CRA with an AUC of 0.92 (Fig. S11B). Inclusion of 
L-asparagine and phenyl lactic acid with 14 CRA-versus-
NC bacterial markers improved the AUC from 0.8408 to 
0.8759 (Fig.  4B). This combination classified CRC from 
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NC with an AUC of 0.8195 (Fig. S11C) and CRC from 
CRA with an AUC of 0.8976 (Fig. S11D). Furthermore, 
the combination of alpha-linolenic acid, L-homoserine, 
phenylacetic acid and phenyl lactic acid with 6 bacterial 
markers increased AUC from 0.9071 to 0.9375 in classi-
fying CRC from CRA (Fig.  4C). The combination of 10 
metabolites and bacterial markers for distinguishing CRC 
and CRA also classified CRC from NC and CRA from 
NC, with AUCs of 0.8723 and 0.7499, respectively (Fig. 
S11E and S11F), demonstrating potential for early diag-
nosis of CRA.

Interactions among metabolites and bacteria are altered 
in CRC​
To understand the potential interplay between signifi-
cantly altered metabolites and differentially abundant 
bacterial species, we performed association analysis 
using ZINB regression. The distribution of associations 
was significantly different across the CRC stages (Fig. 
S12). Moreover, some associations followed an increas-
ing or decreasing trend along CRC progression while 
some were reversed from negative to positive associa-
tions (Fig. S13A) or vice versa (Fig. S13B). Among the 6 
bacterial species discriminating CRC from NC, the asso-
ciation between P. anaerobius and glycine was significant 
and increased along CRC progression (p  < 0.05, Table 
S4), while the association between P. anaerobius and 
myristic acid was significant but decreased in CRC. P. 
micra was significantly associated with linoleic acid and 
L-valine and both associations followed decreasing trend 
from NC, through CRA, to CRC. Among the 14 bacterial 
markers discriminating CRA from NC, Clostridium sym-
biosum was significantly correlated with CRC-enriched 
L-valine and L-homoserine and the strengths of both 

associations increased along CRC progression. Moreover, 
Synergistes sp. 3_1_syn1 was significantly associated with 
L-aspartic acid and L-tyrosine and both associations fol-
lowed a decreasing trend. The correlations between Por-
phyromonas gingivalis and gamma-aminobutyric acid as 
well as between Prevotella nigrescens and L-asparagine 
were also significant and decreased along CRC progres-
sion (Table S4).

We further investigated the interactions among CRC-
associated metabolites. The CRC-depleted metabolite 
butyric acid showed co-exclusive interactions with CRC-
enriched metabolites including pimelic acid, L-proline, 
L-methionine, and L-isoleucine. Moreover, there were 
strong co-occurrence relationships (correlation coeffi-
cient > 0.6 and p < 0.05) among CRC-enriched metabo-
lites, such as L-proline, L-aspartic acid, L-methionine, 
oxoglutaric acid, L-leucine, L-valine, gamma-aminobu-
tyric acid, L-isoleucine, L-phenylalanine and L-tyrosine 
supporting their potential role in CRC (Fig. S14). Taken 
together, these results suggest that there are significant 
associations among gut metabolites and bacteria, which 
are changed along the stages of colorectal carcinogenesis.

Discussion
Accumulating evidence reveals that the gut microbiota 
and their metabolites play important roles in colorectal 
tumorigenesis. Here, we profiled the fecal metabolites 
and microbiome of CRC patients and compared them 
with those of precancerous CRA patients and healthy 
subjects. We demonstrated that key metabolic pathways 
were disrupted along CRC pathogenesis. Integrated 
metabolomic and microbiome analysis showed that inter-
actions among CRC associated bacteria and metabolites 
are altered along the development of CRC. Importantly, 
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we demonstrate a promising potential of fecal metabo-
lites, in addition to bacteria, for non-invasive diagnosis of 
CRC.

Metabolomics has the potential for diagnosis of cancer 
including CRC [16, 33]. Our metabolic profiling revealed 
that several amino acids, namely L-alanine, glycine, 
L-proline, L-aspartic acid, L-valine, L-leucine, L-serine, 
myristic acid and phenyl lactic acid were enriched in 
CRC patients compared to CRA and NC groups of sub-
jects. Amino acids play important roles in several steps 
of molecular biosynthesis where they maintain redox bal-
ance and serve as energy sources [34]. Abundant amino 
acids have also been reported to be crucial in driving the 
proliferation of cancer cells [35]. Derivatives of amino 
acids can affect immune responses and regulate epi-
genetics. As such, they are reportedly associated with 
carcinogenesis [36]. Alanine, which was identified to be 
CRC-associated in this study, had been reported as an 
important survival signal in some gastrointestinal can-
cers. For example, stromal cells secrete alanine required 
by the TCA cycle in promoting pancreatic cancer growth 
[37]. Additionally, glycine can provide essential precur-
sors for the synthesis of nucleic acids, lipids and pro-
teins, which support growth of cancer cells [38]. It was 
also reported that proline biosynthesis was upregulated 
and associated with poor prognosis of cancer [39], sup-
porting our findings in this study. Interestingly, norvaline 
and myristic acid were found to show increasing trend 
from NC to CRA, and to CRC. Norvaline is an isomer of 
valine, which was implicated in the cytotoxic activity of 
macrophages against breast tumor cells [40]. Norvaline 
also reportedly promotes tissue regeneration and muscle 
growth partially by the inhibition of ribosomal protein 
S6 kinase beta-1 [41]. Myristic acid is a common unsat-
urated fatty acid positively associated with high choles-
terol levels in human and reported to increase the risk of 
breast cancer development [42]. The increasing trend of 
these two metabolites along CRC development hints at 
their potential roles in colorectal tumorigenesis and war-
rants further investigation. The only metabolite depleted 
in CRC patients in this study is butyric acid, a short chain 
fatty acid produced by fermentation of dietary fibers in 
the large bowel. It has been consistently demonstrated 
that butyric acid has a protective effect against colorectal 
cancer by inhibiting cell proliferation and inducing apop-
tosis [43], further supporting our discovery in this study.

Pathway enrichment analysis showed that aminoacyl-
tRNA biosynthesis, aromatic amino acids biosynthesis 
and BCAAs metabolisms were altered in CRC patients 
and adenoma patients compared with healthy subjects. 
Aminoacyl-tRNA biosynthesis needs aminoacyl-tRNA 
synthetases, an important class of enzymes with an evo-
lutionarily conserved mechanism for protein synthesis, 

some of which show positive associations with colorectal 
tumor development [44]. BCAAs including valine, leu-
cine and isoleucine were CRC-upregulated in this study 
compared to CRA and healthy subjects. They are essen-
tial nutrients for cancer growth and are used by tumors 
in various biosynthetic pathways and as sources of energy 
[45]. Moreover, gut microbes were observed to play 
active roles in the metabolism of aromatic amino acids 
including tyrosine, phenylalanine and tryptophan [46]. 
Modulation of the serum level of aromatic amino acids 
was shown to impair both intestinal permeability and 
systemic immunity in gnotobiotic mice [46]. This sug-
gests that dysregulation of aromatic amino acid biosyn-
thesis observed in this study may induce CRC through an 
impaired gut barrier. Also, tryptophan metabolism was 
reportedly implicated in therapy against gastrointestinal 
disorders through the host-gut microbiota interface [47]. 
Phenylalanine, found upregulated in CRC patients in this 
study, is an essential amino acid, which may contribute to 
proliferation and migration of cancer cells [48]. Our dis-
covery, supported by previous reports [16, 49] show that 
BCAAs, aromatic amino acids and phenylalanine metab-
olomic pathways may play important roles in colorectal 
carcinogenesis.

We further explored the potential use of gut microbi-
ome associated metabolites in non-invasive diagnosis of 
CRC. CRC was classified from NC and from CRA with 
20 and 13 metabolite markers, respectively, each with an 
AUC of about 0.80. Six bacterial species distinguished 
CRC from NC and CRA with an AUC of 0.91 and 0.89 
respectively. With the combination of metabolites and 
bacterial markers, a higher discriminating power demon-
strated by an AUC of 0.94 was achieved with 11 metabo-
lites and 6 bacterial species including F. nucleatum, P. 
anaerobius, P. micra, R. inulinivorans, E. corrodens and X. 
perforans. Interestingly, we observed that a combination 
of 4 metabolites namely alpha linoleic acid, L-homoser-
ine, phenyl lactic acid and phenyl acetic acid, and bacteria 
markers including F. nucleatum, P. anaerobius, P. micra, 
R. inulinivorans, E. corrodens and X. perforans classified 
CRA from NC, with an AUC of 0.7499 demonstrating the 
potential for early diagnosis of colorectal adenoma from 
healthy patients.

Moreover, our association analysis revealed that the 
relationships among metabolites and bacteria were sig-
nificantly different in CRC patients compared with NC 
and CRA subjects. While some associations followed 
increasing or decreasing trends along CRC progression, 
some were reversed from negative to positive and vice 
versa. Notable is the increased correlations between 
glycine, reported to support cancer cell growth [38], 
and P. anaerobius that drives CRC via the PI3K-Akt-
NF-κB signaling pathway [49], suggesting a potential 
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cooperation between glycine and P. anaerobius in the 
development of CRC. In addition, Clostridium sym-
biosum, which was found to increase in abundance 
from the colon tissues of healthy subjects to adenoma 
patients and finally to colonic cancer patients [50], was 
significantly correlated with CRC-enriched metabolites 
L-valine and L-homoserine, with increased strengths 
along CRC progression. Collectively, these results 
indicate significant interplays among gut metabo-
lites and bacteria, which might influence colorectal 
carcinogenesis.

The microbial related metabolites reported in this study 
were based on metabolomics data and chemical proper-
ties of human microbiome associated metabolites [20, 51]. 
Automated alkyl chloroformate derivatization method 
was used for the GC-TOF/MS detection [20]. The GC-MS 
response was poor for bile acids due to their strong polar-
ity. New methods have recently been developed for the 
specific detection of bile acids [52], and its association 
with CRC will be examined in the future study.

In conclusion, our integrated metabolites and microbi-
ome study demonstrates that gut metabolites along with the 
microbiome are altered along stages of colorectal carcino-
genesis and that the combination of metabolites and bacte-
rial taxa can increase the chance of non-invasive diagnosis 
of colorectal cancer and adenoma. This study underscores 
potential early-driver metabolites in CRC tumorigenesis 
and informs further experiments towards the development 
of better CRC diagnosis and prevention strategies.
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