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Abstract

mycobiomes using DNA metabarcoding.

were dominant during winter and spring.

Fungal community

Background: Children spend considerable time in daycare centers in parts of the world and are exposed to the
indoor micro- and mycobiomes of these facilities. The level of exposure to microorganisms varies within and
between buildings, depending on occupancy, climate, and season. In order to evaluate indoor air quality, and the
effect of usage and seasonality, we investigated the spatiotemporal variation in the indoor mycobiomes of two
daycare centers. We collected dust samples from different rooms throughout a year and analyzed their

Results: The fungal community composition in rooms with limited occupancy (auxiliary rooms) was similar to the
outdoor samples, and clearly different from the rooms with higher occupancy (main rooms). The main rooms had
higher abundance of Ascomycota, while the auxiliary rooms contained comparably more Basidiomycota. We
observed a strong seasonal pattern in the mycobiome composition, mainly structured by the outdoor climate. Most
markedly, basidiomycetes of the orders Agaricales and Polyporales, mainly reflecting typical outdoor fungi, were
more abundant during summer and fall. In contrast, ascomycetes of the orders Saccharomycetales and Capnodiales

Conclusions: Our findings provide clear evidences that the indoor mycobiomes in daycare centers are structured
by occupancy as well as outdoor seasonality. We conclude that the temporal variability should be accounted for in
indoor mycobiome studies and in the evaluation of indoor air quality of buildings.
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Background

Humans spend a significant amount of time indoors, in
private homes, but also in workplaces, schools, daycare
centers, and hospitals. We share these indoor environ-
ments with a variety of microorganisms, including
microscopic fungi that may affect our health in different
ways. In moist conditions, fungi can propagate and act
as sources of indoor pollutants leading to poor indoor
air quality. This has been associated with adverse health
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effects, such as allergies, asthma, and other respiratory
symptoms [1, 2]. The indoor microorganisms originate
from both indoor and outdoor sources and are poten-
tially structured by numerous factors, including building
features, building usage, the number and type of occu-
pants, and, not least, our behavior [3, 4]. The bacterial
indoor microbiome is known to be highly affected by the
occupants and their activities, and often directly related
to the human body [5, 6]. However, indoor fungi, which
can be referred to as the indoor mycobiome, are known
to be highly influenced by the outdoor air and climate
[5, 7, 8]. Previous studies at a large geographical scale in
the USA and Norway have demonstrated that the
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composition of the indoor mycobiomes significantly
correlates with variables of the outdoor environment
(i.e., climate, soil, and vegetation) [9, 10]. The most
important indoor sources of fungi include occupants,
pets, food, waste, plants, plumbing systems, mold
damages, heating, ventilation, and air conditioning
[11]. Different rooms in buildings may have different
mycobiome compositions due to different occupancy
and exposure to outdoor air [12, 13]. For example,
central rooms with higher activity, like the kitchen
and living room, promote dust resuspension in the air
that facilitates dispersal of fungi from occupants, their
activities, and outdoor sources. Similarly, floor dust of
high activity rooms contains higher levels of skin-
associated yeasts of the genera Rhodotorula, Candida,
Cryptococcus, Malassezia, and Trichosporon [14].

The indoor mycobiomes may differ not only in space
but also in time. Previous culture-based studies have
been reviewed by Nevalainen et al. [15], where they
found a general pattern of seasonal variation with lower
concentrations of airborne fungi in winter than in sum-
mer. This review included studies from different climatic
regions in countries like Australia [16], Denmark [17],
and Taiwan [18]. DNA-based studies have also reported
a clear seasonal variation of fungal richness, diversity,
and community composition in indoor environments, in
both dust and air samples [7, 19]. By analyzing dust
samples from a university housing facility in California,
Adams et al. [7] reported higher fungal richness in win-
ter than in summer. Likewise, Weikl et al. [19] showed
a drop of the fungal diversity in summer, based on floor
dust samples from 286 houses in Munich. This latter
observation was explained by the high prevalence of a
few dominant taxa during summer [19]. Hence, the
richness response to season varies in these previous
studies, which could be a result of the different climates
of the sampling localities of the studies. We expect
higher indoor fungal richness in the main outdoor fun-
gal growth season.

In boreal and temperate climatic regions, the fungal
spore diversity and composition in outdoor air are ex-
pected to vary significantly more throughout the year
because of distinct seasons. For example, Karlsson et al.
[20] reported the lowest richness of fungi and bacteria
for air samples collected during winter in two climatic
zones from Sweden. It can be expected that this vari-
ation influences the indoor mycobiome, due to an influx
of spores into buildings. Many fungi, especially basidio-
mycetes, produces fruit bodies during the fall leading to
a relatively higher spore abundance during this period
[21]. Plant pathogens, dominated by ascomycetes, may
have a wider temporal distribution since many spread
asexual spores during the entire plant growth season
[22]. Indoor fungi originating from indoor sources, here
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growing on available organic materials, can be expected
to have a year-round growth and sporulation connected
to human activity.

A particularly interesting environment to study the
spatiotemporal variation of the mycobiome is daycare
centers, where children, at least in parts of the world,
spend a considerable amount of time. For example, in
Norway, 92.2% of children between 1 and 5 years old are
in daycares. This particular built environment is charac-
terized by a high occupancy with high levels of activity,
and higher fungal concentrations have been detected
here compared to private homes [23]. Exploring the in-
door mycobiome and revealing the factors driving this
spatiotemporal variation are important not only to
understand the ecological context of indoor fungi but
also to recognize the effect that some fungal species may
have on children’s health. To what degree the myco-
biome associated with daycares affects the children’s
health is still unknown.

The overarching aim of this study is to reveal the in-
door mycobiomes’ spatiotemporal dynamics in daycare
centers in order to improve evaluations of air quality in
indoor air. We expect rooms with different occupancy to
differ in mycobiome composition (hypothesis 1; H1),
with frequently accessed rooms being dominated by in-
door fungi derived from the occupants and their activ-
ities. Given that part of the indoor mycobiome
originates from outdoor sources, we hypothesize that in-
door mycobiomes fluctuate with seasons in temperate
and boreal regions (H2). In seasons with optimal fungal
growth conditions outdoors, as in summer and fall, we
expect that a higher proportion of the indoor myco-
biome is derived from outdoor sources, with Basidiomy-
cota dominating during the fall season (H3). In contrast,
we expect that a higher proportion of the mycobiome
has an indoor origin with an increased amount of time
spent inside during winter and spring (H4). To test these
hypotheses, we collected indoor dust and outdoor air
samples from two daycare centers in Oslo, Norway, dur-
ing a year. We collected dust swab samples every second
week from different rooms and stores in the daycare
centers, as well as outdoor air samples every week. Fungi
present in the samples were surveyed through DNA
metabarcoding analyses of the rDNA ITS2 region.

Results

Mycobiome composition

The dust mycobiomes from the basement and loft (here-
after called the auxiliary rooms) seemed more similar to
the mycobiome obtained from the outside environment
than other indoor rooms (hereafter called the main
rooms): This could be observed in multivariate analyses
(Fig. 1) and from adonis tests (5.6% of the variation was
explained comparing outdoor vs auxiliary rooms, and
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Fig. 1 Fungal community composition (Nonmetric multidimensional
scaling, NMDS, ordination plot) of outdoors air samples and indoor
dust samples from different room types (main and auxiliary) of two
daycare centers in Oslo, Norway sampled throughout a full year.
Each point represents one sample, and the color separates the
samples from the outdoor and the auxiliary and main rooms
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7.9% of the variation was explained comparing outdoor
to main rooms; both p-value = 0.001, Supplementary
table 1). There was a distinct difference in mycobiome
composition between samples from the auxiliary rooms
and the main rooms (13.9% of the variation was ex-
plained when comparing main rooms vs auxiliary rooms,
p-value = 0.001, Supplementary table 1; Fig. 2a), the lat-
ter used more frequently by the staff and children.
Which daycare the samples were collected from ex-
plained little of the variation (only 3.3% of the variation
was explained when comparing the main rooms of the
two daycare centers; Table 1, p-value = 0.001). The com-
positional variation (beta-diversity) across samples was
more dispersed in the NMDS plot in some rooms, like
the kitchen and staff room (Fig. 2b).

We observed temporal variation in the indoor myco-
biome composition (month and season explained 19.6%
and 11.5% of the variation in all indoor samples, respect-
ively, p-value = 0.001; Table 1; Fig. 2c). Although there
was some overlap, the winter and spring samples were
more similar in fungal community composition, as were
the samples from summer and fall, explaining 6.2% of
the variation (p-value = 0.001, Table 1). The temporal
trend in mycobiome composition correlated with the
yearly variation in temperature and moisture, as could
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Fig. 2 Fungal community composition in indoor dust samples from two daycare centers in Oslo, Norway throughout a full year. a NMDS
ordination plot of indoor dust samples displaying their compositional variation in the mycobiome. The color differentiates the main rooms from
the auxiliary rooms. b NMDS ordination plot of main rooms, with colors differentiating between the rooms. ¢ NMDS ordination plot of the indoor
samples differentiated by season, including numerical variables with significant association (p < 0.05). d Variation partitioning analysis (VPA) for
the indoor dataset (including auxiliary and main rooms), summarizing the effects of four groups of variables: climate = temperature (PCA1) and
moisture (PCA2), time = month and season, space = daycare and room, occupants = number of adults, age of children and number of children
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Table 1 Adonis test results showing the influence of the variables on the composition of the dust mycobiome from the complete
indoor dataset (auxiliary and main rooms), and from the main rooms of two daycare centers sampled in Oslo, Norway throughout a

full year. Temperature and moisture are outdoor climatic variables

Variable Variable information Auxiliary and main rooms Main rooms
R squared p-value R squared p-value

Room Categorical (9 rooms: 7 main, 2 auxiliary) 0218 0.001 0.092 0.001
Month Categorical (12 months) 0.196 0.001 0.233 0.001
Children age Categorical (1-6 years) 0.133 0.001 0.056 0.001
Season Categorical (4 seasons) 0.115 0.001 0.124 0.001
Nr of adults Categorical (4-10 adults) 0114 0.001 0.032 0.001
Nr of children Categorical (10-36 children) 0.097 0.001 0.027 0.001
Temperature Continuous 0.071 0.001 0.082 0.001
Daycare Categorical (2 daycares) 0.07 0.001 0.033 0.001
Season Categorical (winter/spring vs summer/fall) 0.062 0.001 0.070 0.001
Dust coverage Categorical (low, medium, high) 0.039 0.001 0.008 0.029
Moisture Continuous 0.02 0.001 0.022 0.001

be seen from the vectors fitted in Fig. 2c (and further
supported by adonis test, p-value = 0.001, Table 1).

A variation partitioning analysis of the indoor dust
mycobiome (Fig. 2d) revealed that 37% of the compos-
itional variation could be ascribed to assessed factors, in-
cluding outdoor climate, time (ie, the biweekly
sampling point), space, and occupant characteristics.
Most of the explained variation was accounted for by
the combined effects of occupants and room type (19%).
These two factors are correlated, as the activity of both
staff and children are considerably lower in the auxiliary
rooms than in the main rooms. Nine percent of the vari-
ation was accounted for by time alone, likely reflecting
other unmeasured environmental factors changing with
time, while 8% was accounted for by the combined effect
of time and climate, which again are tightly coupled.

Taxonomic variation

Overall, Ascomycota was more prominent in the main
room while Basidiomycota was far more abundant in
samples from the auxiliary rooms (Fig. 3a). The compos-
ition of reads from both these two phyla was signifi-
cantly different in the main vs auxiliary rooms (as
observed in ANCOM analyses; Supplementary table 2).
This was also the case for Mortierellomycota. Asco-
mycete yeasts affiliated to Saccharomycetales were more
abundant in the main rooms, while basidiomycetes from
the orders Agaricales and Polyporales were dominating
the samples from auxiliary rooms (as seen from the most
abundant OTUs; Fig. 3b). We observed a clear temporal
trend in the composition of fungal taxonomic groups
(displayed at order level in Fig. 3a, and tested with
ANCOM across months in Supplementary table 3).
Most markedly, the proportion of basidiomycete se-
quences from the orders Agaricales, Polyporales and

Hymenochaetales, mainly reflecting outdoor fungi, were
higher during the growth season (May-November) than
in winter (Fig. 3a). This pattern was significant across
months for the main rooms (Supplementary table 3), but
a similar trend was observed in auxiliary rooms. Only
Pucciniales had a significant temporal trend in the auxil-
iary rooms (Supplementary table 3). The Ascomycota
was proportionally more abundant in colder periods,
with a significant monthly trend in the main rooms
(Fig. 3a; Supplementary table 3). The order Eurotiales,
including fungal genera with allergenic potentials, such
as Penicillium and Aspergillus, was relatively more
prevalent in the main rooms in the colder season (Fig. 3a,
Supplementary table 3). Similar trends were observed in
the OTU ordination plot (Fig. 3b), where the dominant
Ascomycota OTUs are associated with the main rooms,
while the Basidiomycota OTUs with the auxiliary rooms.
Further, the main rooms are dominated by OTUs of
Saccharomycetales, Mucorales, Malasseziales, and Filo-
basidiales, where Saccharomycetales and Malasseziales
also have a significant monthly seasonality (as seen from
the ANCOM analyses, Supplementary table 3).

Indicator species analyses, assessing which fungal
OTUs followed a significant temporal trend on a
monthly basis, revealed that numerous OTUs in the
already mentioned orders of Agaricales, Polyporales and
Hymenochaetales increased considerably during their ex-
pected fruiting season, independently of space (ie.,
room) (Fig. 3c). The significance of each indicator OTU
can be found in Supplementary table 4 (auxiliary rooms)
and 5 (main rooms).

Richness and evenness trends
The main and auxiliary rooms had a comparable fungal
richness that largely followed a similar temporal trend,
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Fig. 3 Temporal taxonomic variation in indoor dust samples from two daycare centers in Oslo, Norway sampled throughout a full year. a Relative
abundance of the main fungal orders. b NMDS ordination plot of the 300 most abundant fungal OTUs. Point size indicates relative abundance
and colors indicate their taxonomical order. Colors in red = orders belonging to Basidiomycota, blue = orders belonging to Ascomycota, yellow =
Mucorales, and green = OTUs belonging to other orders. The ellipses represent the main rooms and the auxiliary rooms, as shown in Fig. 2a. ¢
Number of indicator OTUs detected in the indicator species analyses for each month, as well as their taxonomic affiliation at the order level (only
OTUs present in at least 3 samples per month were included). Seasons: winter from December to February, spring from March to May, summer

with higher richness in the summer and fall (June-No-
vember) (Fig. 4a). The richness followed the variation in
annual temperature. In winter, the richness deviated
more from the moisture gradients. The evenness
followed a similar trend as the richness (Fig. S3).

A random forest model, which was used to assess the
contribution of each factor in the observed richness pat-
terns (Fig. 4b), revealed that month and season (both en-
closing various environmental factors), as well as,
temperature and moisture, accounted for much of the
variation in richness in both the main and the auxiliary
rooms datasets. In addition, the factor room was highly
important in the main room dataset, where the presence
of children and adults also contributes to the richness.

Discussion

In this study, we observed that the indoor mycobiomes
of two daycare centers were strongly structured by room
type and occupancy (hypothesis H1) and, further, that
the mycobiomes changed systematically throughout the
seasons (hypothesis H2). No marked difference in myco-
biome composition was observed between the two stud-
ied daycare centers, indicating a common pattern of
indoor mycobiomes in daycare centers from the same
local geographic region.

Spatial distribution
We observed a clear separation in mycobiome compos-
ition of the main rooms and auxiliary rooms, which
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likely can be explained by the number of people acces-
sing and using the rooms. These results support our hy-
pothesis (H1) and further suggest that occupancy is an
important factor shaping the indoor mycobiome, in
addition to the outdoor air. The outdoor samples (air
sampling) were collected as point samples in one day,
while the auxiliary room samples represent a collection
of dust accumulated within two weeks. These different
sampling methods may influence the recovered myco-
biomes. Nevertheless, the mycobiome composition of
the auxiliary rooms and the outdoor mycobiome were
highly similar, which supports that occupancy strongly
affects the indoor mycobiome. Previous studies of indoor
environments suggest that the indoor mycobiomes are
highly affected by outdoor air [7, 9, 10, 17, 24]. Most of
these studies have not accounted for indoor environments
with different levels of activity. However, in a recent study
in private homes in Norway, we demonstrated that the
number of inhabitants affected the indoor mycobiome
composition [10].

The highest fungal richness was found in the main
rooms. This may be explained that the indoor air of the
main rooms includes outdoor taxa, in addition to the
more specific indoor fungi derived from the occupants
and their activities. Higher fungal richness in indoor en-
vironments than in outdoor air has also been found in
private houses and schools [5, 10, 14]. It should be
noted, though, that richness analyses based on DNA-
metabarcoding are vulnerable to various biases. For ex-
ample, if some dominant species are present, they may
mask the remaining richness during the PCR process,
since their DNA templates may outcompete the rarer
species during PCR amplification. However, the evenness
follows largely the same trend for both types of rooms
and is therefore probably not causing significant biases
for the richness analyses.

OTUs of the phylum Basidiomycota were overrepre-
sented in the auxiliary rooms, whereas there were rela-
tively more OTUs of Ascomycota in the main rooms.
Likewise, previous studies have demonstrated a predom-
inance of Ascomycota in indoor samples, while Basidio-
mycota prevails in outdoor samples [25]. As the auxiliary
rooms were more similar to the outdoor air, we expected
basidiomycetes to be more prevalent in these rooms, es-
pecially the mushroom-forming Agaricales and Polypor-
ales. In the main rooms, the high abundance of
ascomycetes can be explained by their high tolerance to-
wards environmental stressors, such as low water avail-
ability, a typical condition in indoor environments. The
orders Saccharomycetales and Capnodiales were the
most abundant ascomycetes. Saccharomycetales are
yeasts including the well-known genera Saccharomyces,
associated with foods, and the potential human pathogen
Candida. Capnodiales, with the widespread genus Cla-
dosporium, includes both plant and human pathogens
[26]. In addition, the basidiomycete orders Malasseziales
and Filobasidiales, together with the order Mucorales
were abundant in the main rooms. These orders include
yeasts and molds and were also more abundant in in-
door mycobiomes than outdoor air in our previous study
of private homes [10].

Seasonality

We observed a clear seasonal pattern in the indoor
mycobiomes, supporting our hypothesis H2. Collection
month was best able to explain the variation in fungal
richness in all rooms. This seasonal pattern is further
supported by the evenness and richness analyses of time
series, which follows the shift of temperature and mois-
ture throughout the year. Our observed patterns mirror
those found in seasonal studies on outdoor mycobiomes.
For example, in northern Sweden, the outdoor fungal
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communities shifted throughout the season [20]. Since
the outdoor fungal community has a strong impact on
indoor mycobiomes, it is expected that seasonal changes
in the outdoor environment also affect which fungi
that occurs indoors. During the spring, summer, and fall,
with temperatures above zero, fungal activity and sporu-
lation are clearly linked to the level of precipitation (i.e.,
rainfall). However, during winter, the precipitation mani-
fests largely as snow, which has less effect on the fungal
communities at sub-zero temperatures. It has been sug-
gested that during the winter, when the ground is frozen
and covered by snow, the impact of the outdoor fungal
community on the indoor mycobiome is limited [27].
This can explain the drop of richness during the winter
observed in our study.

Although our results demonstrate that dust sampling
can be used to reveal the seasonal variation in the indoor
mycobiome, there are methodological constraints that
should be taken into consideration when analyzing sam-
ples with a relatively small amount of DNA. All samples
were treated equally in the laboratory; nevertheless,
some steps could represent sources of heterogeneity in
the dataset, e.g., variability in DNA extraction efficiency
among organisms, primer bias to a different fungal taxo-
nomic group, PCR bias, and sequencing errors, which
might affect the fungal community. Some of the rooms
with limited occupancy, such as the auxiliary rooms and
the staff room, had a considerably lower amount of dust
and potentially lower amount of DNA. Likewise, the out-
door air samples collected during winter contained a
lower amount of DNA, most likely due to a considerably
lower number of fungal spores in the air compared to
other seasons.

We observed higher abundances of basidiomycetes
during summer and fall in all rooms, with a predomin-
ance of Agaricomycetes, confirming our hypothesis H3.
Agaricomycetes cover the mushroom-forming species
that typically disperse spores during the summer and fall
in high-latitude ecosystems. In addition, more indicator
species, showing a distinct temporal pattern, were found
in these two seasons, in particular from Agaricales and
Polyporales. Thus, high outdoor spore production of ba-
sidiomycetes during the summer and fall affects the in-
door mycobiome. A high outdoor aerial abundance of
basidiomycetes during summer and fall was also ob-
served in northern Sweden [20]. However, our findings
are rather opposite to what has been found in seasonal
studies in Munich (Germany) and California [7, 19].
Weikl and colleagues explained their observed decline in
diversity during the summer in houses in Munich with a
few highly abundant OTUs, and not necessarily of lower
diversity [19]. Further, in California, the summers are
warm and dry, and the mushroom-forming species of
the Agaricomycetes often fruit during late fall and winter.
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Thus, all studies may show the same pattern of higher
richness of indoor mycobiome during the outdoor
sporulation period of basidiomycetes.

The ascomycetes, especially prevalent in indoor condi-
tions, were proportionally more abundant indoor during
winter and spring compared to summer and fall. This
confirms hypothesis H4. At sub-zero temperatures dur-
ing winter and spring, fungal growth and sporulation
outdoor are reduced in the study area (Oslo, Norway),
which will limit the input of basidiomycetes to the in-
door environment. Instead, ascomycetes of indoor origin
will be more prevalent during this time period. Similar
findings were reported in a seasonal study of indoor
mycobiomes of four office complexes, where ascomycete
molds and basidiomycete yeasts were more common in
the spring and winter [24]. In contrast, in another study
monitoring airborne fungi in four daycare centers over
12 months through culturing, viable counts of major in-
door fungi were significantly lower in the winter [28].
Overall, they found the ascomycetes Cladosporium,
Penicillium, Alternaria, and Aspergillus to be the most
dominating genera. These genera, considered to be some
of the most allergenic fungi normally present indoors
and outdoors, have also been reported as abundant in
other studies [29, 30]. De Ana et al. investigated the sea-
sonal distribution of these species and found that the
highest presence of Aspergillus, Cladosporium, and Peni-
cillium in the indoor environment was registered in the
fall, whereas Alternaria was more frequent in the sum-
mer [30]. In our study, the order Eurotiales, including
Penicillium and Aspergillus, was relatively more preva-
lent in the main rooms in the colder season. In addition,
the genera Saccharomyces, Cladosporium, and Didy-
mella, often encountered in indoor environments in
other studies [29], were also especially prevalent in the
winter. Numerous indoor ascomycetes are known to
cause allergies and disease in humans, and it is a con-
cern if these species have a higher prevalence during the
winter when the children spend more time inside. In
addition, in a previous study of school environments
[14], they showed that occupancy contributed more to
the allergenic fungal populations in indoor air than out-
door fungi. Understanding this spatiotemporal variation
of the indoor mycobiome is important as the time spent
inside during the different seasons varies and will reflect
how the children are affected by these fungal species.

Conclusions

In conclusion, our study demonstrates clear differences
in the dust mycobiome composition in daycare centers
between rooms with different occupancy. The more hu-
man activity, the more the indoor mycobiome differs
from the outdoor mycobiome composition. To our
knowledge, this is the first study that monitors the same
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rooms and buildings continuously over a full year using
a DNA metabarcoding approach. Thus, our results dem-
onstrate how the mycobiome composition follows a
strong seasonal trend, mirroring outdoor weather condi-
tions. Knowledge about the seasonal trends will have im-
portant implications for monitoring and evaluation of
indoor air quality.

Methods

Sampling

Dust samples from the daycare centers were collected
with floq swabs (Copan Italia spa, Brescia, Italy) and ad-
hesive tapes (Mycotape 2, Mycoteam AS, Oslo, Norway)
from 30 x 40 cm? glass plates located 1-2 m above floor
level. The swab collected dust from an area of 30 x 30
cm?, whereas the tapes sampled dust from 3.8 x 7.5 cm?
from the remaining area to calculate the percentage of
dust coverage. These samples were collected once for
every sampling date. The plates were placed in different
rooms and stores in the daycares. Five rooms were sam-
pled in daycare A, and four rooms in daycare B. The
plates were sterilized with 85% ethanol after each har-
vesting, every second week throughout a year. In
addition, outdoor air samples were collected every week
throughout a year by processing approximately 1800 L
air through a 25-mm cassette with a 0.8-pm pore diam-
eter mixed cellulose ester filter (Zefon international,
Ocala, FL, USA) by using a Zefon Diaphragm Sampling
Pump (Zefon international, Ocala, FL, USA). The time
used to obtain the correct volume air varied between 3
and 6 h. The 294 swab and filter samples were stored at
— 80 °C until DNA extraction, whereas the adhesive
tapes were directly scanned for dust coverage using
Epson Perfection V850 Pro (Seiko Epson Corporation,
Nagano, Japan). The percentage of dust coverage was
calculated with the Olympus Stream v 1.9 software.

DNA extraction and fungal metabarcoding

DNA from swabs and filter samples were extracted using
the E.ZZN.A Soil DNA kit (Omega Bio-tek, Norcross,
GA, USA). Nine DNA extraction controls were included,
eight starting from clean swabs, and one starting from a
clean filter. The swabs and filters were placed in dis-
ruptor tubes using sterilized scissors or forceps, respect-
ively, and 800 pL of SLX-Mlus Buffer was added. The
samples were homogenized for 2 x 1 min at 30 Hz using
TissueLyser (Qiagen, Hilden, Germany) and stored at -
20 °C until further processing. The samples were thawed
at 70 °C, following an incubation of 10 min, and homog-
enized twice for 1 min at 30 Hz using a TissueLyser.
The samples were cooled on ice before 600 pL of
chloroform was added. Then, the samples were vortexed
and centrifuged at 13,000 rpm for 5 min at RT. The
aqueous phase was transferred to a new 1.5-mL tube
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and an equal volume of XP1 Buffer was added before
vortexing. The samples were then added to the HiBind
DNA Mini Column and further processed by following
the manufacturer’s guidelines. The extracted genomic
DNA was eluted in 50 pL of elution buffer.

The ITS2 region was targeted by using the forward
primer ITS4 (5'-xCTCCGCTTATTGATATG [31]) and
the reverse primer gITS7 (5'-xGTGARTCATC-
GARTCTTTG [32]). The sample barcodes x ranged
from 6 to 9 base pairs. The PCR reaction contained 2 pl
of DNA template and 23 pl of master mix; 14.6 pl of
Milli-Q water, 2.5 pl of 10x Gold buffer, 0.2 pl of ANTPs
(25 nM), 1.5 pl of reverse and forward primers (10 uM),
2.5 pl of MgCl2 (50 mM), 1.0 pl of BSA (20 mg/ml), and
0.2 ul of AmpliTaq Gold polymerase (5 U/ul, Applied
Biosystems, Thermo Fisher Scientific). For samples with
low DNA concentration (weak gel bands), 5 ul of DNA
template, and 20 pl of master mix were used. The DNA
was amplified by initial denaturation at 95 °C for 5 min,
followed by 32 cycles of denaturation at 95 °C for 30 s,
annealing at 55 °C for 30 s, and elongation at 72 °C for 1
min. A final elongation step was included at 72 °C for 10
min. PCR products were normalized by using the
SequalPrep Normalization Plate Kit (Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA) and eluted in 20
uL of elution buffer.

The resulting 345 PCR products, including technical
replicates, DNA extraction controls (starting from clean
swabs and filter), negative PCR controls, and mock com-
munity (1 ng/pL equimolar DNA concentration from an
artificial mix of Mycena belliarum, Pycnoporellus fulgens,
Serpula similis, and Pseudoinonotus dryadeus), were
processed in a total of four metabarcoding libraries. The
technical replicates included DNA from 12 dust samples
and were included in each library. The 96 uniquely bar-
coded PCR products within each library were pooled,
and the pools were concentrated and purified using
Agencourt AMPure XP magnetic beads (Beckman
Coulter, CA, USA). The quality of the purified pools was
controlled using Qubit (Invitrogen, Thermo Fisher Sci-
entific, Waltham, MA, USA). The four libraries were
barcoded with Illumina adapters, spiked with PhiX, and
sequenced in two Illumina MiSeq (Illumina, San Diego,
CA, USA) runs with 2 x 250 bp paired-end reads at Fas-
teris SA (Plan-les-Ouates, Switzerland). The resulting
metabarcoding dataset comprised 41,126,514 sequences.

Bioinformatics

The raw forward and reverse sequences, were demulti-
plexed independently on a sample basis using CUTA-
DAPT v 2.7 [33], allowing no mismatches between
barcode tags and sequence primer, and sequences
shorter than 100 bp were discarded. DADA2 [34] was
used to filter low-quality sequences, with a maximum
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expected error of 2.5, and to correct read errors based
on a machine learning model built from the sequence
data. We then merged the error-corrected forward and
reverse sequences using a minimum overlap of 5 bp.
Chimeras were filtered out using the bimera algorithm,
with default parameters implemented in DADA2 v.12.
The resulting 28,346 amplicon sequence variants were
further clustered into operational taxonomic units
(OTUs) using VSEARCH [35] at 97% similarity. LULU
[36] was used with default settings to correct for poten-
tial OTU over-splitting. Taxonomy was assigned using
BLAST [37] to the final OTU table using the UNITE
database [38]. All the negative PCR controls and most of
the negative DNA controls were automatically removed
during the bioinformatics because the number of se-
quences was too low. The OTUs of the remaining con-
trols were inspected to assess any contamination issues.
Due to the low number of reads in these samples, the
OTUs detected in the controls were not removed from
other samples in the dataset. The final dataset (excluding
controls and replicates) contained 6800 OTUs account-
ing for 18,694,392 reads from 292 retained samples. The
number of reads per sample varied from 470 (from out-
door air during the winter) to 257,599 with a mean value
of 65,365. The number of OTUs per sample varied from
3 to 1259.

Environmental variables

Climatic variables from the outdoor environment were
retrieved from The Norwegian Climate and Service Cen-
ter (https://klimaservicesenter.no/, accessed March 11th,
2020), recorded by the meteorological station at Blin-
dern, Oslo, Norway. The daycare centers are located
within a 500-m radius to the meteorological station. The
climatic variables included: mean air temperature, mean
dew point temperature, max air temperature, min air
temperature, mean cloud area fraction, mean water
vapor partial pressure, mean surface air pressure, mean
wind speed, max relative humidity, mean relative humid-
ity, min relative humidity, humidity mixing ratio, specific
humidity, snow coverage, surface snow thickness,
amount of precipitation and duration of sunshine. The
variables were downloaded for each week throughout
the year, and averages for every 2 weeks prior to sam-
pling were calculated and used for seasonal analyses.
These variables were studied with principal component
analyses (Fig. S1). The results indicated that the first and
second dimensions explained a total of 75.6% of the vari-
ance. The first dimension was clearly correlated with
variables associated with temperature while the second
dimension was associated with variables related to hu-
midity and moisture. The coordinates of dimensions 1
and 2 of the PCA analyses were designated as outdoor
temperature and moisture, respectively, and used as a
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surrogate for all the abovementioned climatic variables
in downstream analyses. Season was also included as a
variable, with related data averaged accordingly. The fol-
lowing months were grouped in four different seasons:
winter from December to February, spring from March
to May, summer from June to August, and fall from Sep-
tember to November. In addition, the number of chil-
dren, age of children, and the number of working adults
(staff) having access to each daycare center and room
between two sampling dates were recorded and included
as variables. Continuous variables were scaled using the
scale function in R.

Statistical analyses

All statistical analyses were performed in R version 3.6.2
[39] through RStudio (version 1.3.959) unless stated
otherwise. We first confirmed the similarity of the tech-
nical replicates by nonmetric multidimensional scaling
(NMDS) using the metaMDS function from the vegan
package version 2.4-2 [40] and visualized by ggplot2 [41]
(Fig. S2). Then, the complete dataset was rarefied to 1
649 sequences sample-wise, using the function rrarefy
(vegan). This led to three samples being discarded for
downstream statistical analyses, because of shallow se-
quencing depth in these samples. We then transformed
the abundance of OTU per sample table (OTU table)
into Hellinger abundance, using the decostand function
(vegan). The community structure was analyzed using
NMDS as described above. A stable solution, for NMDS,
was searched with a maximum number of 200 random
starts and iterations with the convergence criteria set to
stress and/or scale factor of the gradient below 1 x 10e
-7, using a Bray-Curtis dissimilarity distance. The com-
munity structure was visualized using ggplot2 [41] with
the axes transformed into half-change units.

The results showed a clear distinction between out-
door samples and indoor samples, with the exception of
auxiliary rooms (the indoor samples belonging to rooms
with a very low frequency of occupancy), which showed
very similar patterns to the outdoor samples. Consider-
ing that the outdoor samples were collected in a differ-
ent way and time-frame and that outdoor air seasonality
was not the main focus of our hypotheses, we decided to
focus on the indoor space. Since the indoor samples
showed clear segregation between auxiliary rooms and
the main rooms, we decided to analyze the indoor data
in two separate sets; auxiliary and main rooms together,
and only the main rooms. For both datasets, we rarefied
all the samples to the sample with the lowest number
reads in the respective dataset, 2657 sequences for the
auxiliary and main rooms dataset and 3381 sequences in
the main rooms dataset. We used the same procedure
described above to analyze and visualize community
composition. The function envfit (vegan) was used to
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regress the environmental variables onto the Bray-Curtis
dissimilarity matrix. The significance of the regression
was assessed using 999 permutations. The variables with
significant effect were overlaid as vectors in the ordin-
ation (NMDS) graphic with arrows pointing in the in-
creasing direction. In addition, we used the function
adonis2 (vegan) with 999 permutations to perform a per-
mutational multivariate analysis of variance to assess the
contribution of each environmental variable in explain-
ing variability in the community structure. The Adonis
test was also used on the complete dataset to assess the
difference between the outdoor, auxiliary, and main
rooms (Supplementary table 1). Additionally, we per-
formed variation partitioning analysis using varpart
(vegan) to assess the interaction and total variability ex-
plained by the following groups of variables: climate
(temperature and moisture), time (month and season),
space (daycare and room), and occupants (number of
adults and children, and age of children).

The taxonomic compositional summary was achieved
by summing all the rarefied reads, at the order level,
within a sample and averaged across the time period.
Richness, Shannon-Weaver and evenness indices were de-

termined using the functions, specnumber, diversity

Shannon—Weaver
(Vegan)’ and log(richness)

Shannon-Weaver were strongly correlated; we therefore
retained richness as a representative of alpha diversity. To
estimate the effects of temperature, moisture, season,
month, room, dust coverage, number of children and
adults, and children age on richness, we conducted linear
models followed by analyses of variance as implemented
by Im and anova functions in R [39]. Random forest
models with permutations, as implemented in the R pack-
age rfPermute [42], with all predictor variables randomly
sampled at each tree node, 500 trees and 999 permuta-
tions were applied to determine the significance and im-
portance of each variable. In all models, the squared root
of richness was used to normalize the response variable.

Analysis of composition of microbiomes (ANCOM)
was performed to assess phylum level read abundance
significance between the main room and auxiliary
rooms. In addition, the phylum- and order-level read
abundance significance was assessed across months for
both main rooms and auxiliary rooms, independently
(Supplementary table 2-3) [43, 44]. The method was im-
plemented in R following the authors’ guidelines
(https://github.com/FrederickHuangLin/ANCOM).  In
brief, rarefied sequence data was summed per sample
and phylum or order level, and significance was assumed
with alpha = 0.05 using a false discovery rate correction
and a cutoff value of 0.8.

We further identified indicator OTUs on a monthly
basis for indicator species analyses using the function

, respectively. Richness and
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multipatt in the R package indicspecies [45]. We then
retained only OTUs with a p < 0.05 and present in at
least three samples per month. The results were summa-
rized by the number of OTUs per order per month. The
full lists of indicator OTUs of the auxiliary rooms and
the main rooms are provided in Supplementary table 4
and 5, respectively.
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