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Abstract

Background: Peatlands are expected to experience sustained yet fluctuating higher temperatures due to climate
change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting evidence for viral
contributions to these processes in peatlands underlain with permafrost, little is known about viruses in other
peatlands. More generally, soil viral biogeography and its potential drivers are poorly understood at both local and
global scales. Here, 87 metagenomes and five viral size-fraction metagenomes (viromes) from a boreal peatland in
northern Minnesota (the SPRUCE whole-ecosystem warming experiment and surrounding bog) were analyzed for
dsDNA viral community ecological patterns, and the recovered viral populations (vOTUs) were compared with our
curated PIGEON database of 266,125 vOTUs from diverse ecosystems.

Results: Within the SPRUCE experiment, viral community composition was significantly correlated with peat depth,
water content, and carbon chemistry, including CH4 and CO2 concentrations, but not with temperature during the
first 2 years of warming treatments. Peat vOTUs with aquatic-like signatures (shared predicted protein content with
marine and/or freshwater vOTUs) were significantly enriched in more waterlogged surface peat depths. Predicted
host ranges for SPRUCE vOTUs were relatively narrow, generally within a single bacterial genus. Of the 4326 SPRUCE
vOTUs, 164 were previously detected in other soils, mostly peatlands. None of the previously identified 202,371
marine and freshwater vOTUs in our PIGEON database were detected in SPRUCE peat, but 0.4% of 80,714 viral
clusters (VCs, grouped by predicted protein content) were shared between soil and aquatic environments. On a
per-sample basis, vOTU recovery was 32 times higher from viromes compared with total metagenomes.

© The Author(s). 2021, corrected publication 2022. Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the article's Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.
0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: jbemerson@ucdavis.edu
1Department of Plant Pathology, University of California, Davis, Davis, CA,
USA
8Genome Center, University of California, Davis, Davis, CA, USA
Full list of author information is available at the end of the article

ter Horst et al. Microbiome           (2021) 9:233 
https://doi.org/10.1186/s40168-021-01156-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-021-01156-0&domain=pdf
http://orcid.org/0000-0001-8722-7037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jbemerson@ucdavis.edu


Conclusions: Results suggest strong viral “species” boundaries between terrestrial and aquatic ecosystems and to
some extent between peat and other soils, with differences less pronounced at higher taxonomic levels. The
significant enrichment of aquatic-like vOTUs in more waterlogged peat suggests that viruses may also exhibit niche
partitioning on more local scales. These patterns are presumably driven in part by host ecology, consistent with the
predicted narrow host ranges. Although more samples and increased sequencing depth improved vOTU recovery
from total metagenomes, the substantially higher per-sample vOTU recovery after viral particle enrichment
highlights the utility of soil viromics.
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Background
Peatlands store approximately one third of the world’s
soil carbon (C) and have a significant role in the global
C cycle [1]. Microbial activity in peatlands plays a key
role in soil C and nutrient cycling, including soil organic
C mineralization to the greenhouse gases, methane
(CH4), and carbon dioxide (CO2) [2–5]. Given the abun-
dance of viruses in soil (107 to 1010 per gram of soil [6–
9]) and evidence for viral impacts on microbial ecology
and biogeochemistry in other ecosystems [10–12], it is
likely that viral infection of soil microorganisms influ-
ences the biogeochemical and C cycling processes of
their hosts [13–15]. In marine ecosystems, viruses are
estimated to lyse 20–40% of ocean microbial cells daily,
impacting global ocean food webs and the marine C
cycle [16–18], and viral contributions to terrestrial eco-
systems are presumed to be similarly important but are
less well understood [6, 13, 14, 19–21].
Our current understanding of soil viral ecology

stems from pioneering studies on viral abundance,
morphology, amplicon sequencing, and lysogeny of
bacteria [22–27], along with early viral size-fraction
metagenomic (viromic) investigations [28–30]. More
recently, total soil and wetland metagenomic datasets
have been mined for viral sequences [10, 15, 31], re-
vealing thousands of previously unknown viral popu-
lations (vOTUs) and suggesting habitat specificity for
some of these viruses. Metatranscriptomic data min-
ing has recently been used to explore RNA viral com-
munities, revealing differences in bulk, rhizosphere,
and detritusphere (plant litter-influenced) soil com-
partments [32], along with potential viral contribu-
tions to the ecology of the Sphagnum moss
microbiome [33]. In addition to mining omic data for
viral signatures, viromics (the laboratory enrichment
of viral particles prior to DNA extraction and metage-
nomic sequencing) has recently been paired with
high-throughput sequencing to investigate viral com-
munities in soil [13, 15, 34, 35]. Although we now
have an array of laboratory and bioinformatics
methods for soil viral ecology [7, 15, 23, 31, 34, 36–
41], we lack a thorough comparative understanding of
these approaches and best practices.

Thawing permafrost peatlands have been the focus of
several recent studies of viral diversity and virus–host
dynamics, in order to better understand the ecological
patterns underlying C emissions from these climate-
vulnerable ecosystems [13, 15, 42–44]. Thawing perma-
frost peat has been characterized by relatively high viral
diversity (thousands of vOTUs), including viruses pre-
dicted to infect methanogens and methanotrophs re-
sponsible for CH4 cycling [15]. Evidence for more direct
viral impacts on ecosystem C cycling has been revealed
by the recovery of putative viral auxiliary metabolic
genes (AMGs) [13, 15], specifically, virus-encoded glyco-
syl hydrolases capable of degrading complex C into sim-
ple sugars [15]. Although we are gaining insights into
soil viral ecology within specific ecosystems, our under-
standing of global soil viral biogeographical patterns is
limited and is thus far derived predominantly from
cultivation-based efforts [44, 45].
In this study, we examined peat viral communities at

the southern edge of the boreal zone in the Marcell Ex-
perimental Forest (MEF) in Minnesota, USA [46, 47].
MEF has been the site of numerous studies on green-
house gas emissions, C sequestration, hydrology, biogeo-
chemistry, and vegetation [48–53]. To investigate the
response of peatlands to increasing temperature and at-
mospheric CO2 concentrations, the US Department of
Energy (DOE) established the Spruce and Peatland Re-
sponses Under Changing Environments (SPRUCE) ex-
periment in MEF. This experiment is within an intact
peat bog ecosystem, consisting of Picea mariana (black
spruce) and Larix laricina (larch) trees, an ericaceous
shrub layer, and a predominant cover of Sphagnum with
minor contributions of other mosses [46, 47, 54].
SPRUCE researchers are studying whole-ecosystem re-
sponses to temperature and elevated CO2 (eCO2), in-
cluding the responses of plants, above- and belowground
microbial communities, and whole-ecosystem processes,
such as greenhouse gas emissions [1, 46, 47, 55–59], but
as yet, the peat viral communities in this experiment re-
main unexplored.
Here, we used a combination of total soil metage-

nomics and viromics to (1) investigate peat viral com-
munity composition and its potential drivers in the
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SPRUCE experiment, (2) place the recovered vOTUs in
biogeographical and ecosystem context, and (3) compare
the two approaches (total metagenomics and viromics)
for recovering soil viral population sequences. We are
also contributing a new database for reference-based
viral genome recovery: the Phages and Integrated Ge-
nomes Encapsidated Or Not (PIGEON) database of
266,125 vOTU sequences from diverse ecosystems.

Results and discussion
Dataset overview and peat viral population (vOTU)
recovery
To improve our understanding of peat viral diversity, we
leveraged 82 peat metagenomes from cores collected
from the SPRUCE experiment in northern Minnesota,
USA in 2015 and 2016, along with five paired viromes
and metagenomes that we collected along a transect out-
side the experimental plots from the same bog in 2018
at near-surface (top 10 cm) depths. In the field experi-
ment, deep peat heating (DPH) and whole-ecosystem
warming (WEW) treatments heated the peat (to a depth
of 2 m) and air inside 8 chambered enclosures (two per
treatment) to target temperatures of + 2.25, + 4.5, +
6.75, and + 9 °C above ambient temperature [1, 47, 54,
60]. There were also two ambient experimental cham-
bers and two unchambered ambient plots (Table S1).
Peat samples for metagenomics were collected from four
depths (10–20 cm, 40–50 cm, 100–125 cm, and 150–
175 cm) per year in each chamber and unchambered
ambient plot (38 and 44 total soil metagenomes were
successfully sequenced in 2015 and 2016, respectively),
with approximate sequencing depths of 6 Gbp per meta-
genome in 2015 and 15 Gbp in 2016. From each of the
five transect peat samples (Supplementary Figure 1), a
viral size-fraction metagenome (virome) and total soil
metagenome were sequenced, each to a depth of ap-
proximately 14 Gbp.
Reads from the SPRUCE experiment metagenomes

(82), transect viromes (5), and transect total soil meta-
genomes (5) were assembled into contigs ≥ 10 kbp, from
which viral contigs were identified [38, 39] and clustered
into 5006 species-level viral populations (viral oper-
ational taxonomic units (vOTUs) [61]). These vOTUs
were then clustered with 261,799 vOTUs from diverse
habitats in our PIGEON database (see methods, Table
S2) [10, 13, 15, 31, 34, 62–66]. The resulting clustered
database of 266,125 “species-level” vOTUs was used as a
reference for read mapping from each of our metagen-
omes. In total, we detected 4326 vOTUs through read
mapping from the SPRUCE experiment and adjacent
peatlands, and of these, 17.3% were recovered by both
VirSorter and DeepVirFinder, 52.3% were recovered by
VirSorter alone, and 30.4% were recovered by DeepVir-
Finder alone. Henceforth, “SPRUCE” refers to our data

from the SPRUCE experiment and/or transect, unless
otherwise specified.

Investigating patterns and potential drivers of peat viral
community composition in the SPRUCE experimental
plots
To characterize peat viral community compositional
patterns and their potential drivers, vOTU abun-
dances from the 82 SPRUCE experiment metagen-
omes were compared with the environmental
measurements. Using the 4326 SPRUCE vOTUs as
references, we recovered 2699 vOTUs from the
SPRUCE experimental plots through read recruitment
and tracked their abundances (average per bp cover-
age depth) across the experimental plot metagenomes.
No significant differences in viral community compos-
ition were detected according to temperature treat-
ment (Mantel p = 0.0057, ρ = 0.56), as discussed in
more detail below. Viral community composition was
significantly correlated with depth (Fig. 1A), even
across different temperature treatments and years
(Mantel p = 0.57, ρ = 0.00001), consistent with previ-
ous evidence that viral community composition varies
with depth in Swedish peatlands [15] and other soils
[67]. These results are also consistent with observa-
tions of microbial communities in SPRUCE peat,
where depth explained the largest amount of variation
in peat microbial community composition, and
temperature effects have thus far (from 2015 to 2018)
not been significant [1, 57]. We also measured a sig-
nificant difference in viral community composition
between the two sampling years (June 2015 and June
2016, PERMANOVA p = 0.009). Other factors that
significantly (p < 0.05) correlated with viral commu-
nity composition included microbial community com-
position, porewater CO2 and CH4 concentrations, and
the calculated fractionation factor for carbon in pore-
water δ13CH4 relative to δ13CO2 (αC) [68] (Table S3),
which can be used to infer CH4 production and con-
sumption pathways [3, 15, 68, 69]. Although all of
these factors also co-varied with depth, interestingly,
viral community composition was more significantly
correlated with αC and porewater CH4 concentrations
than with depth. Together, these results prompted
further exploration of potential explanations for these
compositional patterns with depth, including links be-
tween SPRUCE vOTUs and water content, peat C
cycling, and microbial hosts.
To investigate potential drivers of viral community

compositional patterns with depth, we identified 121
vOTUs that exhibited significant differential abundance
patterns across peat depth levels (adjusted p < 0.05,
Likelihood ratio test). We assigned these vOTUs to one
of three groups via hierarchical clustering (Fig. 1B):

ter Horst et al. Microbiome           (2021) 9:233 Page 3 of 19



vOTUs abundant in the near-surface (10–20 cm) but de-
pleted at other depths, vOTUs abundant from 40 to 50
cm but depleted at other depths, and vOTUs abundant
in only the two deepest depth ranges (100–125 and
150–175 cm). Given that near-surface peat had signifi-
cantly higher gravimetric soil moisture measurements
than deeper peat (p = 0.002, Student’s T test), we used a
trait-based approach to assign an “aquatic-like” trait to
vOTUs that were found in the same viral clusters (VCs,
based on predicted protein content) as vOTUs from
freshwater and/or marine environments in our PIGEON
database, and then we compared the proportion of
aquatic-like vOTUs in the three depth-range groups.
Near-surface depths displayed the highest proportion of
aquatic-like vOTUs, followed by mid-depths, while the
deepest peat had zero recognizable aquatic-like vOTUs
(Fig. 1C). The proportion of aquatic-like vOTUs in the
near-surface group was significantly higher than the
aquatic-like proportion of the total set of 2699 vOTUs
(p < 0.05, Hypergeometric test), suggesting that vOTUs
in the surface horizons (and/or their hosts) might be
better adapted to water-rich environments. Consistent
with this interpretation, we did not exclude porewater
from our samples [3, 7, 15, 44], so it is likely that some
of the vOTUs were derived from the porewater directly.
Also, although water table depth measurements indi-
cated that the entire sampled peat column was saturated
for each of the samples, qualitatively, there was substan-
tially more volumetric water content (waterlogging) in
the near-surface depths compared with the deeper, more
compacted peat. Although peat viral community com-
position was significantly correlated with both depth and

measured soil moisture content (Mantel p < 1E–5), the
Mantel r value was higher for the correlation with depth
(r = 0.569) than with soil moisture (r = 0.298, Table S3),
suggesting that differences in aquatic-like vOTUs alone
do not fully explain the patterns in viral community
composition with depth. Indeed, the underlying explan-
ation for the observed enrichment of aquatic-like vOTUs
in the near surface could be due to a variety of ecological
similarities between near-surface peatlands and aqueous
systems beyond simply water content (e.g., redox chem-
istry, substrates, and dissolved oxygen content [42, 70])
and warrants further exploration in the future.
Under the assumption that patterns in viral commu-

nity composition were at least partially indirect, resulting
from interactions with hosts, we attempted to bioinfor-
matically link SPRUCE vOTUs to microbial host popula-
tions [15]. All 4326 vOTUs and a total of 486 bacterial
and archaeal metagenome-assembled genomes (MAGs,
443 from the SPRUCE experiment metagenomes (Table
S4) and 43 from the transect (> 60% complete, < 10%
contaminated, Table S5)) were considered in this ana-
lysis. A total of 2870 CRISPR arrays were recovered from
the metagenomes via Crass [71], and 29 CRISPR-derived
virus–host linkages were made between 23 vOTUs and
21 host MAGs (Fig. 2, Table S6). For 25 of the 29 link-
ages, 0 mismatches were found between the CRISPR
spacers and linked viral protospacers, and four linkages
had a one-nucleotide mismatch. All 21 of the MAGs
were bacterial and could be taxonomically classified to
at least the family level, and for each of the six vOTUs
linked to more than one host, the predicted hosts were
all in the same family. Where genus-level host

Fig. 1 Peat viral community and population (vOTU) abundance patterns with depth in the SPRUCE experimental plots. A Principal coordinates
analysis (PCoA) of viral community composition in 82 samples (total soil metagenomes) from peat bog soil from the Marcell Experimental Forest
in northern Minnesota (USA) collected from the SPRUCE experimental plots and chambers (temperature treatments ranging from ambient to + 9
°C above ambient), based on Bray-Curtis dissimilarities derived from the table of vOTU abundances (read mapping to vOTUs, n = 2699). Each
point is one sample (n = 82). B Mean relative abundances (Z transformed) of vOTUs significantly differentially abundant by depth (adjusted p <
0.05, Likelihood ratio test). Groups were identified through hierarchical clustering and are colored according to the depths in panel A. C
Percentage of vOTUs classified as “aquatic-like” in each of the groups identified in panel B (Groups 1–3) and in the whole dataset of 2699 vOTUs
(Total). SPRUCE vOTUs were considered “aquatic-like” if they shared a genus-level viral cluster (VC) with at least one vOTU from a marine or
freshwater habitat in the PIGEON database. Note that the y-axis maximum is 10%. *** Denotes a significantly larger proportion of aquatic-like
vOTUs in that group, relative to the proportion of aquatic-like vOTUs in the full SPRUCE dataset (Total) (p < 0.05, Hypergeometric test)
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classification was possible, all vOTUs were predicted to
infect the same host genus.
To investigate potential connections between virus–

host dynamics and environmental conditions, along with
viral community links to carbon chemistry, we
attempted to assess virus–host abundance ratios and
their patterns across samples, and we explored the auxil-
iary metabolic gene (AMG) content of the vOTUs. Only
10 virus–host pairs (10 vOTUs linked to 9 MAGs) were
identified for which both the vOTU and the MAG were
detected together in at least one sample, and significant
patterns in virus–host abundance were not found for

any of these pairs according to any of the parameters
considered, including depth, year, αC, CH4 and CO2

concentrations, and moisture content. To further inves-
tigate the significant correlation between αC and viral
community composition, we also looked for vOTU link-
ages to methanogen or methanotroph MAGs. HMM
searches for McrA (a methanogenesis biomarker) [73,
74], sMMO, pMMO, and pXMO (methanotrophy bio-
markers) [3] predicted proteins were performed on the
443 SPRUCE experiment MAGs. Nine MAGs were
found to contain McrA-encoding genes, and evidence
for methanotrophy was found in 22 MAGs, but none of

Fig. 2 SPRUCE virus–host linkages according to host phylogeny. Unrooted phylogenetic tree (concatenated predicted protein alignment of 43
marker genes defined by CheckM [72]) of microbial host metagenome-assembled genomes (MAGs) with at least one vOTU (green and orange
circles) linked via CRISPR sequence homology. Branch lengths represent the expected number of substitutions per site. Lines between black
circles and squares with orange or green circles link vOTUs to predicted host MAGs. Colored triangles indicate the MAG genus (the same color is
the same genus, except for grey triangles, for which the corresponding MAG could only be classified to the family level). Asterisk indicates vOTUs
in the same genus-level viral cluster (VC); remaining vOTUs were all in distinct VCs. Bootstrap support values are shown as circles on nodes, black
circles indicate support ≥ 95%, grey indicates support between 65 and 95%. A pound sign inside an orange or green circle indicates a one-
nucleotide CRISPR spacer-protospacer mismatch
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these MAGs had a CRISPR linkage to a vOTU. Thus, we
infer either that αC co-varies with an unmeasured vari-
able that better explains viral community composition
and/or that important virus–host linkages associated
with CH4 cycling were not identified through these ap-
proaches. Finally, consistent with potential viral roles in
the soil C cycle, we identified 287 putative AMGs
encoded by viral genomes predicted to be involved in 18
C cycling processes, based on VIBRANT and DRAM-v
output [40, 41] (Table S7, S8, S9). These results are con-
sistent with previously identified glycosyl hydrolase
genes encoded in peat viral genomes [13, 15], along with
other putative C cycling AMGs from soil [75, 76] (see
Supplementary Discussion).
As indicated above, no significant influence of

temperature on viral community composition was de-
tected over the first 2 years of experimental warming.
Consistent with these findings, no differences in micro-
bial community composition were found according to
temperature treatments in these samples over the first 5
years of whole-ecosystem warming, although warming
exponentially increased CH4 emissions and enhanced
CH4 production rates throughout the entire soil profile
[57]. These results are also consistent with prior studies
that have shown that soil microbial community re-
sponses to similar temperature increases can take mul-
tiple years to manifest [77–79]. Warming has been
shown to substantially alter the community composition,
diversity, and N2 fixation activity of peat moss micro-
biomes [58], and in microcosms of surface peat collected
from the SPRUCE site, microbial diversity was negatively
correlated with temperature, suggesting that prolonged
exposure of the peatland ecosystem to elevated tempera-
tures will lead to a loss in microbial diversity [80]. In the
SPRUCE experiment, the fractional cover of Sphagnum
mosses [46] and plant phenology (the timing of different
traits throughout the growing season) [54] have changed
in response to temperature, suggesting that differences
in belowground viral and microbial community compos-
ition may follow after a longer period of warming.

Placing SPRUCE peat viruses in global and ecosystem
context
Of the 4326 “species-level” vOTUs from SPRUCE, 4162
were assembled from SPRUCE-associated metagenomes
(including the viromes), and 164 were recovered through
read mapping to our PIGEON database of vOTUs from
diverse ecosystems (Fig. 3A). The 164 previously recov-
ered vOTUs were first reported from other globally dis-
tributed sites, mainly peatlands (160 of 164), including
peat vOTUs from Sweden (147), Germany (5), Alaska,
USA (4), Wisconsin, USA (2), and Canada (2) (Fig. 3B).
The recovery of hundreds of viral species (4% of the
dataset) in geographically distant peatlands suggests that

there may be a peat-specific niche for these viruses. In
addition, four vOTUs recovered from SPRUCE peat
were first identified in a wet tropical soil in Puerto Rico,
suggesting some global species-level sequence conserva-
tion across soil habitats (Table S10). Existing deeply se-
quenced soil viromic datasets are predominantly from
peat [7, 13, 15, 34], so the extent to which these patterns
reflect database bias or true differences between peat
and other soils will require additional sampling.
Interestingly, despite the overwhelming dominance of

marine vOTUs in our database (190,502 vOTUs, 71%),
zero species-level vOTUs from the oceans were recov-
ered in the SPRUCE peatlands. Freshwater vOTUs (pre-
dominantly from freshwater lakes) have less
representation in our database (11,869 vOTUs, 4.45%),
but similarly, no freshwater vOTUs were recovered from
SPRUCE peat (though, as described above, vOTUs that
shared higher-level taxonomy with aquatic viruses were
recovered in SPRUCE peatlands). No other vOTUs from
our PIGEON database, including bioreactor, hot spring,
non-peat wetland, human-, plant-, and other host-
associated vOTUs, were recovered in SPRUCE peat.
These results suggest viral adaptation to soil and/or
strong viral species boundaries between terrestrial,
aquatic, and other ecosystems, as previously observed
for bacterial species [81, 82], though data for soil viruses
are limited, so further studies across diverse soils will be
necessary to assess the generalizability of these results.
To further compare vOTUs from diverse soil ecosys-

tems, we constructed a phylogenetic tree of the termi-
nase large subunit (terL) gene from 1045 PIGEON soil
vOTUs (81 from SPRUCE, 143 from other peat, and 821
from other soil) and 1613 RefSeq prokaryotic viral ge-
nomes from which a terL sequence could be recovered
(Fig. 4A). The terL gene is a single-copy viral marker
gene [12] that is commonly used for phylogenetic tree
construction of Caudovirales phages [83, 84], due to its
ubiquity and relatively high sequence conservation
across diverse phages [84]. Overall, the tree revealed two
large superclades, one with predominantly RefSeq viral
sequences and one with predominantly soil viral se-
quences (phylogenetic dispersion, D = − 0.25), with D <
0 indicating significant phylogenetic separation of RefSeq
and soil sequences [85, 86]. As expected, these results
indicate that known isolates do not adequately capture
soil viral diversity. A second terL tree was constructed
from only the soil sequences without RefSeq (Fig. 4B),
revealing approximately even phylogenetic distributions
across soil habitats and no detectable soil habitat-
specific phylogenetic groupings (D = 0.58 for all peat vs.
other soil, D = 0.41 for SPRUCE vs. all other soil). In
other words, phylogenetically similar viruses (at least
based on terL phylogeny) were found across the three
examined soil habitat groupings (SPRUCE, other peat,
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and other soil), with no significant differences in viral
types recovered across these groups or when comparing
all peat viruses to those from other soil.
To assign taxonomy to vOTUs and group them at

higher taxonomic levels for cross-ecosystem compari-
sons, the 4326 SPRUCE vOTUs and all other vOTUs in
our PIGEON database were grouped into viral clusters
(VCs), according to their shared predicted protein con-
tent [87, 88]. The SPRUCE vOTUs formed 3114 VCs,
2193 of which were singletons and 921 of which con-
tained at least two vOTUs (Table 1, Supplementary fig-
ure 2A). We note that, although singletons are not
technically clusters, each VC has been suggested to rep-
resent a distinct viral “genus” [87, 88], so we include sin-
gletons in VC counts for ease of interpretation. We
describe each VC as a “genus”, in accordance with previ-
ously described terminology for this approach [87, 88],
but viral taxonomy is in flux [89, 90], and an analysis of
average amino acid identity (AAI) within 100 randomly
chosen PIGEON VCs revealed that most VCs represent

the equivalent of bacterial family or higher taxonomy.
Briefly, vOTUs within most VCs shared an average of
45–65% AAI (for bacteria, that AAI range approximates
the same family but different genera [91]), though ~ 1/3
of the VCs had average AAIs above or below this range.
Only fourteen of the SPRUCE VCs, containing 61
vOTUs (1.4% of the dataset), were taxonomically classifi-
able, based on sharing a VC with a viral genome in
RefSeq (Fig. 3C, Supplementary figure 3). This is a lower
proportion than a prior study [15], which we attribute at
least in part to differences in the size of the dataset used
for clustering (for example, 17% of peat vOTUs from
northern Sweden were previously taxonomically classifi-
able [15], but only 3.9% of those same vOTUs could be
taxonomically classified in our analysis, which included
orders of magnitude more vOTUs but was otherwise
similar, apart from use of the updated vConTACT2.0
pipeline instead of vConTACT). The taxonomically clas-
sifiable vOTUs from SPRUCE included 45 Myoviridae,
five Podoviridae, four Siphoviridae, and seven

Fig. 3 Habitat and global distribution of SPRUCE vOTUs and viral clusters (VCs), using the PIGEON database for context. A Composition of the
PIGEON database of vOTUs (n = 266,805) by source environment. RefSeq includes isolate viral genomes from a variety of source environments
(prokaryotic viruses in RefSeq v95). Plants = plant-associated, Humans = human-associated, Other Animals = non-human animal-associated. B
vOTUs (n = 4326) recovered from SPRUCE peat by read mapping, according to the location from which they were first recovered. Numbers
indicate SPRUCE vOTUs from a given location. Circle sizes are proportional to the number of vOTUs. C Percentages of vOTUs recovered from
SPRUCE that had predicted taxonomy based on clustering with RefSeq viral genomes (Taxonomically classified), had unknown taxonomy but
shared a genus-level viral cluster (VC) with one or more previously recovered vOTUs in the PIGEON database (Unclassified, previously recovered),
or were previously unknown at the VC (genus) level (Previously unknown). D Habitat(s) for each soil VC (n = 20,939) in the PIGEON database,
based on source habitat(s) for the vOTU(s) contained in each VC. For a given soil VC, either all vOTUs were exclusively derived from a single
habitat (non-overlapping regions), or two or more vOTUs were derived from different soil habitats (overlapping regions). E Similar to D, but for
VCs with vOTUs from soil, marine, and/or freshwater habitats (n = 80,714 VCs)
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Tectiviridae, consistent with the more abundant viral
taxa previously reported from thawing permafrost peat-
lands [15], but we note that Myo-, Podo-, and Siphoviri-
dae have been recommended for removal as taxonomic
groups [88]. Although most SPRUCE VCs were not
taxonomically classifiable, 562 included a vOTU that
was also found in another dataset in PIGEON, meaning
that just under 1/3 of the SPRUCE VCs had been

observed before (compared with previous detection of
only 4% of SPRUCE vOTUs, or viral “species”, as de-
scribed above).
All 31,049 of the vOTUs from soil in our PIGEON

database, including those from SPRUCE and globally
distributed soils, grouped into 20,939 VCs (Table 1). Of
these, 16,524 included only a single vOTU, meaning that
most of the known “genus-level” soil viral sequences

Table 1 Number of aquatic and soil vOTUs and VCs in the PIGEON database, according to the source environments considered in
this study

Dataset vOTUs Total
VCs

VCs with > 1
vOTU

Singleton VCs (1
vOTU)

vOTUs in a
VC

% Singleton
VCs

% vOTUs in Singleton
VCs

PIGEON aquatic and
soil*

233,420 81,846 29,167 52,679 181,987 64 22

Marine 190,502 54,473 25,116 29,357 161,145 54 15

Freshwater 11,869 7910 3257 4653 7216 59 39

All soil 31,049 20,939 4415 16,524 13,626 79 53

SPRUCE** 4326 3114 921 2193 2133 70 51

Other peat 10,831 8414 1377 7037 3794 84 65

Other soil 15,892 10,391 2117 8274 7618 80 52

For each row, the number of viral populations (vOTUs), viral clusters (VCs) with more than one member, and singletons (both vOTUs and VCs with only one
member), along with the corresponding percentages that they represent are presented
*Only marine, freshwater, and soil; not including vOTUs from human, other animal, plants or other systems (total PIGEON vOTUs across all environments
= 266,125)
**All vOTUs recovered in the SPRUCE experimental plots and transect, including 160 vOTUs also recovered in other peat and 4 vOTUs also recovered in other soil

Fig. 4 Unrooted phylogenetic trees of terminase large subunit (TerL) protein sequences from RefSeq prokaryotic viral genomes and soil vOTUs in
the PIGEON database. Trees are color-coded by sequence source (RefSeq or soil category within PIGEON). Trees were constructed using IQ-tree
and the LG+I+G4+F model of sequence evolution, using ultrafast bootstrapping and an SH-aLRT test. Bootstrap values are not displayed but can
be found for each of the branches in Supplemental File 1. A Phylogenetic tree of TerL protein sequences from RefSeq prokaryotic viral genomes
(n = 1613) and PIGEON soil vOTUs (n = 1011). Outer ring color represents viral family of RefSeq genomes. Phylogenetic dispersion was estimated
by using Fritz & Purvis D (D). D = − 0.25 when comparing TerL sequences from RefSeq viral genomes and TerL sequences from soil vOTUs, with
D < 0 indicating phylogenetic clustering. B Phylogenetic tree of TerL protein sequences from PIGEON soil vOTUs. D = 0.58 for other soil (n = 634)
compared with peat, including SPRUCE (n = 377), and D = 0.41 when comparing SPRUCE (n = 51) to all other soil sequences (n = 960)
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have only been recovered from a single study and/or lo-
cation so far. In total, 12.8% of the soil VCs were exclu-
sively found in SPRUCE peatlands, 0.7% included at
least one vOTU each from SPRUCE, other peat habitats,
and other soils (Fig. 3D), and 0.9% contained a vOTU
from SPRUCE and other peat sites but not other soils.
Together, these data suggest that, although much of soil
viral sequence space remains to be explored, species-
level similarities may be relatively restricted to specific
soil habitat types, while similarities at higher taxonomic
levels may be more common across soil habitats.
To investigate similarities between viruses from soil

and aquatic (marine and freshwater) ecosystems, 233,420
vOTUs from our PIGEON database (31,049 soil [10, 15,
31, 35], 190,502 marine [31, 63, 64], and 11,869 fresh-
water [31]) were clustered into 80,714 VCs (Table S11).
Of the soil VCs, 0.4% shared a cluster with vOTUs from
one or both aquatic systems, indicating a small amount
of “genus-level” similarity between aquatic and soil vi-
ruses (Fig. 3E). However, most VCs were found in only
one habitat, consistent with differences in microbial
community composition in aquatic compared with soil
and sediment habitats and between freshwater and salt-
water environments [81].

Comparing viral recovery from viromes and total soil
metagenomes
Metagenomic studies of viral community composition
typically take one of two approaches: either the viral sig-
nal is mined from total metagenomic assemblies, which
predominantly tend to contain bacterial sequencing data
[13, 15, 31], or viral particles are physically separated
from other microbes in the laboratory (e.g., through fil-
tration), and then viral size-fraction enriched metagen-
omes (viromes) are sequenced and analyzed [12, 13, 15,
18]. To directly compare results from both approaches,
we first analyzed the paired total soil metagenomes and
viromes from the five transect samples. Considering all
assembled contigs ≥ 10 kbp, only 0.8% of the metage-
nomic contigs were classified as viral after passing them
through viral prediction software (see “Methods”), rela-
tive to 16% of the virome contigs. This ~ 20-fold im-
provement is consistent with our observed ~ 30-fold
improvement in viral contig recovery from viromes rela-
tive to total metagenomes in agricultural soils [35], and
similar differences in the composition of metagenomes
and viromes have been reported from grassland soils
[92]. When accounting for read mapping to all vOTUs
in the PIGEON database (including all of the SPRUCE
vOTUs), 1952 vOTUs were detected in the viromes,
relative to 401 in the metagenomes from the same sam-
ples (Fig. 5A, Supplementary figure 4A). Only 37 vOTUs
were detected in the metagenomes alone. Although far
more vOTUs were recovered from the viromes, vOTU

accumulation curves were still climbing steeply after five
samples for both viromes and metagenomes (Fig. 5B,
Supplementary figure 4B, 4C), suggesting that more viral
diversity remains to be recovered. A comparison of the
five viromes indicated that there was no spatial relation-
ship between the samples (Supplementary figure 5A),
but there was high variability in the number of recovered
vOTUs per sample (Supplementary figure 5B).
To place these comparisons from the same samples in

the context of the larger SPRUCE dataset, we compared
the five viromes from 2018 with the 82 metagenomes
from 2015 to 2016, again with vOTU recovery assessed
through read recruitment to all vOTUs in the PIGEON
database. We note that the samples in this set of com-
parisons differ in multiple ways beyond the extraction
method, including the sampling year, depth range, loca-
tion, and (in some cases) temperature treatment, all of
which could contribute to the observed trends. On a
per-sample basis, the viromes recovered far more
vOTUs than the metagenomes, as indicated by the much
steeper accumulation curve slope for viromes after only
five samples (Fig. 5B). However, the much larger number
of samples in the SPRUCE experimental plot metagen-
omes resulted in a higher total vOTU recovery of 2699
in the 82 metagenomes, compared with 1952 in the five
viromes (Fig. 5A).
We next considered the metagenomes from 2015 and

2016 separately, because the sequencing throughput
from 2016 was 1.4 times higher than in 2015. The first
of these comparisons was based on read recruitment
only to vOTUs derived from contigs that assembled
from samples in the same category, considering four cat-
egories: the five transect viromes, five transect metagen-
omes, 38 metagenomes from 2015, and 44 metagenomes
from 2016. These “self-mapped” analyses were meant to
simulate a situation in which only the vOTUs from that
particular dataset would have been available. The per-
ceived viral richness per sample was 32 times higher in
viromes (mean 649 vOTUs) compared with their paired
metagenomes (mean 20 vOTUs) but was nine and three
times higher, respectively, in viromes compared with the
2015 and 2016 metagenomes (mean 72 and 207 vOTUs)
(Fig. 5C). The perceived viral richness was 2.8 times
higher in the 2016 metagenomes compared with 2015
metagenomes, indicating that a greater sequencing depth
of total soil metagenomes (in this case from 6 to 15 Gbp
on average) likely increased vOTU recovery, though we
cannot exclude the possibility of a true difference in viral
richness between the 2 years. A further comparison of
vOTU recovery from the transect viromes and the three
sets of metagenomes was based on read recruitment to
all 266,125 PIGEON vOTUs from SPRUCE and other
datasets. In this case, the perceived viral richness in the
viromes (mean 721 vOTUs) was 5.7 times higher than in
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the paired metagenomes (mean 127 vOTUs), 3.5 times
higher than in the 2015 metagenomes (mean 200
vOTUs), and two times higher than in the 2016 meta-
genomes (mean 370 vOTUs, Fig. 5D). Thus, the avail-
ability of reference vOTUs, particularly from the
SPRUCE viromes, substantially improved recovery from
the total metagenomes.
Lastly, we compared the VCs formed by vOTUs from

the 2018 viromes, the 2018 metagenomes, and the 2015/
2016 metagenomes to determine whether there were dif-
ferences in the taxonomic space recovered by the differ-
ent approaches. When comparing the five paired total
metagenomes and viromes, all of the metagenome
vOTUs shared a VC with at least one vOTU from the
viromes, whereas 1401 vOTUs were in VCs exclusively

recovered from the viromes, indicating that viromes ex-
panded the recoverable viral taxonomic space relative to
paired metagenomes (Supplementary figure 2A, 2B).
However, the vOTUs recovered from the unpaired 2015/
2016 metagenomes recovered substantially different VCs
compared with the 2018 viromes. We suspect that these
differences were largely due to the different collection
years, locations, and, particularly, numbers of samples,
as opposed to differences between extraction methods.
Few direct comparisons of viromes and total metagen-

omes from the same samples have been reported from
any ecosystem. Consistent with these results from peat,
agricultural and grassland soil viromes have been shown
to be enriched in both viral sequences and genomes
from ultrasmall cellular organisms (which would be

Fig. 5 Comparison of vOTU recovery from SPRUCE viromes and total soil metagenomes. A Distribution of vOTUs recovered in each of three
extraction groups (grouped by extraction method and collection date), based on read mapping to the PIGEON database (n = 5 viromes from
2018, 82 total soil metagenomes from 2015 to 2016, and 5 total soil metagenomes from 2018). B Accumulation curves of distinct vOTUs
recovered as sampling increases for each extraction method; 100 permutations of sample order are depicted as open circles, line shows the
average of the permutations for each method. C Number of vOTUs recovered per metagenome when reads were only allowed to map to vOTUs
that assembled from metagenomes in the same category (self-mapped), considering four categories: 2018 bulk (n = 5), 2015 bulk (n = 38), 2016
bulk (n = 44), 2018 viromes (n = 5); bulk = total soil metagenomes. One outlier was excluded from the plot for ease of visualization; the y-axis
value of the outlier in the 2018 viromes was 1328. Letters above boxes correspond to significant differences between groups (Student’s T test,
significant when p < 0.05). D Similar to C, but reads were allowed to map to all vOTUs in the PIGEON database (PIGEON-mapped), including all
vOTUs assembled from any of the SPRUCE metagenomes. Three outliers were removed from the plot for ease of visualization; the y-axis values of
the two outliers from 2016 bulk were 1415 and 1818, and the value of the outlier from the 2018 viromes was 1558
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more likely to pass through the 0.2 μm filters used for
viral enrichment) but depleted in sequences from most
other cellular organisms, compared with total metagen-
omes [35, 92]. In aqueous systems, water samples are
often separated into multiple-size fractions (for example,
3–20 μm, 0.8–3 μm, 0.2–0.8 μm, post-0.2 μm), such that
previous studies have compared viral sequences recov-
ered across different size fractions, and generally, the vi-
ruses recovered from different size fractions seem to be
distinct [93, 94]. A recent meta-analysis of human gut
viral data recovered from viromic and metagenomic se-
quences suggested that more viral contigs could be re-
covered from metagenomes than from viromes [90].
However, of the 2017 viromes considered in that study,
1966 were multiple-displacement amplification (MDA)
treated, and, as the authors acknowledged, MDA of vir-
omes has known methodological biases (for example,
MDA preferentially recovers circular ssDNA viruses [6])
and thus would result in artificially lower-richness viral
communities. Although differences in the environments
could have contributed to the observed differences in
viral recovery from viromes compared with total meta-
genomes in the human gut study compared with our
work, the large difference in the number of total meta-
genomes (680) compared with non-MDA amplified vir-
omes (51) in the human gut study could also have
contributed to the greater recovery of viral sequences
from total metagenomes in that study. Consistent with
that interpretation, here we have shown that increasing
the number of samples, in combination with deeper se-
quencing and the availability of relevant reference vOTU
sequences, improved vOTU recovery from total soil
metagenomes, which have the added advantage of acces-
sing virus and host population sequences from the same
dataset.

Conclusions
We analyzed dsDNA viral diversity in a climate-
vulnerable peat bog, revealing significant differences in
viral community composition at different soil depths
and according to peat and porewater C chemistry.
Aquatic-like SPRUCE vOTUs were significantly more
abundant at near-surface depths, suggesting potential
adaptation of these viruses to water-rich environments.
Some viral species-level similarities were observed across
large geographic distances in soil: 4% of the vOTUs
found in SPRUCE peat were previously recovered else-
where, predominantly in other peatlands. Interestingly,
zero marine or freshwater vOTUs were recovered from
SPRUCE peat, suggesting the potential for viral species
boundaries between terrestrial and aquatic ecosystems.
When comparing vOTU recovery from viromes and
total soil metagenomes, increasing the dataset size
through deeper sequencing and more samples improved

vOTU recovery from metagenomes, but viromics was a
better approach for maximizing viral recovery on a per-
sample basis. Together, these results expand our under-
standing of soil viral communities and the global soil
virosphere, while hinting at a vast diversity of soil viruses
remaining to be discovered.

Materials and methods
Sample collection
In June 2018, five peat samples were collected along
“Transect 4” in the S1 bog ~ 150 m from the SPRUCE
experimental plots in the Marcell Experimental Forest in
northern Minnesota, USA (for GPS coordinates, see
Table S12). Avoiding green Sphagnum moss at the sur-
face (~ 2 cm), the top 10 cm of peat (5 cm diameter)
was collected for each sample with a sterile spatula and
placed in 50-mL conical tubes on dry ice. Samples were
stored at − 80 °C for 6 months prior to DNA extraction
for total metagenomes and viromes.
Within the SPRUCE study, temperature treatments

were applied in large (~ 115 m2) open-topped enclo-
sures. Temperature treatments in the 10 enclosures were
as follows: + 0, + 2.25, + 4.5, + 6.75, and + 9, with two
chambers assigned to each temperature treatment. Data
were also collected from two ambient environment plots
where there was no enclosure but within the treatment
area on the south end of the S1 Bog. In each enclosure,
warming of deep soil started in June 2014 [47], and
aboveground warming began in August 2015 with con-
tinuous whole ecosystem warming (365 days per year)
operating since late in 2015. A more detailed explan-
ation of deep soil heating procedures and construction
of the enclosures and warming mechanics can be found
in Hanson et al. [46, 47, 54].
Peat samples for 82 total soil metagenomes were col-

lected from the SPRUCE experiment in June 2015 and
June 2016 from cores that were extracted using defined
hand sampling near the surface and via Russian corers
below 30 cm. Samples for analysis were obtained from
depth ranges 10–20 cm, 40–50 cm, 100–125 cm, and
150–175 cm from a total of 10 chambers in 2015 (no
samples were analyzed from the open, ambient plots that
year), with the exception of only two samples collected
from chamber 19 (control plot, no temperature treat-
ment, only 10–20 cm and 40–50 cm samples collected),
for a total of 38 samples from 2015. In 2016, samples
were collected from the same depth ranges from all 10
chambers, plus two samples from each of the two ambi-
ent, open plots (depth ranges, 10–20 cm and 40–50 cm),
for a total of 44 samples from 2016. These 82 samples
were used for DNA extraction and total metagenomic
analysis and MAG recovery, as described below. Soil
temperature, moisture content, CH4 and CO2 concentra-
tions, and aC measurements (see supplementary
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methods) were collected from the same samples (Table
S13).

DNA extraction
All samples from the peatland transect were stored at –
80 °C until further processing. Twenty-four hours prior
to DNA extraction, samples were placed at − 20 °C. For
total metagenomes from the transect, DNA was ex-
tracted from 0.25 g peat per sample with the QIAGEN
DNeasy Powersoil Kit (QIAGEN, Germany), according
to the manufacturer’s protocol. For viromes, 50 g of peat
per sample was divided between two 50-mL conical
tubes, and 37.5 mL of Amended Potassium Citrate
Prime buffer (AKC’, 0.02 μm filtered, 1% K-citrate + 10%
PBS + 150 mM MgSO4) [34] was added per tube, for a
total of 75 mL buffer. Tubes were shaken at 400 rpm for
15 min, then centrifuged at 4700 g for 20 min. Excluding
the pelleted soil, the supernatant was filtered through a
0.2 μm polyethersulfone filter (Corning, USA) and ultra-
centrifuged in a Beckman LE-8K ultracentrifuge with a
70 Ti rotor for 3 h at 32,000 RPM at 4 °C under vacuum.
The supernatant was decanted, and the pellet containing
virions was resuspended in 200 μl UltraPure water and
added to the QIAGEN DNeasy PowerSoil Kit bead tubes
(QIAGEN, Germany) for DNA extraction according to
the manufacturer’s instructions with one exception: in-
stead of vortexing for 10 minutes with the beads, sam-
ples in the bead tubes were incubated at 70 °C for 10
min, vortexed briefly, and incubated at 70 °C for another
5 min. Consistent with our prior work on hypersaline
lake viromes, which showed that DNase treatment of
viromes stored frozen resulted in removal of all DNA
[95], and given recent evidence for the same ecological
patterns preserved in data from both DNase treated and
untreated viromes from the same agricultural soil sam-
ples [96], we elected not to include a DNase treatment
prior to virion lysis.
For the 82 2015 and 2016 peat samples used in meta-

genomic analysis and MAG recovery, DNA was ex-
tracted from homogenized samples of each depth
interval using the MO BIO Powersoil DNA extraction
kit (QIAGEN, Germany). Six replicate 0.35-g extractions
were combined and re-purified with the MO BIO
PowerClean Pro kit (QIAGEN, Germany) and eluted in
50 mL of 10 mM Tris buffer.

Library construction and sequencing
Library construction and sequencing for the five viromes
and five total soil metagenomes from Transect 4 were
conducted by the DNA Technologies and Expression
Analysis Cores at the UC Davis Genome Center. Librar-
ies were prepared with the DNA Hyper Prep library kit
(Kapa Biosystems-Roche, Basel, Switzerland), as previ-
ously described [35]. There was no whole-genome

amplification or equivalent; standard metagenomic li-
brary construction was applied directly to extracted
DNA for both the viromes and total metagenomes.
Paired-end sequencing (150 bp) was done on the Illu-
mina NovaSeq platform, using 4% of a lane per virome
and 8% of a lane per total soil metagenome. Sequencing
of the 82 metagenomes from the SPRUCE experiment
and ambient plots was done by the DOE Joint Genome
Institute (JGI), using standard protocols for Nextera XT
metagenomic library construction. These barcoded li-
braries were sequenced on an Illumina HiSeq 2500 in-
strument in 2x150 bp mode.

Sequencing read processing, assembly, viral population
(vOTU) recovery, and read mapping
Raw reads from the SPRUCE experiment metagenomes
(82), transect viromes (5), and transect total soil meta-
genomes (5) were first quality-trimmed with Trimmo-
matic v0.38 [97] with a minimum base quality threshold
of 30 evaluated on sliding windows of 4 bases and mini-
mum read length of 50. Reads mapped to the PhiX gen-
ome were removed with bbduk [98]. Reads were
assembled into contigs ≥ 10 kbp in length, using MEGA-
HIT v 1.1.3 [99] with standard settings. All 92 metagen-
omes underwent single-sample assemblies, and two
additional co-assemblies were generated from the tran-
sect, one each for the five viromes and five total soil
metagenomes, respectively. For co-assemblies, the preset
meta-large option was used. Eighty-two previously exist-
ing assemblies from the SPRUCE experiment metagen-
omes were also used. Briefly, for those assemblies, raw
metagenomic fastq sequences were quality trimmed with
bbduk from the BBTools software package (options:
qtrim=window,2 trimq=17 minlength=100) [100] and as-
sembled with IDBA-UD [101](options: -mink 43 –maxk
123 –step 4 –min_contig 300).
DeepVirFinder [39] and VirSorter [38] were used to

recover viral contigs from each assembly. VIBRANT
[40], which we used for auxiliary metabolic gene (AMG)
analyses described below, was not available at the time
that these viral prediction analyses were performed.
Briefly, DeepVirFinder is a machine-learning approach
that recognizes viral sequence signatures, and VirSorter
searches for viral hallmark genes in PFAM annotation.
Consistent with established recommendations, contigs
with DeepVirFinder scores > 0.9 and p < 0.05 were con-
sidered viral [64], and DeepVirFinder results were fil-
tered with a custom python script (parse_dvf_results.py,
all scripts are available on GitHub, see Data Availability
Statement below) to only retain results in compliance
with this score. VirSorter was run in regular mode for
all total metagenomes and in virome decontamination
mode for the viromes. Only contigs from VirSorter cat-
egories 1, 2, 4, and 5 (high-confidence) were retained, as
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previously recommended [38]. All resulting viral contigs
were clustered into vOTUs using CD-HIT [102] at a glo-
bal identity threshold of 0.95 across 85% of the length of
the shorter contig [61]. Different sets of vOTUs were
used as references for read mapping throughout the
manuscript (see main text), with the most commonly
used and most comprehensive reference database being
PIGEON (see below). In all cases, read mapping was per-
formed with BBMap [98] at ≥ 90% identity, following
thresholds set previously [15, 61, 103], and vOTU cover-
age tables were generated with BamM [104], using the
‘tpmean’ setting, and bedfiles were generated using bed-
tools [105]. Custom python scripts (percentage_covera-
ge.py, filter_coveragetable.py) were used to implement
the thresholds for detecting viral populations (vOTUs)
in accordance with community standards (≥ 75% of the
contig length covered ≥ 1× by reads recruited at ≥ 90%
nucleotide identity) [61]. The final vOTU coverage table
of per-bp vOTU abundances in each metagenome was
normalized by the number of metagenomic sequencing
reads for each sample [15].

Construction of the PIGEON reference database of vOTUs
An in-house database, Phages and Integrated Genomes
Encapsidated Or Not (PIGEON), was created, containing
266,125 species-level vOTUs, of which 190,502 came
from marine environments, 11,869 from freshwater,
31,049 from soil (including 4326 from SPRUCE), 2305
RefSeq viral genomes (release 85) [65], and 30,400 from
other environments in a meta-analysis, including human
microbiomes, other animal microbiomes, plant micro-
biomes, and other environments). Available viral contigs
were downloaded from published datasets [10, 13, 15,
31, 34, 62–66], compiled from ongoing work in Alaskan
peat soil and Puerto Rican soils (see supplementary
methods), and those recovered from SPRUCE (see
above). For most of the previously published datasets,
viral contigs were derived from viromes, or a combin-
ation of viromes and total soil metagenomes, but two
datasets only considered viral recovery from total soil
metagenomes [10, 31]. For all but one of the datasets,
VirSorter [38], VirFinder [106], DeepVirFinder [39], or a
combination of these programs was used for viral contig
recovery (Contigs with DeepVirFinder scores > 0.9 and p
< 0.05 were considered viral [64], and only contigs from
VirSorter categories 1, 2, 4, and 5 were considered). The
exception was the meta-analysis dataset of Paez-Espino
et al., which used its own viral discovery pipeline [31].
From all of these datasets, viral contigs were down-
loaded, and those > 10 kbp were retained and then clus-
tered into vOTUs using CD-HIT [102] at a global
identity threshold of 0.95 across 85% of the shorter con-
tig length to generate PIGEON v1.0. We are actively

improving PIGEON and expect to release a new version
in the future.

Viral taxonomic classification and construction of viral
clusters (VCs) through protein-based clustering of vOTUs
VCs were generated to perform analyses at higher taxo-
nomic levels than ‘species’, and taxonomic classifications
for the 4326 SPRUCE vOTUs (detected in the SPRUCE
dataset through read mapping) were assigned at the VC
level. To generate VCs and assign taxonomy, the vOTUs
were clustered according to shared predicted protein
content with the 261,799 other vOTUs in our PIGEON
database, including 2305 RefSeq viral genomes [65],
using vConTACT2 (options: --rel-mode ‘Diamond’ --db
'ProkaryoticViralRefSeq85-Merged' -pcs-mode MCL
--vcs-mode ClusterONE) [87, 88]. Taxonomy was
assigned by vConTACT2 to any vOTU that shared a VC
with one or more RefSeq viral genomes, as previously
described [87, 88]. The vConTACT2 viral_cluster_over-
view output file was used for further analysis, including
to manually identify SPRUCE vOTUs that shared a VC
with one or more vOTUs from marine and/or freshwater
(aquatic) environments. For the analysis of AAI within
PIGEON VCs, a random set of 100 VCs was analyzed
with CompareM (standard settings) [107], and the mean
pairwise AAI between vOTUs was calculated for each of
those VCs.

Metagenome-assembled genome (MAG) reconstruction
MAG reconstruction from the five transect total meta-
genomes was done as follows: quality-trimmed reads
were assembled using MEGAHITv 1.1.3 [99] with a
minimum contig length of 2000, using the meta-large
preset. After individual assembly of each sample, quality-
filtered and trimmed reads were mapped to the resulting
contigs using bbmap [108] with standard settings, and
this abundance information was used to bin the contigs
into MAGs using MetaBAT [109], using the --veryspeci-
fic setting and the coverage depth information. Quality
and identification of bins was done with CheckM [110],
following Sorensen et al. [72].
From the 82 SPRUCE experiment metagenomes,

metagenome assembly, recovery, and analysis of
metagenome-assembled genomes (MAGs) was per-
formed as described in Johnston et al. [111]. Briefly,
metagenomic sequences were assembled with IDBA-UD
[101] (options: -mink 43 –maxk 123 –step 4 –min_con-
tig 300). Resulting contigs ≥ 2.5 kbp were used to re-
cover microbial population genomes with MetaBAT2
(options: –minCVSum 10) [109] and MaxBin2 [112]. Be-
fore binning, Bowtie 2 was used to align short-read se-
quences to assembled contigs (options: –very-fast) [113],
and SAMtools was used to sort and convert SAM files
to BAM format [114]. Sorted BAM files were then used
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to calculate the coverage (mean representation) of each
contig in each metagenome. The quality of each result-
ing MAG was evaluated with the CheckM v1.0.3 tax-
onomy workflow for Bacteria and Archaea separately
[110]. The result from either evaluation (i.e., taxonomy
workflow for Archaea or Bacteria) with the highest esti-
mated completeness was retained for each MAG. MAGs
with a quality score ≥ 60 were retained (from Parks
et al., 2017 [115] calculated as the estimated complete-
ness – 5 × contamination). MAGs recovered from differ-
ent metagenomes were dereplicated with dREP [116],
and the GTDB-tk classify workflow [117, 118] was used
to determine MAG taxonomic affiliations. MAG gene
prediction, functional annotation, and assessment of
metabolic pathway completeness (e.g., for assessing
methanogenesis potential) was performed as described
in Johnston et al. [111]. Taxonomic classification, source
dataset SRA ID, basic genome statistics, and CheckM
summaries for each MAG can be found in Table S4.
Using the parameters described above for vOTU

coverage table generation, a microbial contig coverage
table was generated. From this coverage table, we cal-
culated the coverage of each population genome as
the average of all of its binned contig coverages,
weighting each contig by its length in base pairs. In-
house scripts for this are available on GitHub. HMM
searches were done on both MAGs and vOTUs for
proteins involved in methanogenesis or methanotro-
phy (McrA (a methanogenesis biomarker) [73, 74],
sMMO, pMMO, and pXMO (methanotrophy bio-
markers) [3]). The MAG and vOTU contigs were an-
notated with prodigal (standard settings) [119], and
an HMM search was done on these annotations with
hmmr [120], using hmmsearch (standard settings)
with an e value cutoff of 1E–5 [74].

Reconstruction of microbial CRISPR arrays and virus–host
linkages
CRISPR repeat and spacer arrays were assembled with
Crass v0.3.12 [71], using standard settings, and BLASTn
was used to match spacer sequences with vOTUs and
repeats to MAGs, in order to link viruses to putative
hosts. Briefly, for protospacer-spacer matches (i.e.,
matches between vOTUs and CRISPR spacer se-
quences), the BLASTn-short function was used, with ≤ 1
mismatch to spacer sequences, e value threshold of 1.0 ×
10−10, and a percent identity of 95 [31, 121]. For MAG-
repeat matches, the BLASTn-short function was used,
with an e value threshold of 1.0 × 10−10 and a percent
identity of 100 [15].

Phylogenetic tree construction
A phylogenetic tree of bacterial host MAGs with
CRISPR matches to one or more vOTUs (i.e., a repeat

match to a MAG and a spacer from the same CRISPR
array with a match to a vOTU protospacer) was con-
structed with CheckM [110] via a marker-gene align-
ment of 43 conserved marker genes with largely
congruent phylogenetic histories, defined by CheckM
[110]. This alignment was used to construct a
maximum-likelihood tree with MEGA [122], with the
LG plus frequencies model [123]. A total of 500 boot-
strap replicates were conducted under the neighbor-
joining method with a Poisson model.
For the terminase large subunit (TerL) tree, we pre-

dicted proteins on all viral contigs from PIGEON soil-
associated vOTUs (n=31,346) with Prokka [124], (std
settings, --kingdom viruses, --norrna –notrna), resulting
in 1045 large terminase subunit predictions. We down-
loaded the terminase large subunits (n = 2799) that were
available from RefSeq and clustered the Refseq termi-
nase sequences at 95% AAI using USEARCH, following
[32, 125], resulting in 1613 terminase sequences from
RefSeq. We then aligned predicted terminase sequences
from PIGEON soil vOTUs with those from RefSeq
(2658 sequences total), using MAFFT v7.471 [126] with
the G-INS-1 algorithm and otherwise standard settings
[32]. Ambiguous aligned regions were removed using
the TrimAl v1.41 program with the ‘gappyout’ setting
[127, 128]. The best model of amino acid substitution
was determined using ProtTest v1.5, standard settings
[129]. Phylogenetic trees were constructed with IQ-
TREE v1.6.12 [130], using -st AA -m LG+I+G4+F -bb
1000 -alrt 1000 options. Trees were visualized using iTol
[131]. Bootstrap support was calculated, using an ap-
proximate likelihood ratio test (aLRT) with the Shimo-
daira–Hasegawa-like procedure (SH-aLRT), using 1000
bootstrap replicates.

Data analysis (ecological statistics)
The following statistical analyses were performed in R
using the Vegan [132] package: accumulation curves
were calculated using the speccacum function, vOTU
coverage tables were standardized using the decostand
function with the Hellinger method, and Bray-Curtis dis-
similarity matrices were calculated using the vegdist
function. Mantel tests were performed with the mantel
function, using the Pearson method, and permutational
multivariate analyses of variance (PERMANOVA) were
performed with the Adonis function. Venn diagrams
were created with the VennDiagram package, using the
draw.triple.venn function. The differential abundance
analysis of vOTUs across depth levels was performed
using the likelihood ratio test implemented in DESeq2
[96, 133]. Hierarchical clustering of the viral abundance
patterns of the five viromes was done with the hclust
function (method=complete), and heatmaps were
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created with the pheatmap and dendextend libraries.
The world map was created with the maps library.

Detection of putative viral auxiliary metabolic genes
(AMGs)
VIBRANT [40] and DRAM-v [41] were used to identify
putative AMGs in SPRUCE vOTU sequences. Briefly,
these tools consider gene annotation in order to identify
genes in the input contigs (in this case, our vOTUs) that
have predicted functions in cellular metabolism [40, 41].
Since there is no standardized approach for AMG identi-
fication, we sought to compare results from both tools.
VIBRANT was run (using standard settings) on all
SPRUCE viral contigs that we had previously identified
by either VirSorter or DeepVirFinder (n=2,802 vOTUs).
Because DRAM-v requires VirSorter output, we could
not use all of the DeepVirFinder-derived vOTUs. We re-
ran the 4326 SPRUCE vOTUs through VirSorter, result-
ing in 3780 vOTUs, of which 2645 also appeared in the
VIBRANT output. DRAM-v was applied (using standard
settings) to these 2645 vOTUs. VIBRANT output was
manually screened to determine whether predicted
AMGs had viral genes upstream and downstream [15],
and in many cases, they did not (see supplementary dis-
cussion). DRAM-v includes an analysis to assess the
presence of viral genes upstream and downstream of the
putative AMG, producing an ‘auxiliary score’ as a meas-
ure of confidence in the AMG prediction. From the
DRAM-v output, only putative AMGs with auxiliary
scores < 4 were retained (a low auxiliary score indicates
a gene that is confidently viral), and no viral flag (F),
transposon flag (T), viral-like peptidase (P), or attach-
ment flag (A) could be present. Putative AMGs that did
not have a gene ID or a gene description were also dis-
carded. See supplemental discussion for more
information.
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Additional file 1: Supplementary figure 1: Sampling locations for all
SPRUCE samples. Sampling locations within the S1 Bog at the Marcell
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transect samples and the samples from the SPRUCE experimental
chambers. Numbers next to the brackets show how many and what
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Supplementary figure 2: A: Network of shared predicted protein
content between recovered SPRUCE viruses (n = 4,326), and RefSeq
prokaryotic viral genomes (n = 37). Colored nodes represent vOTUs,
nodes are colored by the dataset(s) from which they were recovered,
and the shared edges represent shared predicted protein content. B:
Distribution of vOTUs into VCs, recovered from each of the three
extraction methods and collection dates. Numbers represent number of
VCs that contain vOTUs from the extraction method(s) listed.
Supplementary Figure 3: Taxonomic classification of soil vOTUs in
PIGEON. Taxonomic classifications were based on vConTACT2.0 clustering
with RefSeq prokaryotic viral genomes. Percentages at the top of each

graph indicate the proportion of vOTUs that were taxonomically
classified, n represents the total number of vOTUs that could be
taxonomically classified. Supplementary figure 4: Comparison of vOTU
recovery from five paired viromes and total soil metagenomes from the
SPRUCE transect. A: Distribution of vOTUs recovered by each of the two
extraction methods, based on read mapping to the PIGEON database,
including all vOTUs recovered from SPRUCE. B: Accumulation curves of
distinct vOTUs recovered as sampling increases for each extraction
method; 100 permutations of sample order are depicted as open circles,
and averages are shown as a line. C: Similar to panel B, but only the
accumulation curve of distinct vOTUs recovered from total soil
metagenomes is shown, with a smaller y-axis maximum to better show
the trend. Supplementary figure 5: Comparison of the five viromes
from the transect. A: Dendrogram depicting sample similarity according
to viral community composition (left) and heatmap (right) of vOTUs de-
tected (green = detected, white = not detected) in the five SPRUCE tran-
sect viromes. B:Comparison of vOTU recovery from the SPRUCE-2 sample
compared to the four other virome samples.
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