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Abstract

Background: The plant microbiome is an integral part of the host and increasingly recognized as playing
fundamental roles in plant growth and health. Increasing evidence indicates that plant rhizosphere recruits
beneficial microbes to the plant to suppress soil-borne pathogens. However, the ecological processes that govern
plant microbiome assembly and functions in the below- and aboveground compartments under pathogen invasion
are not fully understood. Here, we studied the bacterial and fungal commmunities associated with 12 compartments
(e.g., soils, roots, stems, and fruits) of chili pepper (Capsicum annuum L) using amplicons (16S and ITS) and
metagenomics approaches at the main pepper production sites in China and investigated how Fusarium wilt
disease (FWD) affects the assembly, co-occurrence patterns, and ecological functions of plant-associated
microbiomes.

Results: The amplicon data analyses revealed that FWD affected less on the microbiome of pepper reproductive
organs (fruit) than vegetative organs (root and stem), with the strongest impact on the upper stem epidermis.
Fungal intra-kingdom networks were less stable and their communities were more sensitive to FWD than the
bacterial communities. The analysis of microbial interkingdom network further indicated that FWD destabilized the
network and induced the ecological importance of fungal taxa. Although the diseased plants were more
susceptible to colonization by other pathogenic fungi, their below- and aboveground compartments can also
recruit potential beneficial bacteria. Some of the beneficial bacterial taxa enriched in the diseased plants were also
identified as core taxa for plant microbiomes and hub taxa in networks. On the other hand, metagenomic analysis
revealed significant enrichment of several functional genes involved in detoxification, biofilm formation, and plant-
microbiome signaling pathways (i.e, chemotaxis) in the diseased plants.
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Conclusions: Together, we demonstrate that a diseased plant could recruit beneficial bacteria and mitigate the
changes in reproductive organ microbiome to facilitate host or its offspring survival. The host plants may attract the
beneficial microbes through the modulation of plant-microbiome signaling pathways. These findings significantly
advance our understanding on plant-microbiome interactions and could provide fundamental and important data
for harnessing the plant microbiome in sustainable agriculture.
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Background

Plants and the associated microbiomes have co-evolved
for more than 400 millions of years and form a “holo-
biont” within which plant-microbiome interactions play
essential roles in many aspects of host functionality and
fitness [1-5], including nutrient acquisition [6-8], abi-
otic stress tolerance [9], and disease suppression [10,
11]. Consequently, manipulation of the plant micro-
biome is increasingly considered as an environmentally
sustainable approach to protect the plant from disease
and to promote agricultural production [4, 12]. Uncover-
ing the fundamental ecological patterns that govern the
assembly, co-occurrence patterns, and functions of
plant-associated microbiomes and how do plant hosts
modulate their microbiomes under external stress are
prerequisite for harnessing plant microbiomesmicro-
biome to enhance plant health and to maximize crop
production.

Plant microbiome assembly is shaped by multiple bi-
otic and abiotic factors, such as host selection (e.g., plant
compartment and host genetics) [13-15], climate, and
soil type [16, 17]. Apart from the host selection and
herbivorous insects [18], pathogen invasion [19, 20] is
one of the most influential biotic stress affecting plant
microbiome assembly. Accumulating studies on wheat
[21, 22], sugar beet [11], and Arabidopsis thaliana [23]
have shown that the roots of pathogen-infected plants
can attract beneficial microbes for rescue or protect fu-
ture generations (i.e., “cry for help” strategy). The host
plants can attract beneficial microbes by emitting volatile
organic compounds (VOCs) or modifying synthesis and
secretion of particular root exudates [18, 23-26]. The
beneficial microbes acting as keystone taxa of the plant
microbiome could contribute to plant disease suppres-
sion by priming the plant immune system, excreting
antibiotic compounds, and competing resources with
pathogen [27]. In addition to roots, our understanding
of whether other plant organs (e.g., stems and fruits) use
the similar strategy to seek microbial benefits under
pathogen infection is still largely unknown.

A growing body of experimental and observational lit-
erature has provided evidence that the rhizosphere is a
critical zone of the plant and its microbiomes are closely
related to plant performance [9, 13, 25, 28, 29]. On the

other hand, the phyllosphere microbiome, i.e., microbes
inhabiting the aerial parts of the plant, may play essential
but often overlooked roles in plant health, productivity,
and ecosystem function [30-33]. Several recent studies
indicated that infections with aboveground pathogens
alter the plant’s rhizosphere microbial community [23,
26]. Further, the rhizosphere microbiome acting as the
seed banks of the phyllosphere microbiome plays a key
role in determining the aboveground productivity and
health [34, 35]. Bai et al. [36] established leaf- and root-
derived microbiota cultures in Arabidopsis thaliana and
found an extensive taxonomic overlap between them.
Collectively, above studies indicate that the below- and
aboveground microbiomes of plants are systematically
linked. To date, however, most related studies often fo-
cused on the rhizosphere or phyllosphere microbiomes,
and a systematic understanding of microbiome structure
and functions across the rhizosphere, phyllosphere, and
endosphere under pathogen invasion remains unclear.
Also, microbial community assembly is largely influ-
enced by the cooperative and competitive interactions
among the myriad microbial members that perform
functions for plant health as a whole [37, 38]. Co-
occurrence network analysis has been increasingly used
to infer the potential microbial interconnections and in-
terrogate the community stability based on topological
properties [17, 39]. Based on theoretical modeling and
simulation data, microbial networks having the proper-
ties of greater modularity, lower positive correlations
among members, and higher negative correlations
among members are more stable [39-41]. Nevertheless,
our understanding on the potential interactions within
complex plant-associated microbiomes, and how they re-
spond to pathogen invasion, remains scant.

Fusarium wilt disease (FWD) is often caused by the
Fusarium oxysporum species complex [42], a classical
soil-borne disease that attacks a wide variety of econom-
ically important crops [43-45], including banana [46,
47], watermelon, and Solanaceae plants (e.g., tomato,
eggplant, and chili pepper). The pathogen enters
through the root and interferes with the plant’s water-
conducting vessels, leading to brown vascular bundle
formation and wilt symptoms. Chili pepper (Capsicum
annuum L.) is one of the major agricultural crops
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worldwide, and China accounts for over 50% of the
world’s chili pepper production according to the Food
and Agriculture Organization. FWD in pepper is caused
by F. oxysporum f. sp. capsici [42, 48] and leads to severe
production losses annually.

Plants consist of different organs, which are classified
as either vegetative (the root, stem, and leaf) or repro-
ductive (the fruit, flower, and seed), each of which has
specific functions. Since a plant may enhance offspring
fitness [22, 26], we hypothesized that a disease would
more severely affect vegetative organs than reproductive
organs, and that the infected plant recruits protective
microbes to suppress the growth of pathogen. Further,
considering that fungal communities are more respon-
sive to vegetation change than bacterial communities
[49], and that fungi are the first consumers of the below-
ground plant-derived carbon [50-52], we also expected
that the fungal communities of chili pepper are more
sensitive to FWD than bacterial communities. Finally,
considering much evidences linking the taxonomic com-
position and ecological function [30, 53—55], we hypoth-
esized that the disease-induced changes in taxonomic
composition influence the functional adaptation of the
microbiome. To test these hypotheses, we here investi-
gated the effect of FWD on chili pepper microbiomes in
Guizhou, China, where FWD incidence is high and chili
pepper is an important crop. Using a pepper—FWD sys-
tem, we aimed to explore the taxonomic and functional
differences between the microbiomes of healthy and dis-
eased plants using amplicon (both bacterial and fungal)
and metagenomic sequencing. We also compared the
networks of healthy and diseased plant microbiomes to
offer insights into the stability of communities as well as
microbes that tend to co-occur with one another.

Materials and methods

Sampling

All samples were collected in the main chili pepper pro-
duction fields in Huishui (25° 48" 41" N, 106° 31" 24"
E) and Guiyang (26° 29" 31" N, 106° 39" 16" E; 92.1 km
apart), in Guizhou province, southwest China. The two
sites are located in a subtropical monsoon climate zone,
with the same annual mean temperature of 15.8 °C, and
annual mean precipitation of 12134 mm and 1259.8
mm, respectively. The pepper cultivars used were the
same as those planted by local farmers (i.e., line pepper),
with Changla No. 8 at Huishui and N1713 at Guiyang,
respectively. Mature peppers were sampled in August
2018 at both sites. At each site, pepper plants that dis-
played no wilt symptoms and tested pathogen-negative
were classified as healthy; plants that showed wilt, brown
vascular bundle symptoms and tested pathogen-positive
(confirmed by morphological and molecular data; the
primers are listed in Table S1) were classified as diseased
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(Fig. S1). Three replicates of healthy and diseased plants
were collected from three adjacent plots at each site.
Each replicate consisted of a composite sample obtained
by mixing three individual samples. While collecting a
plant sample, a bulk soil sample was collected 20 cm
away from the root, at a depth of 0—15 cm. Rhizosphere
soil (defined as the soil that adheres to the root) was col-
lected from the root by manually shaking. The plant
samples, and the corresponding rhizosphere and bulk
soil of each plant, were transported to the laboratory on
dry ice and stored at —80 °C until further experiment.

DNA extraction and amplicon sequencing

Root and fruit samples were fractionated into the epi-
sphere and endosphere compartments, representing mi-
crobes residing on the root and fruit surface or inside
the organ, respectively. For microbial DNA extraction
from the episphere, 10-20 g fruits or 3-5 g roots (ob-
tained after carefully removing large chunks of soil from
the roots using sterile cotton swabs) were placed in ster-
ile bottles or polystyrene tubes containing release buffer
(0.1 M potassium phosphate, 0.1% glycerol, and 0.15%
Tween 80, pH 7.0; 150 ml for fruit analysis and 35 ml
for root analysis) and sonicated at 40 kHz for 1 min.
The samples were then shaken for 4 min at 200 rpm on
a shaker [14]. This procedure was repeated twice. The
wash liquid was then filtered through a 0.22-um nitro-
cellulose membrane filter (BOJIN, Germany). The filters,
containing episphere microorganisms, were stored at —
80 °C before DNA extraction.

For microbial DNA extraction from the endosphere,
approximately 5 g fruits or roots were treated as above
to dislodge the epiphytes. Then, the plant material was
rinsed with 70% ethanol for 5 min, 5.25% sodium hypo-
chlorite solution for 5 min, and 70% ethanol for 30 s and
finally washed with sterile H,O, five times, for surface
sterilization. The treated fruit and root samples were
ground using sterile mortar and pestle and frozen at —80
°C. The pepper stem samples were divided into the
upper stem section, middle stem section, and bottom
stem section, with each section additionally divided into
the epidermis and xylem, accordingly (Fig. S2). The epi-
dermis and xylem fractions were ground using sterile
mortar and pestle with liquid nitrogen. Total DNA was
extracted from the samples using FastDNA SPIN Kit for
Soil (MP Biomedicals, Solon, USA) following the manu-
facturer’s instructions.

Overall, each plant sample was divided into 12 com-
partments: the bulk soil (BulkS), rhizosphere soil (RHS),
root episphere (Repi) and endosphere (Rendo), bottom
stem epidermis (BS-epidermis) and xylem (BS-xylem),
middle stem epidermis (MS-epidermis) and xylem (MS-
xylem), upper stem epidermis (US-epidermis) and xylem
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(US-xylem), and fruit episphere (Fepi) and endophere
(Fendo) (Fig. 1a and Fig. S2).

The V5-V6 region of bacterial 16S rRNA gene (799F/
1115R) [14, 56] and the fungal ITS2 region (fITS7/ITS4)
[17, 57, 58] were amplified (see Additional file 1 for de-
tails; primer sequences and PCR amplification conditions
are shown in Table S1). Amplicon libraries were se-
quenced on the Illumina HiSeq2500 platform (MEGI-
GENE Biological Company, Guangdong, China).

Analysis of amplicon sequencing data

The bacterial 16S rRNA gene and fungal ITS sequences
were processed using USEARCH v10.0 [59] and QIIM
E v1.9.1 [60]. Briefly, the primer sequences and low-
quality read with scores below Q30 were trimmed.
Paired 16S and ITS reads were merged into a single se-
quence. ITS reads were trimmed to 200 bp and quality-
filtered (maximum expected error 0.5). Biological reads
were identified at 100% sequence similarity using
unoise3 [61] with default parameters. Taxonomic assign-
ment was performed using SILVA reference database
(v12_8) [62] and UNITE database (v7.0) [63] for bacteria
and fungi, respectively. Bacterial zero-radius operational
taxonomic units (ZOTUs) assigned to the chloroplast,
mitochondrion, or viridiplantae, as well as fungal
ZOTUs, assigned to plant or protist were removed.
ZOTUs represented by less than two sequences were
also removed to avoid possible bias.

Cumulative sum scaling (CSS) was used as a
normalization method for bacterial and fungal beta-
diversity analyses [64]. Alpha diversity and beta-
diversity indices of bacterial and fungal communities
were calculated in QIIME v1.91 (using single_rarefac-
tion.py, alpha_diversity.py, and beta_diversity.py scripts);
the bacterial and fungal ZOTU tables were rarefied to
10,250 and 5005 reads for alpha diversity index esti-
mates, respectively. As in previous studies [46, 65], the
core taxa of healthy and diseased plant microbiomes were
defined as ZOTUs present in 100% samples of healthy
and diseased plants, respectively. Fungal ZOTUs were
assigned into functional guilds using the online applica-
tion FUNGuild (http://www.stbates.org/guilds/app.php)
[66]. Confidence ranking of “Highly probable” and
“Probable” was retained for high accuracy.

Metagenomic sequencing workflow and data analysis

Based on the amplicon sequencing data, pepper samples
of the upper stem epidermis and root endosphere col-
lected at Huishui site were selected for metagenomic se-
quencing and characterization. Twelve DNA samples
were sequenced as 150-bp paired-end reads using an
[lumina NovaSeq 6000 instrument (Majorbio Bio-
pharm Technology, Shanghai, China). Approximately 20
GB clean data were obtained for each DNA sample. To
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remove host-derived sequences, Bowtie2 v2.4.1 [67] was
used to build a host genome database (C. annuum culti-
var Zunla-1, NCBI reference sequence ASJU00000000.1)
and the metagenomic data were then mapped against
the host genome database. The remaining reads were as-
sembled by using MEGAHIT v1.2.9 [68], predicted
based on contigs by using Prokka v1.14.5 [69], and clus-
tered at 0.95 similarity threshold by using CD-HIT
v4.8.1 to generate a non-redundant gene catalog. Func-
tional annotation was performed by eggnog-mapper
v1.0.3 [70] using DIAMOND comparison [71] and egg-
NOG databases (v5.0) [72]. The annotation results were
reorganized into Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) Orthology (KO) profiles [73], Clusters of
Orthologous Group of proteins (COG) functional cat-
egories [74], and CAZymes (CAZ) [75]. The antibiotic
resistance genes were detected and reorganized using
ResFams [76]. Functional diversity was calculated using
QIIME v1.91 (using single_rarefaction.py, alpha_diversi-
ty.py, and beta_diversity.py script), and the effect of
FWD on functional dissimilarity was tested using beta-
disper function in vegan package in R [77]. Differential
abundance of the functional genes between healthy and
diseased plant microbiomes was explored via LDA effect
size (LEfSe) analysis (Galaxy web application, http://
huttenhower.sph.harvard.edu/galaxy/) [78]. Taxonomic
classification of metagenomic sequence data was inferred
using Kraken 2 [79], which generates k-mer matches to
achieve high accuracy with fast classification speed. Spe-
cies abundance was calculated using Bracken [80], a
companion program of Kraken 2.

Statistical analysis

Alpha diversity indices (e.g., Shannon index and Chaol
index) were calculated using QIIME v1.91 (alpha_diver-
sity.py). The differences among samples of each com-
partment from healthy and diseased plants were tested
using Wilcoxon rank-sum tests. Linear-mixed models
(LMMs) were employed to identify the major drivers of
alpha diversity index and community compos-
ition (phylum and class levels). The variable strength
was compared using type II analysis of variance
(ANOVA) and R’ was calculated for the model [81].
Bray—Curtis distance matrices were calculated and visu-
alized using non-metric multi-dimensional scaling
(NMDS) ordinations to assess the bacterial and fungal
community beta-diversity. Permutational multivariate
analysis of variance (PERMANOVA) statistical tests
were performed to determine the effects of different fac-
tors on the community dissimilarity using “adonis” in
vegan R package [82], with 1999 permutations and using
Bray—Curtis distance matrix as an input. PERMANOVA
was also implemented to test the impacts of FWD and
sampling site in single compartments. To calculate beta-
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Fig. 1 Assembly of pepper bacterial and fungal communities. a Diagram of a pepper plant, and the below- and aboveground compartments,
including the soil, root, stem, and fruit. b Non-metric multi-dimensional scaling (NMDS) ordinations of Bray—Cutis dissimilarity matrices with
permutational analysis of variance (PERMANOVA), showing significant association of the bacterial (left) and fungal (right) community composition
with, in the order of importance, the compartment (8> = 0.47 for bacteria and R> = 0.53 for fungi), Fusarium wilt disease (FWD, R? = 0.06 and 0.03,
respectively), and sampling site (8> = 0.01 and 0.02, respectively). ¢ Contribution of FWD and sampling site to the variation of bacterial (left) and
fungal (right) communities in a single compartment, based on PERMANOVA. FWD explains the higher variation of fungal community than that of
the bacterial community in most compartments. d Beta-dispersion analysis (based on Bray—Cutis dissimilarity) indicating higher dissimilarity of the
bacterial (left) and fungal (right) communities in diseased plants than in healthy plants .e—f Shannon diversity indices of bacterial and fungal
communities in the 12 compartments of healthy (red) and diseased (blue) plants
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dispersion, betadisper function in vegan R package,
which is a multivariate analog of Levene’s test for homo-
geneity of variances, was performed. Differential abun-
dance analysis between healthy and diseased plant
microbiomes was calculated using EdgeR’s generalized
linear model (GLM) approach in “edgeR” R package
[83], using a trimmed mean of M-values (TMM)
normalization method and a threshold of significance at
P < 0.001.

Co-occurrence network analysis

Co-occurrence patterns were reconstructed by calculat-
ing multiple abundance correlations based on genus-
level matrices using co-occurrence network (CoNet) app
in Cytoscape [84]. A co-occurrence was considered to be
robust if the Spearman’s correlation coefficient (p) was >
0.70 and P < 0.05. The P values were adjusted using
Benjamini—-Hochberg procedure to minimize false-
positive signals [85]. The networks were visualized using
the interactive platform Gephi [86]. Nodes represent the
individual microbial genera, and edges represent the
pairwise correlations between the nodes in the micro-
biome network, indicating biologically or biochemically
meaningful interactions.

The calculated topological characteristics of bacterial
and fungal networks included the numbers of co-
occurrence (positive) and mutual exclusion (negative)
correlations, average path length, network diameter,
average clustering coefficient, average connectivity, and
modularity. The roles of individual nodes were deter-
mined based on topologicalfeatures of degree and closeness
centrality [15]. The hub taxa in each network were iden-
tified as the top 10 nodes with the highest degree and
closeness centrality. Network stability was measured by
the proportion of negative or positive correlations and
the modularity [17, 39, 40].

Results

FWD affects pepper microbiome assembly

In total, 8,672,206 bacterial 16S rRNA and 7,677,988
fungal ITS high-quality reads were obtained from 144
samples. These reads were sorted into 14,976 bacterial
ZOTUs and 4277 fungal ZOTUs. To examine the di-
mensions in which the factors that shape the pepper
microbiome, we assessed the relative contribution of
multiple factors in terms of plant compartment, FWD,
and sampling site in shaping the microbial communities.
NMDS ordinations and PERMANOVA analysis revealed
the greatest effect on the total microbiome exerted by
the compartment (R = 0.47 for bacteria and R* = 0.53
for fungi, P < 0.001 for both), followed by FWD (R =
0.06 for bacteria and R°= 0.03 for fungi, P =< 0.001 for
both), and the sampling site (R°= 0.01 for bacteria and
R?= 0.02 for fungi, P < 0.001 for both) (Fig. 1b and Table

Page 6 of 18

S2). FWD explained a higher proportion of variation of
the fungal community than that of the bacterial commu-
nity in the root endosphere, bottom stem epidermis,
middle stem epidermis and xylem, upper stem epidermis
and xylem, and fruit episphere (Fig. 1c, Table S3, and
Table S4). Notably, FWD affected the fungal community
in the pepper fruit to a lesser extent than it affected the
community in the stem and root (root/stem/fruit R*:
0.17/0.22/0.13, on average, respectively; Fig. lc and
Table S4). Similarly, the impact of FWD on the bacterial
community was stronger in the stem than in the fruit
(stem/fruit R*: 0.16/0.13, on average, respectively; Fig. 1c
and Table S3). For the stem, the effect of FWD on both
bacterial and fungal communities was more pronounced
in the epidermis (bacteria/fungi, R* 0.19/0.29, on aver-
age) than in the xylem (bacteria/fungi, R% 0.12/0.145, on
average) (Fig. 1c, Table S3 and Table S4). In all compart-
ments, FWD most affected the fungal community in the
upper stem epidermis and root endosphere (R* = 0.39, P
=< 0.001 in the upper stem epidermis; and R = 0.25, P
=< 0.001 in the root endosphere) (Fig. 1c and Table S4).
By contrast, sampling site explained higher proportion
of variation of the bacterial communities than FWD in
most compartments (Fig. 1c and Table S3). In addition,
both the bacterial (P = 0.012) and fungal communities
(P = 0.037) in diseased plants were more variable than
those in healthy plants, as determined based on beta-
dispersion using Bray—Curtis dissimilarity (Fig. 1d). For
each compartment, bacterial communities were more
variable in the diseased plants than the healthy plants in
the bulk soil, root endosphere, bottom stem epidermis
and xylem, upper stem epidermis, and fruit episphere
(Table S5). Fungal communities were more variable in
the diseased plants than the healthy plants in the bulk
soil, rhizosphere soil, middle stem xylem, upper stem
epidermis, and fruit episphere (Table S5).

We next used LMMs to explore the most important
driver of microbial alpha diversity. The analysis revealed
that the plant compartment was the main factor influen-
cing the alpha diversity of both bacterial and fungal
communities based on Shannon diversity indices (P <
0.0001, Table S6). The effect of FWD on the alpha diver-
sity was significant for both fungal (P = 0.00172) and
bacterial (P = 0.023, Table S6) communities. Fungal alpha
diversity was significantly lower in the upper stem epi-
dermis, bottom stem epidermis, root endosphere, and
rhizosphere soil under FWD than those in the healthy
plants (P < 0.05, Fig. 1f). The sampling site had a prom-
inent effect on the alpha diversity of bacterial communi-
ties (P = 0.006); however, it had no significant effect on
the alpha diversity of fungal communities (P = 0.831,
Table S6). In addition, the alpha diversity of fungal com-
munity in the fruit was not significantly different from



Gao et al. Microbiome (2021) 9:187

that in the bulk soil in terms of Shannon diversity index
and Chaol richness index (P > 0.05, Fig. S5b and d).

We identified 25 core bacterial taxa and 12 core fungal
taxa in healthy plants, and 23 core bacterial taxa and 16
core fungal taxa in diseased plants (Additional file 2).
Among these core taxa, 20 bacterial taxa and 12 fungal
taxa were present in both healthy and diseased plants.
Regarding the compositional variation, LMM analysis in-
dicated that FWD had a significant effect on the relative
abundance of class Tremellomycetes (P < 0.05), which
belongs to saprotroph (Yeast) functional guild, but not
on any bacterial phyla (Fig. 2b, Fig. S5h, Fig. S6a and b,
and Table S7). Differential abundance analysis also indi-
cated an increased abundance of Tremellomycetes in dis-
eased plant stems at both sampling sites (Fig. S9 and Fig.
S10b). Taxa enrichment and depletion in the diseased
plants were more pronounced in the stem epidermis
than in the xylem at both sampling sites, when com-
pared with the healthy plant samples from the respective
compartments (P < 0.001, Fig. S7-S9). The relative
abundance of several potential pathogenic fungi from
the genera Diaporthe, Fusarium, Phomopsis, Plecto-
sphaerella, Stemphylium, and Cryptococcus was also sig-
nificantly higher in the diseased plant root and stem
than in the healthy plant (P < 0.001, Fig. 2b and d).
Three Fusarium ZOTUs (ZOTU4, ZOTU10, and
ZOTU15) that were significantly enriched in the dis-
eased plants were also identified as the core fungal taxa
in both healthy and diseased plants (Fig. 2d and f, Add-
itional file 2). However, several potential beneficial bac-
teria from the genera Pseudomonas, Streptomyces,
Klebsiella, Enterobacter, Microbacterium, Bacillus, Chiti-
nophaga, and Citrobacter were significantly enriched in
the diseased plants (P < 0.001, Fig. 2b a and ¢, and Fig.
S6¢). For each site, the top 3 potential beneficial bacteria
enriched in the diseased plant belonged to Streptomyces,
Microbacterium, and Pseudomonas at Guiyang and Ba-
cillus, Bacillus, and Pseudomonas at Huishui (P < 0.001,
Fig. S10c). In addition, some potential beneficial bacteria
that were significantly enriched in diseased plants, in-
cluding  Streptomyces (ZzOTU2),  Pseudomonas
(ZOTU16), Pseudomonas (ZOTU17), and Bacillus
(ZOTU30) were also identified as the core bacterial taxa
in both healthy and diseased plants (Fig. 2c and e, Add-
itional file 2).

FWD affects pepper microbiome co-occurrence networks

To investigate how FWD affects the pepper microbiome
co-occurrence patterns, we analyzed the bacterial-bac-
terial and fungal-fungal intra-kingdom networks, as well
as the bacterial-fungal interkingdom networks. Based on
intra-kingdom network analysis, we recorded a higher
proportion of negative edges and modularity in the bac-
terial networks (proportion of negative edges/
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modularity: 37.8%/0.464 in healthy and 19.9%/0.501 in
FWD) than in the fungal networks (proportion of nega-
tive edges/modularity: 0%/0.269 in healthy and 1%/0.317
in FWD; Table S10). We also recorded a higher number
of nodes and edges in the bacterial networks than in the
fungal networks (Fig. 3a, Table S10). Further, the edges
of top 10 hub nodes with high degree and closeness cen-
trality values in the bacterial networks were primarily
negative with other nodes, particularly in the healthy
network (Fig. 3b and c). By contrast, most edges of the
fungal networks were primarily positive (Fig. 3b and c).
In addition, the bacterial network in healthy plants was
more complex (based on the number of nodes and
edges) than that in diseased plants; however, a contrast-
ing pattern was observed for the fungal networks (Fig.
3b, d, and e, and Table S10), especially at the Huishui
site (Fig. S11d).

The interkingdom co-occurrence networks further in-
dicated that FWD destabilized the network and in-
creased the intra-kingdom correlations among fungal
taxa. The proportion of negative edges and modularity
were higher in the healthy networks (proportion of nega-
tive edges/modularity: 42.8%/0.535) than in the diseased
networks (proportion of negative edges/modularity:
34.9%/0.524; Table S10). The number of nodes and
edges of fungal taxa was higher in the diseased network
than in the healthy network, while an opposite pattern
was observed among the bacterial taxa (Fig. 4a—c, Fig.
Slle, and Table S10-S11). The BF (bacterial-fungal)
interkingdom correlations were primarily negative
(92.1% in healthy network and 78.3% in diseased net-
work), whereas positive correlations dominated the
intra-kingdom correlations (60% BB and 98% FF in
healthy plants network, and 66% BB and 99% FF in dis-
eased network) (Fig. 4d). The top 10 hub taxa were bac-
terial in the healthy network, while fungal taxa
accounted for half of the top 10 hubs in the diseased
plant network (Fig. 4e Tableand Table S12). Similar pat-
terns were apparent in most single-compartment net-
works (Fig. S12). Furthermore, several bacterial taxa,
such as Microbacterium, Streptomyces, and Pantoea,
enriched in the diseased plants were also identified as
the top hub taxa in the networks (Table S8, Table S12,
and Additional file 2).

FWD affects pepper microbiome function

We used metagenomic sequencing approach to explore
the functional shift in the pepper-associated micro-
biomes that potentially induced by FWD. Since the
microbiomes on upper stem epidermis and root endo-
sphere present stronger responses to FWD than other
compartments, we selected these two compartments
from Huishui site for metagenomic sequencing. The
metagenomic sequencing data were assigned to 6296
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Fig. 2 Volcano plot illustrating the enrichment and depletion patterns of bacterial and fungal microbiomes in the diseased organs compared
with the healthy organs. a Effect of FWD on the abundance of bacterial ZOTUs (relative abundance > 0.1%, 2549 in total). The symbols
correspond to FWD-enriched (square) and FWD-depleted (triangle) ZOTUs. b Effect of FWD on the abundance of fungal ZOTUs (relative
abundance > 0.1%, 1030 in total). Note the functional guild information is presented in Fig. S6b. ¢ 0.001).Relative abundance of potential
beneficial bacteria is significantly increased in the diseased plants compared with the healthy plants (P < 0.001). The enrichment and depletion
patterns of potential beneficial bacteria in the diseased root, stem, and fruit organs compared with healthy organs are presented in Fig. S6c.
d (< 0.00Relative abundance of plant pathogenic fungi is significantly increased in the diseased plants compared with the healthy plants (P <
0.001).Taxonomic information for the top enriched and depleted taxa are provided in Table S8 and Table S9. e Several bacterial ZOTUs enriched
in the diseased plants were also identified as the core bacterial taxa in both healthy and diseased plants f Several fungal ZOTUs enriched in the
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bacterial species and 57 fungal species. Differential abun-
dance analysis of community composition revealed that
several potential beneficial bacteria, such as Enterobac-
ter, Klebsiella, Citrobacter, and Pseudomonas were sig-
nificantly enriched in the root endosphere and upper

stem epidermis compartments of the diseased plants
(P < 0.001, Fig. 5a) when compared with the healthy
plants. Several potential pathogenic fungi, such as
Fusarium and Cryptococcus, were more abundant in
the diseased plants than in the healthy plants (P <
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taxa is presented in Table S12. ¢ Degree and interaction type of the top 10 hub nodes in four networks, showing a higher number of negative
correlations in bacterial networks than in fungal networks. The degree (d) and edges (e) of bacterial and fungal taxa showing the higher
complexity of the healthy bacterial network than that of the diseased bacterial network, with the opposite pattern showed in the fungal
networks. The significance of difference was determined by nonparametric Kruskal-Wallis test

0.05, Fig. 5b). These observations were consistent
with the amplicon sequencing data (Fig. 2c and d).

Metagenomic analysis indicated that the functional
composition (i.e, NMDS ordinations of KO, CAZ, and
ResFam) of the diseased upper stem epidermis micro-
biome differed significantly from that of the healthy
plant (P < 0.05, Fig. 5c), but not in the root endosphere
microbiome (Fig. S14a). While FWD was linked to a de-
crease in the microbiome functional diversity of KO (P =
0.0314), COG (P = 0.0074), and Resfam (P = 0.0065)
profiles of the upper stem epidermis, we did not observe
significant changes on functional diversity in the root
endosphere microbiome (Fig. 5d).

To determine how FWD affects the microbiome func-
tional properties, we performed differential abundance
analysis. The numbers of specifically enriched or

depleted microbiome functional traits in the diseased
upper stem epidermis were higher than those in the root
endosphere (with healthy plants used as a baseline)
(Table S13). Compared with the healthy plant, phoD al-
kaline phosphatase gene (K01113) and mprF peptide
antibiotic resistance gene were depleted in the micro-
biome of the diseased root endosphere, while vanco-
mycin resistance gene clusters were depleted in the
microbiome of the diseased upper stem epidermis (P <
0.05, Fig. 5e, Fig. S14c and f, and Table S14). Further, a
functional gene csgD related to LuxR family transcrip-
tional regulator (K04333) was enriched in the micro-
biome of the diseased root endosphere;modules involved
in UDP-glucuronosyltransferase (GT1) and replication,
recombination, and repair (COG_L) were enriched in
the microbiome of the diseased upper stem epidermis (P
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< 0.05, Fig. 5e, Fig. S14c—e, and Table S14). In addition,
several functional genes involved in plant-microbiome
signaling pathways (according to KO profile) were more
abundant in the microbiome of the diseased root endo-
sphere than in the healthy. For instance, the relative
abundance of genes associated with methyl-accepting
chemotaxis proteins (MCPs; K03406, K05874, K05875,
and K11525) was increased by 33.2-218.2% in the
microbiome of the diseased root endosphere, compared
with the healthy plant (Fig. 5f). The relative abundance
of the functional genes associated with the downstream
of MCPs, such as histidine kinase CheA (K03407) and
purine-binding chemotaxis protein CheW (K03408), also
increased by 15.0-40.3% in the microbiome of the dis-
eased root endosphere, compared with the healthy plant

(Fig. 5%).

Discussion

In this study, we sought to investigate the effect of FWD
on chili pepper microbiomes using amplicons and meta-
genomic approaches. By profiling both bacterial and fun-
gal communities in twelve below- and aboveground
compartments of healthy and FWD pepper plants, we
reveal that fungal networks are less stable and their
communities are more sensitive to FWD than the bac-
terial communities. FWD has a stronger impact on the
microbiome assembly of vegetative organs than on those
of reproductive organs, with the strongest effects on the
upper stem epidermis and root endosphere. Metage-
nomic sequencing data from these two compartments
further suggested that several functional genes involved
in detoxification, biofilm formation, and plant—micro-
biome signaling pathways (i.e., chemotaxis) were
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and their downstream targets in the root endosphere

Fig. 5 Microbiome functional diversity and differential abundance of functional genes/modules between the healthy and diseased plants based
on KO, COG, CAZ, and ResFam functional profiles. a Enrichment and depletion of potential beneficial bacteria in the diseased plants compared
with the healthy plants, as determined by metagenomic data analysis. "Rendo" represents root endosphere and "US-epidermis" represents upper
stem epidermis. b Enrichment and depletion of potential pathogenic fungi in the diseased plants compared with the healthy plants, as
determined by metagenomic data analysis. ¢ NMDS ordinations of functional genes based on Bray—Curtis distance matrices of KO, CAZ, and
ResFam functional genes showing the diseased upper stem epidermis microbiome significantly differed from that of the healthy plant. No such
significant differences were apparent in the root endosphere microbiome (shown in Fig. S14a). d FWD significantly decreased the functional
diversity of KO (P = 0.0314), COG (P = 0.0074), and Resfam (P = 0.0065) profiles in the upper stem epidermis microbiome, but showed no
significant effect on the root endosphere microbiome (P > 0.05). e Differential abundance analysis of microbiome functional genes between the
healthy (red) and diseased (blue) plants. f Relative abundance of microbiome functional genes involved in methyl-accepting chemotaxis proteins

significantly enriched in the FWD plants. Moreover, our
work provides evidence that other organs of pepper
plants besides the root, such as stem and fruit, can also
recruit potential beneficial bacteria to the FWD plants.
Through this work, we provide evidence that FWD not
only changes the diversity, assembly, and network of mi-
crobial communities, but also impacts their ecological
functions. Below, we discuss how these findings have ad-
vanced our understanding of disease-induced changes in
plant microbiome assembly, co-occurrence patterns and
functions.

FWD affects less on the microbiome of reproductive
organs than vegetative organs

Uncovering how the host plant and its associated micro-
biomes respond to plant disease is of great importance
to advance the co-evolutionary theory of plant-
microbiome interactions [87]. Our study demonstrated
that FWD affects the bacterial and fungal communities
in the reproductive organ (fruit) to a lesser extent than
those in vegetative organs (root or stem). Changes in the
fungal community were associated with co-infection
with other potential fungal pathogens in the root and
stem, but not in the fruit. Thus, the less-pronounced ef-
fect of FWD on the fruit, relative to that on the root and
stem, may represent a life history tradeoff strategy of a
plant to ensure survival of the next generation (fruit and
seed) rather than investing in the contemporary diseased
individual. Secondary metabolites, such as capsaicinoids,
may protect the chili fruit and seed from fungal patho-
gens [88].

The strongest effect of FWD on microbial communi-
ties was in the upper stem epidermis compared with
other soil and plant compartments. FWD-induced
changes in plant physiological characteristics, such as
water relations [89], could strongly affect the above-
ground parts of the plant. For the stem, the effect of
FWD on both bacterial and fungal communities in epi-
dermis compartments was more pronounced than that
on those in the xylem compartments. The epidermis is a
more favorable niche for microbes than the xylem in
terms of accessibility of organic nutrients (such as small

sugars) [90, 91]. For the root, a pronounced effect of
FWD on the bacterial and fungal communities was ob-
served in the endosphere than in the episphere, for
which the epidermis and xylem were not considered sep-
arately in the current study. The episphere was supposed
to be an important interface between the host and
the environment, and the root episphere microbiomes
were determined by both host selection and soil charac-
teristics [13, 14]. Since fungi are the important con-
sumers of belowground inputs of plant-derived carbon
[50-52], the mycobiome in the root endosphere could
respond strongly to FWD.

The microbial communities in the diseased plants
were more variable than those in the healthy plants in
most compartments. This is contrary to the expectation,
based on homogeneous selection [92], that the same en-
vironmental selection pressure often leads to similar
community structures. Plant-associated microbiomes
were shaped by multiple host and environmental factors,
such as plant compartment, host genetics, and edaphic
factors. A recent study indicated that host selection (i.e.,
compartment niche and host species) has a greater de-
termining effect on shaping the plant microbiome than
the environmental factors [14]. The pronounced effect
of the host compartment observed herein for pepper has
been also observed in sorghum [93] and Populus [16,
94]. The current study provides additional evidence in
support of the niche occupation theory of plant micro-
biome assembly [37, 94] under both healthy and dis-
eased conditions. Having observed a predominant effect
of the host compartment on microbial community com-
position, we propose that disease may lessen the plant
effect and, thereby, potentiate community dissimilarity
in the diseased plant.

Fungal communities are more sensitive to FWD than
bacterial communities

Cooperative and competitive interactions among micro-
bial species and network modularity can influence the
community stability [40, 95]. In this study, bacterial net-
works and their hub taxa in both healthy and diseased
plants were characterized by a higher proportion of
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negative correlations than those in the fungal networks.
Mutually negative interactions, indicating ecological
competition, can improve microbiome stability by damp-
ening the destabilizing effects of cooperation [40]. The
host may benefit from microbial competition, which re-
sults in improved resistance to external stress [53]. In
contrast to bacterial communities, the fungal communi-
ties were more affected by FWD, probably due to en-
hanced positive intra-kingdom correlations among
fungal taxa observed in FWD networks as compared
with the healthy networks. Also, lower modularity in
fungal network may exacerbate the destabilizing effect
due to the higher prevalence of cross-module correla-
tions among taxa [39, 41]. These findings indicate that
fungal community was more sensitive to FWD than bac-
terial communities as demonstrated by its lower network
stability. A previous study reported that soil bacterial
networks were less stable under drought stress than fun-
gal networks [17]. Since our samples were plant-
associated compartments and the external stress is bi-
otic, these could account for the contrasting results.

Our results indicated that sampling site had a higher
impact on the bacterial community than on the fungal
community. The sampling site effect represented the
interaction effect of site-dependent environmental char-
acteristics (e.g., climate and soil type) and the cultivar
(host genotype) at each site, which may co-influence the
microbiome composition. Bacteria and fungi differ in
body size [96, 97], diversity, metabolic activity [98], dis-
persal potential [99], and the interaction with host or
other microbes, which may affect species sorting and the
community assembly process.

Our data indicated that FWD decreased the complexity of
bacterial networks but increased the complexity of fungal
networks. The contrasting pattern between the bacterial and
fungal networks parallels recent observation based on soil
macroecological patterns of Fusarium wilt [100]. Previous
study has revealed the importance of the network complexity
[53] and hub taxa [101, 102] in supporting ecosystem func-
tions. The fungal connectivity, mainly belonging to intra-
kingdom cooperative interactions, increased in the diseased
plants, thus inducing the ecological importance of fungal
taxa. In addition, we found the cooperative correlations dom-
inated within each microbial kingdom but the competitive
correlations dominated between bacteria and fungi, which
may be explained by the fact that the bacteria and fungi nor-
mally compete for plant-derived substrates [52].

Disease-induced changes in microbiome composition and
functions

Deciphering the keystone taxa (e.g., biomarker taxa, core
taxa, and network hubs), and their correlations with the
host plant and pathogens, is critical for harnessing the
plant microbiome to enhance plant growth and health
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[4, 12]. Several potential beneficial bacteria, such as
Pseudomonas, Streptomyces, and Bacillus, were enriched
in diseased plants in the current study, which were also
identified as the core taxa (i.e., present in all samples) in
plant microbiomes. Previous studies have revealed that
many members of the Pseudomonas, Streptomyces, and
Bacillus genera colonize different plant compartments
(e.g., phyllosphere and rhizosphere) and play a vital role
in modulating host performance, especially in plant
pathogen suppression [4, 54, 87, 103, 104]. For example,
Streptomyces is well known for excreting antibiotic com-
pounds and can protect plants from pathogens [105—
107]. Pseudomonas and Bacillus are the two most dom-
inant taxa of plant-beneficial bacteria, and some repre-
sentatives of these two genera can coexist and cooperate
with each other [21]. Our results indicated that the host
plant may selectively regulate the community abundance
of some core taxa under pathogen stress. Further, several
bacterial taxa, such as Microbacterium, Streptomyces,
and Pantoea, were enriched in diseased plants and were
also identified as hub taxa in the co-occurrence net-
works. Hub taxa hold key topological positions within
the network and may be deployed to organize favorable
plant microbiomes [12]. For instance, a study on Arabi-
dopsis thaliana suggested that the host plant selectively
impacts its associated microbiomes and microbe-
microbe interactions by modulating the hub taxa Albugo
laibachii and Dioszegia spp. in the phyllosphere [15].
The overlap between the biomarker taxa, core taxa, and
network hubs suggests that some bacterial taxa recruited
by the diseased plants may act as keystone taxa for plant
microbiomes and ensure the survival of the next
generation.

The current study provides evidence on the critical
role of bacterial taxa in the “cry for help” strategy of the
host plant, in which the plant actively involves its micro-
bial partners to maximize its or its offspring survival and
growth under external stress. This is a survival strategy
conserved across the plant kingdom [18, 25, 87]. For ex-
ample, a study of sugar beet Rhizoctonia damping-off
disease indicated that members of the Chitinophagaceae
and Flavobacteriaceae become enriched within the plant
endosphere upon pathogen invasion and that recon-
struction of a synthetic community of Flavobacterium
and Chitinophaga consistently suppresses fungal root
disease [11]. Several recent studies also suggested that
the aboveground pathogen infection induces an assem-
blage of a plant-beneficial bacterial consortium in the
root microbiome [23, 26]. Berendsen et al. [23] reported
that A. thaliana specifically promotes three bacterial
taxa (Stenotrophomonas sp., Xanthomonas sp., and
Microbacterium sp.) in the rhizosphere upon foliar infec-
tion with Hyaloperonospora arabidopsidis, and together
these three bacteria will induce systemic resistance
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against pathogen and promote growth of the plant. Simi-
larly, based on the pepper data presented in the current
study, an infection with a soil-borne pathogen (e.g.,
FWD) has driven the recruitment of beneficial microbes
to the aboveground parts of the host plant. Intriguingly,
Liu et al. [22] provided evidence for the recruitment of
beneficial microbes to the wheat rhizosphere and root
endosphere to suppress the soil-borne pathogen Fusar-
ium pseudograminearum. The study also showed that
the beneficial microbe Stenotrophomonas rhizophila
could boost plant defenses in the aboveground parts
when the pathogen was present.

Metagenomic analyses indicated that microbiome
functional genes involved in detoxification, chemotaxis,
and biofilm formation were enriched in the diseased
plant compared with the healthy plant. UDP-
glucuronosyltransferases were enriched in the micro-
biome from the upper stem epidermis of diseased pep-
per. UDP-glucuronosyltransferases encode a family of
detoxifying enzymes [108-110] that may detoxify the
toxic metabolites, such as fusaric acid, trichothecenes,
fumonisins, and enniatins produced by Fusarium spp.
[45, 111] or by other co-infected pathogenic fungi. CsgD
LuxR family transcriptional regulator was enriched in
the microbiome of diseased root endosphere. This is the
master regulator of biofilm formation pathway, which
could protect microbes from the adverse environmental
conditions, thereby enhancing microbial survival [112—
114]. Several genes encoding MCPs associated with
plant-microbiome signaling pathways were enriched in
the microbiome of diseased root endosphere. MCPs are
the predominant chemoreceptors in motile bacteria that
alter the activity of CheA histidine kinase and the bac-
terial swimming behavior upon detection of specific che-
micals [115]. MCPs have been identified in typically
beneficial bacteria, e.g., Bacillus subtilis [116] and
Pseudomonas spp. [117, 118], which were also signifi-
cantly enriched in diseased plant in the current study.
Under stress conditions, such as pathogen invasion, a
plant can attract distant beneficial microbes by actively
releasing nonvolatile root exudates, such as amino acids,
nucleotides, and long-chain organic acids [26], or by ac-
tively emitting blends of volatile organic compounds
[24]. The findings of the current study suggest that the
MCP gene enrichment in diseased plants may be related
to the response of MCP-producing bacteria to plant-
released signal molecules. These bacteria would use
MCPs to detect specific concentrations of these mole-
cules in the extracellular matrix, enabling directional ac-
cumulation of the bacteria to the plant. Although the
taxonomic and functional analyses of healthy and dis-
eased pepper microbiomes provide evidence for the
plant “cry for help” strategy, culture-based experiments
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are required to verify the hypothesis. Specifically, the
enriched potential beneficial bacteria should be isolated
and their disease-suppressing effects tested in vivo. The
putative plant signal molecules released under biotic
stress are also worthy of further exploration.

Finally, metagenomic analyses revealed that FWD sig-
nificantly decreased the functional diversity of KO,
COG, and Resfam profiles of the microbiome of the
upper stem epidermis. The functional diversity reduction
could be largely caused by a drop in microbial diversity.
A number of studies have demonstrated the importance
of biodiversity for ecosystem function [119-122]. Simi-
larly, our data showed that high microbiome diversity in
healthy plant could ensure its better involvement in
multiple ecosystem functions. Highly diverse micro-
biome communities tend to be more complex and pos-
sess greater functional redundancy and interkingdom
associations [53]. By contrast, pathogen invasion could
reduce the microbiome diversity and functional diversity
as a result of disease-induced inhibition of plant photo-
synthesis [123] and change in water physiological char-
acteristics [89]. In the current study, the relative
abundance of alkaline phosphatase gene phoD, which is
responsible for the recycling of organic phosphorus, was
reduced in the diseased root endosphere, suggesting that
the FWD affects plant phosphorus absorption [124].
Greater functional variation in the upper stem epidermis
microbiome than that in the root endosphere micro-
biome may also reflect the density of microbes sur-
rounding each plant organ, which is vastly greater in the
root than in the stem [36].

Conclusions

Based on the presented data, the host compartment
exerts the strongest effect on the bacterial and fun-
gal microbiome assembly, followed by FWD, and
the sampling site. Fungal communities are more
sensitive to FWD than bacterial communities, and
fungal taxa play a more important role in the dis-
eased co-occurrence interkingdom network than the
healthy network. Microbiomes of the reproductive
compartments are less affected by FWD than those
of the vegetative compartments. The compartments
of diseased pepper plant may recruit beneficial bac-
terial taxa that could provide protective functions
to host plants. The current study siginificantly im-
proves our understanding on microbiome assembly
and function in both the below- and aboveground
compartments of chili pepper under FWD and pro-
vids potential for manipulating the plant micro-
biome to promote plant health and sustainable
agricultural production.
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