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Abstract

Background: Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable
directly from a complex microbial community using standard next generation DNA sequencing. Long-read
sequencing offers the potential to identify a wider range of species and to differentiate between strains within a
species, but attaining sufficient accuracy in complex metagenomes remains a challenge.

Methods: Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR)
sequencing technology that generates highly accurate long reads from standard short reads.

Results: LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from
complex samples. LoopSeq perfectly recovered the full diversity of 165 rRNA genes from known strains in a
synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the
accuracy reported for other long-read sequencing technologies. 185-ITS and genomic sequencing of fungal and
bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length.
LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from
retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne
pathogens.

Conclusions: The order-of-magnitude improvement in length and accuracy over standard Illlumina amplicon
sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-
biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using
standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a
significant hurdle on the path to precision microbial genomics.
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Introduction in part due to short sequencing reads not containing

The characterization of bacterial species and strains dir-
ectly from complex microbial samples using amplicon
sequencing — in which PCR-amplified DNA fragments
(amplicons) from complex genetic mixtures are se-
quenced — is still an ongoing challenge in microbiology
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enough information to support highly resolved phylo-
genetic classification. In recent years, the development
of long-read sequencing technologies and concomitant
advances in their cost-efficiency and accuracy has
brought disruptive change to a variety of important bio-
logical applications. Long-read sequencing has largely
trivialized the generation of complete and accurate de
novo bacterial genomes [26], has expanded and im-
proved the enumeration of transcriptional isoforms [5,
37, 38] and immune repertoires [8], and has vastly im-
proved the detection and description of structural
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genetic variation [30]. Long-read sequencing has become
increasingly attractive for amplicon sequencing as well
[12, 21, 28]. Long-read amplicon sequencing approaches
based on PacBio and Oxford Nanopore sequencing tech-
nologies are being developed and deployed in a wide
variety of applications (Caskey 2017 [14, 17, 29];), but a
combination of error rates, cost, and more limited avail-
ability of long-read sequencing capacity continues to im-
pede their widespread application.

Synthetic long-read (SLR) sequencing technologies are
appealing because they can leverage inexpensive, accur-
ate, and widely available short-read sequencing plat-
forms such as those from Illumina to generate accurate
long-read sequencing data. However, SLR technologies
that were previously commercialized by 10x Genomics
[40] and Moleculo [27] were not compatible with ampli-
con sequencing because they assign the same identifier
to multiple DNA molecules in the same well/droplet,
which is not amenable to reconstructing the sequence of
single long molecules. Other SLR methods exist that
utilize unique molecular identifiers (UMIs) instead of
well/droplet identifiers to tag each DNA molecule with
an identifier that can be read by DNA sequencing to
identify each molecule, but their chemistries limit their
read lengths [9, 23] and these methods have not been
commercialized.

We evaluated a new commercially available long-read
microbiome sequencing technology that builds upon
earlier academic work in SLR sequencing [20, 36]. Spe-
cifically, LoopSeq’s SLR chemistry addresses the largest
limitation of first [27] and second [40] generation SLR
technologies by enabling contiguous short read coverage
of single, long DNA molecules. Long DNA molecules
are barcoded with UMIs that are then intramolecularly
distributed throughout the molecule. After fragmenta-
tion, short reads that share the same UMI are used to
reconstruct the sequence of the long molecule. Add-
itionally, first [27] and second [40] generation SLR se-
quencing assigned the same well/droplet barcode to
many different DNA molecules and were therefore lim-
ited to sequencing molecules with a high degree of dis-
similarity, which is not compatible with microbiome
amplicon sequencing (e.g., 16S sequencing). LoopSeq’s
technology enables the reconstruction of SLRs from
mixtures of highly homologous long molecules because
UMIs are specific to each input molecule. Even and deep
(~30x) short read coverage along UMI barcoded mole-
cules enables an error-correction-by-consensus mechan-
ism that, in principle, could yield very low error rates in
the reconstructed long reads.

In this paper, we report on the exceptional accuracy of
LoopSeq SLR sequencing in a defined mixture of known
bacterial sequences (a mock community) and develop
guidelines for filtering and processing LoopSeq SLR
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sequencing data. We compare LoopSeq full-length 16S
rRNA gene amplicon sequencing results to the current
gold standard of PacBio CCS (or “HiFi”) sequencing on
a common set of human fecal microbiome samples.
After denoising, the overall community compositions
measured by LoopSeq and PacBio CCS from the same
fecal samples were highly concordant. However, Loop-
Seq achieved higher levels of long-read amplicon se-
quencing accuracy, and that higher accuracy was likely
maintained in complex communities based on the fre-
quencies with which inferred differences between gene
variants occurred in the conserved or variable regions of
the 16S rRNA gene. Finally, we show how LoopSeq full-
length 16S sequencing can be used to identify CDC de-
fined foodborne pathogen species from samples of US
retail meat and to distinguish distinct strains within
those species.

Results

Accuracy and error modes: 16S sequencing of the Zymo
mock community

The ZymoBIOMICS Microbial Community DNA Stand-
ard (the Zymo mock community) consists of genomic
DNA from 8 bacterial strains of the species Bacillus sub-
tilis, Enterococcus faecalis, Escherichia coli, Lactobacillus
fermentum, Listeria monocytogenes, Pseudomonas aerugi-
nosa, Salmonella enterica, and Staphylococcus aureus.
We used the LoopSeq 16S Long Read Kit (Loop Genom-
ics, CA) to barcode and amplify the full-length 16S
rRNA gene (the “Methods” section), which was then se-
quenced by Loop Genomics using Illumina NextSeq500
PE150. The assembled long reads were filtered to re-
move those that did not contain both primers, which re-
moved ~15% of the reads. Then reads with lengths
outside the expected range (1400-1600 nts) or that con-
tained more than two expected errors according to their
quality scores [13, 18] were filtered out, removing an-
other ~3% of the reads. The ~83% of reads that passed
filtering were processed by the DADA2 method using
the current 1.18 release version and default parameters
(the “Methods” section) to produce a set of denoised
amplicon sequence variants (ASVs) discriminated at
single-nucleotide resolution [11].

We conclude that all 27 denoised ASVs represent true
sequences without any residual errors, using the same
evaluation approach previously described for PacBio
long-read amplicon sequencing [12]. In short, 26 of the
27 denoised ASVs from the Zymo 16S rRNA data were
exact matches to previously sequenced genomes of the
expected species. The sole exception was a single L. fer-
mentum ASV with one mismatch from the previously
sequenced variants available in the NCBI’s nt database.
Multiple ASVs were detected from six of the eight mock
community strains, including L. fermentum. In each
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case, these variants appear in the integer ratios consist-
ent with being different alleles of the known number of
16S rRNA genes in the genomes of those strains (Figure
S1). No contaminant sequences (i.e., sequences originat-
ing from outside the mock community) and no false
positive sequences (i.e., sequences containing uncor-
rected errors) were present in the denoised ASVs.

LoopSeq long amplicon sequencing reads were highly
accurate. In total, 94.6% of these ~1500 nt reads con-
tained no errors at all, a larger fraction than the ~50-
90% of error-free reads in standard Illumina short reads
given that technology’s per-base error rates of 0.1-0.24%
and read lengths of 100-300 nucleotides [33]. The
DADA?2 denoising method [10] was used to associate
error-containing LoopSeq reads to the true sequence
from which they most likely originated, and the loca-
tions, type, and quality score associated with each point
error were recorded (the “Methods” section, Fig. 1). In-
sertion and deletion errors were extremely rare (< 2 x
107° per nucleotide) and there was no evidence of spe-
cific read positions associated with significantly higher
insertion or deletion error rates. Substitution errors were
somewhat more common (4.6 x 107> per nucleotide)
and occurred at a slightly higher rate near the start and
end of the reads. This was predicted by lower quality
scores and expected from the lower coverage of the
long-read contigs by the short-reads at the ends of the
contigs. Overall, this per-nucleotide error rate of ~5 x
107° per nucleotide, alternatively expressed as a 99.995%
per-nucleotide accuracy, significantly exceeds the best
per-base accuracy results currently reported in the litera-
ture for amplicon sequencing using standard Illumina
sequencing or Pacific Biosciences CCS long-read se-
quencing [12, 33].
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We performed a further manual inspection of poten-
tial structural errors in LoopSeq amplicon sequencing
data, for example, PCR chimeras that are formed
through processes that modify large segments of the se-
quencing read rather than a single position at a time.
We identified a type of structural error we refer to as an
introgression, in which a segment of one amplicon is re-
placed (or is introgressed into) the homologous segment
in another amplicon (Fig. 2a). This error mode arises
due to an interaction between PCR chimeras and the as-
sembly of short-read into an SLR. The presence of early-
round PCR chimeras can result in a segment of chimeric
DNA being selected by the assembler when constructing
the long-read sequence from all of the short-reads shar-
ing that UMI Usefully, lower quality scores are typically
found in the introgressed segment, reflecting the lower
level of short-read consensus at those positions.

We developed a sliding window approach to identify
structural errors, both typical PCR chimeras and intro-
gressions, in the uncorrected LoopSeq reads from this
mock community of known composition (the “Methods”
section). For each read, we determined whether it was
correct (i.e.,, contained no errors) or incorrect. If it was
incorrect, we determined whether it was a chimera, an
introgression, or contained point errors. The fraction of
reads of each of these error types is plotted as a function
of the expected errors filtering threshold (Edgar 2017)
[18] for the unfiltered LoopSeq reads from the Zymo
mock community in Fig. 2b. A small number of incor-
rect long reads could not be unambiguously categorized,
perhaps because they were structural errors that also
contained point errors.

Structural errors (chimeras and introgressions)
accounted for just over 2% of the reads in the unfiltered
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Fig. 1 The rates of LoopSeq point errors by position in read, type (substitution/insertion/deletion), and quality score. The scale of the y-axis is
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LoopSeq amplicon reads from the Zymo mock commu-
nity, but this fraction significantly decreased with stricter
quality filtering (Fig. 2b). For this sequencing library, a
threshold of 0.5 maximum expected errors appeared to
effectively balance the removal of reads by the filter with
the suppression of structural errors. We explored the ef-
fects that this optimized filtering had on subsequent
denoising by DADA?2 (the “Methods” section). We found
that optimized filtering allowed DADA2’s singleton de-
tection (DETECT_SINGLETONS=TRUE) and a more
sensitive ASV detection threshold (OMEGA_A=1e-10)
to be used to denoise LoopSeq data: Only 4 false positive
denoised ASVs were identified, each represented by a
single read and that in total accounted for < 0.03% of all
denoised reads. New methods for de novo identification
of introgressions could largely eliminate those remaining
rare false positives. This suggests the possibility of long-
read amplicon sequencing that simultaneously achieves
maximum (single-nucleotide) resolution, maximum
(singleton) sensitivity to rare variants, and a near-zero
false positive rate.

Accuracy of longer reads: 18S-ITS and genomic
sequencing of fungal and bacterial isolates

We performed LoopSeq amplicon sequencing of the ap-
proximately 2.3 kb 18S-ITS gene region from isolates of
six fungal species obtained from the ATCC: Saccharo-
myces cerevisiae, Aspergillus oryzae, Candida albicans,
Trichoderma reesei, Kluyveromyces lactis, Penicillium
chrysogenum. LoopSeq reads were filtered for the pres-
ence of the forward and reverse primers and then
trimmed to the region between the primers. In each
sample, over 80% of the reads had identical sequences
that also exactly matched the 18S-ITS gene region from

a previously sequenced isolate of that fungal species. We
determined these reads to be the error-free fraction of
the data (Fig. 3). This may be a slight underestimate if
some reads with different sequences represented error-
free reads from minority alleles of the many (100s) of
copies of the 18S-ITS gene region present in some fungi.

We also performed LoopSeq sequencing of randomly
amplified segments of the genomes from isolates of
three bacterial species obtained from the ATCC: Nitro-
somonas europaea, Desulfovibrio desulfuricans, and Sali-
nispora tropica. LoopSeq reads were filtered for length
between 4000 and 6000 bases, resulting in a median read
length of ~5 kb. The error-free fraction was determined
to be those reads that exactly matched the associated
reference genome. The error-free fraction of these Loop-
Seq reads was over 60% in all three species (Fig. 3). This
may be a slight underestimate if errors exist in the refer-
ence genomes, or if non-genomic elements such as plas-
mids were present in the sequencing data.

Performance in complex communities: human fecal
samples
We performed LoopSeq full-length 16S amplicon se-
quencing of the DNA extracted from three human fecal
samples. The same extracted DNA had been previously
characterized by PacBio full-length 16S amplicon se-
quencing [12]. The raw LoopSeq data was filtered and
processed by the DADA2 method using default parame-
ters (the “Methods” section). The ASV tables produced
by LoopSeq and by PacBio (two replicates, using two
versions of their Sequel chemistries) were merged into a
common ASV table (the “Methods” section).

The communities measured by LoopSeq and PacBio
were highly concordant. A median of 89.9% of the reads
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detected by LoopSeq in each sample shared the same se-
quence with reads also detected by PacBio, while the
same measure between the PacBio replicates was 94.1%.
We used the Bray-Curtis metric to quantify community-
wide dissimilarity between the measured communities in
each sample by each technology. Visualization of those

results in a PCoA ordination plot (Fig. 4) revealed that
differences between LoopSeq and PacBio measurements
of the same sample were trivial compared to differences
between samples. In fact, the median Bray-Curtis dis-
similarity between LoopSeq and PacBio measurements
of the same sample was just 0.187, barely higher than
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Fig. 4 PCoA ordination of the total community compositions of three human fecal samples (R3.1, R9.3, R9.4) as measured by LoopSeq and PacBio
full-length 16S rRNA gene sequencing. The community compositions measured by each technology were highly similar, leading to the data
points on this ordination being highly overlapping for each sample. PacBio CCS measurements were made using two different sequencing
chemistries as indicated in the legend parentheticals
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the median 0.173 Bray-Curtis dissimilarity between rep-
licate PacBio measurements of the same sample.

The differences between LoopSeq ASVs were highly
enriched at known variable positions of the 16S rRNA
gene, supporting high LoopSeq accuracy in the human
fecal samples. We performed high-sensitivity sample in-
ference on these human fecal samples using the DADA2
method (the “Methods” section) which also provides a
full description of the substitutions between each ASV
and the “sibling” ASV from which it was distinguished
by the denoising algorithm. We used the ssu-align pro-
gram (the “Methods” section) to define whether substi-
tutions between sibling ASVs occurred at conserved or
variable regions of the 16S rRNA gene [31]. The results
of this analysis for each ASV identified by DADA2 in
high-sensitivity mode are shown in Fig. 5.

Substitution differences between sibling LoopSeq
ASVs occur at approximately a fourfold higher rate in
the variable positions of the 16S rRNA gene than they
do in conserved regions. If sequence diversity was driven
by sequencing errors, these substitutions should occur at
an equal rate in conserved and variable regions. This
pattern supports the high accuracy of LoopSeq long-
read amplicon sequencing in complex community sam-
ples, consistent with the results on the simpler mock
community.

Example application: identifying foodborne pathogen
species in retail meat

To investigate the potential for ultra-accurate long-read
16S sequencing to identify and track foodborne patho-
gens, we performed LoopSeq 16S sequencing on DNA
extracted from a rinsate of six samples of US retail meat
(the “Methods” section). We were particularly interested
in the foodborne pathogen species that the CDC has
identified as of particular importance in retail meat: Yer-
sinia enterocolitica, Escherichia coli, Salmonella enterica,
Clostridium perfringens, Campylobacter spp., and Lis-
teria monocytogenes. We performed high-sensitivity sam-
ple inference on these retail meat samples using
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DADA2, and assigned taxonomy down to the genus level
using the naive Bayesian classifier method and the Silva
database (the “Methods” section). Denoised ASVs with
genus assignments that matched high-interest foodborne
pathogen species were then given species assignments if
their BLAST results unambiguously supported a particu-
lar species (the “Methods” section).

The accuracy and length of the full-length LoopSeq
16S sequences allowed us to distinguish the foodborne
pathogen species of interest (Fig. 6a, the “Methods” sec-
tion). The full-length 16S sequences from Yersiania were
clearly distinguishable as belonging to Y. enterocolitica,
and no other closely related Yersinia that are not typic-
ally foodborne pathogens, including the notorious meta-
genomic false positive Y. pestis [1-3]. C. perfringens
sequences were distinguishable from the closely related
C. septicum, and the Salmonella sequences in sample
GT5 were all unambiguously identified as S. enterica
subsp. enterica.

Most bacteria have multiple ribosomal operons, and
the complete set of 16S rRNA gene allelic variation
of many of the abundant strains of the foodborne
pathogen species present in these retail meat samples
was fully resolved (e.g., Fig. 6b). However, in samples
where multiple related strains of the same species
were present, as was the case for E. coli in samples
GT1 and GTS, it was not always possible to unam-
biguously separate ASVs into strain-level bins, and
the full allelic complement could not be captured for
low abundance strains. Using a previously described
strategy [12], we used the full complement of 16S al-
leles to determine that the S. enterica strain in sample
GT1 most closely matched a previously sequenced
genome from the pathogenic Newport serovar, war-
ranting further investigation into its potential patho-
genicity. This direct inference could be made possible
in the future with a better understanding of the
phylogenetic coherence of the Newport serovar, and a
more complete catalog of high-quality Salmonella ge-
nomes from pathogenic and non-pathogenic strains.
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Discussion
Amplicon sequencing is a cornerstone method in the life
sciences, notably used for the characterization of micro-
bial diversity in complex samples. The combination of
PCR amplification and subsequent sequencing massively
enriches a targeted genetic locus and provides detailed
information about the genetic diversity at that locus. A
fundamental constraint on amplicon sequencing has
been the short read lengths of modern high-throughput
sequencers, but that constraint has been overcome by
the rise of long-read sequencing technologies. In a world
of expanding sequencing options, it is critical to under-
stand the accuracy and economics of long-read amplicon
sequencing technologies in order to know when specific
technologies are the right choice for a given application.
Commercially available synthetic long-read (SLR) se-
quencing technologies — in which long sequencing
reads are reconstructed from short reads containing mo-
lecular tags indicating origination from a common DNA
molecule — have been around for a number of years,
but not for amplicon sequencing where homology be-
tween sequences is high. The LoopSeq technology re-
cently commercialized by Loop Genomics applies
unique molecular identifiers (UMIs) to each DNA mol-
ecule, and allows precise and accurate long-reads to be
constructed from amplicon sequencing data. Here, we
showed that LoopSeq amplicon sequencing attains
higher accuracy than previously reported for commonly
used amplicon sequencing technologies, can scale out to
sequence lengths of at least 6 kb while maintaining very

high accuracy, and can be used to precisely survey the
composition of complex microbial communities.

Accuracy is essential to many amplicon sequencing
applications, and the level of accuracy achieved by Loop-
Seq may open up new opportunities. Long-read ampli-
con sequencing using the PacBio and Oxford Nanopore
technologies ([12]; Eren 2019 [24];) has received in-
creased recent attention, with encouraging results dem-
onstrating that per-base accuracy exceeding common
short-read approaches can be obtained by combining
long-read sequencing with molecular methods such as
the construction of PacBio circular consensus (CCS)
reads and appropriate bioinformatics. In the bacterial
profiling application, multiple studies have shown that
substantial improvements in species and subspecies
resolution can be achieved by sequencing the entire ~1.5
kb 16S gene, rather than just segments of 100-500 bases
as is most commonly practiced today, and that even
greater resolution is achievable by extending the se-
quenced region to most or all of the rrn operon [30].
The LoopSeq per-base accuracy of 99.995% we observed
here suggests that this technology should also be consid-
ered for high-resolution long-read amplicon sequencing
applications.

The new frontier of amplicon sequencing beyond 1.5
kb may be where the accuracy attainable by LoopSeq is
most important. Using the manufacturer-recommended
coverage thresholds and a common bioinformatics work-
flow, we showed that > 90% of LoopSeq full-length 16S
reads were error free as compared to ~ 50% error-free
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full-length 16S PacBio CCS reads [12]. Fifty percent is a
sufficiently high fraction of error-free reads for modern
denoising methods to achieve single-nucleotide reso-
lution with high accuracy, and thus the total community
compositions determined after denoising full-length 16S
rRNA gene sequences obtained using LoopSeq reads
and PacBio CCS reads from the same human fecal sam-
ples were very similar (Fig. 4). However, if we consider
amplicon sequencing of the entire ~5 kb rrn operon,
then LoopSeq produces > 50% error-free reads, while
only ~10% of PacBio CCS reads would be expected to be
error-free, limiting the resolution of lower-abundance
members of a sampled community. Single-nucleotide
resolution with high accuracy from the entire rrn operon
opens the door for population-level analysis of genetic
diversity, rather than just comparisons among species,
and would enhance discrimination of critical sub-species
variation such as pathogen and non-pathogen clades, es-
pecially in sample types where alternative shotgun meta-
genomics methods are challenged by large amounts of
non-target DNA.

PCR amplicon chimeras, in which sequencing reads
are produced, that are a combination of multiple true
DNA molecules, can be particularly pernicious for the
accurate reconstruction of complex communities. Loop-
Seq SLRs have a significant advantage over standard
long-read amplicon sequencing approaches in this re-
gard because LoopSeq SLRs are assembled from a con-
sensus of UMI-tagged reads. As a result, chimeric
molecules do not contribute to the consensus assembly
unless the chimera formed at the first cycle or two of
PCR causing chimeric reads to constitute a majority of
the short reads for that UMI. Chimera rates are also at
their lowest during early PCR cycles, further reducing
the effective LoopSeq chimera rate. In standard ampli-
con sequencing technologies, chimeric molecules formed
during all PCR cycles will be present in the final data.
This potential to leverage UMIs to identify and remove
SLR chimeras was also demonstrated previously in a dif-
ferent SLR technology [9].

We identified and described an SLR-specific structural
sequencing error, the introgression, in which a long SLR
is formed with an internal insertion of a short segment
from another DNA molecule (Fig. 2a). Introgressions are
caused by the stochastic preponderance of reads from
chimeric DNA molecules over short regions of the SLR.
The rate of introgressions in LoopSeq data is low, and
no introgressions were detected when typical denoising
of the Zymo mock community was performed that
screened out singletons. Standard quality filtering based
on expected errors further reduced the fraction of intro-
gressions in the raw data (Fig. 2). As LoopSeq or other
SLR sequencing technologies become more widely used
it may be useful to revisit the quality filtering approaches

Page 8 of 13

used for such data. Dips in the quality scores corre-
sponding to introgressed LoopSeq regions suggest that
sliding window quality screens may be a useful tool for
such data.

In this manuscript, we focused on comparing LoopSeq
to the long-read sequencing technologies developed by
PacBio and Oxford Nanopore (ONT), because those
technologies are currently the most widely used and are
already commercially available. However, an important
current research direction is the marriage of UMI
methods with those long-read sequencing technologies
to improve their accuracy. Recently, Karst and colleagues
described and evaluated such a method, and reported
achieving accuracy comparable to that reported here by
pairing UMIs with Oxford Nanopore sequencing, and
even higher levels of accuracy from pairing UMIs and
PacBio CCS sequencing [24]. We expect this general ap-
proach, if not the exact implementation in Karst et al,
will prove to be an attractive option for highly accurate
long-read amplicon sequencing as it continues to de-
velop. Each of these high-fidelity long-read sequencing
methods (LoopSeq SLRs, PacBio + UMIs, ONT + UMIs)
are able to achieve very high accuracy (> 99.99% per-
base) that can be increased further at the expense of
throughput by increasing the number of reads per UMI,
with the exception that ONT may experience an accur-
acy plateau due to continuing issues with systematic
error modes [24]. It is likely that in the next few years
different highly accurate long-read technologies will find
unique niches within microbial genomics. For example,
ONT sequencing can be advantageous for field applica-
tions of microbial genomics in which rapid diagnosis is
key while LoopSeq and PacBio HiFi long reads might be
more useful for applications that require high accuracy
and that can be obtained within days, not hours.

A balance between the cost efficiency of high-fidelity
long-read sequencing methods and the value of sequen-
cing accuracy in different applications will determine
their ultimate impact. The LoopSeq data presented in
this manuscript used an average of 30x Illumina short-
read coverage of each SLR, which naively extrapolates to
a 30x increase in per-base sequencing cost relative to
short-read amplicon sequencing. However, LoopSeq
works with 150 nt paired-end reads without any cost to
SLR length or quality, and 150 nt reads are up to tenfold
cheaper per-base than the longer 300 nt paired-end
reads currently in common usage for short-read ampli-
con sequencing. A cost comparison with other high-
fidelity long-read sequencing methods is complicated by
the rapid technological progress in this area, and the fu-
ture cost evolution of the short-read (LoopSeq), PacBio,
and ONT sequencing technologies underlying different
methods is unclear. Shallow shotgun sequencing is an-
other alternative suitable for profiling complex microbial
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communities that are often performed with similar
short-read library sizes (~1-2 million) as might be gener-
ated for a LoopSeq 16S rRNA gene library. If large
amounts of non-target DNA are present in relevant sam-
ples, then the targeting of sequencing effort by amplicon
sequencing will make LoopSeq more cost effective for
community profiling, but shotgun sequencing allows
additional information on functional potential to be
gleaned.

The rapidly increasing accuracy and length of available
amplicon sequencing technologies has laid bare the limi-
tations of commonly used taxonomic assignment
methods for 16S rRNA gene data. There are fundamen-
tal limits on the taxonomic resolution available from any
marker-gene sequencing approach, but the most widely
used methods for taxonomic assignment from 16S se-
quences were developed for short-read data and often
do not even attempt to make taxonomic assignments be-
yond the genus level. Long-read amplicon sequencing
data of the accuracy achieved by LoopSeq allows for
species-level assignment from 16S rRNA gene data in
most cases. Even higher levels of sub-species resolution
are achievable, but substantial roadblocks exist in prac-
tice due to the multi-copy nature of the rrn operon in
bacteria [25]. Full-length 16S rRNA gene sequencing
with single-nucleotide resolution will resolve all intrage-
nomic variation between the 16S alleles carried by a sin-
gle bacterium [12, 21], but there is no currently
automated way to reconstruct the bins containing alleles
arising from a common genome. There is also no uni-
versal database that contains and labels the full comple-
ment of 16S rRNA gene alleles arising from each strain.
Furthermore, many reference genomes created from
short-read sequencing data do not resolve the multiple
copies of the rrn operon at all. Preliminary evidence sug-
gests that, at least in some cases, pathogenic and non-
pathogenic E. coli can be distinguished from full-length
16S sequencing alone [12], but current taxonomic as-
signment methods do not approach that level of
resolution.

There is a much larger potential universe of applica-
tions for LoopSeq and other highly accurate long-read
sequencing technologies beyond profiling microbial
communities by sequencing the rrn operon. One topical
example is viral genomic sequencing, such as that being
applied to the population genetics and genomic epidemi-
ology of the SARS-CoV-2 virus. Viral DNA exists as a
tiny minority of the DNA in clinical samples, and com-
mon SARS-CoV-2 sequencing approaches rely on ampli-
fying nearly 100 different genetic regions that are then
stitched together to reconstruct a consensus genome se-
quence [16]. Highly accurate long-read amplicon se-
quencing opens the door to simpler protocols using far
fewer primers, and that can also achieve long-range
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linkage information [6, 19, 35]. These same advantages
in simplicity, accuracy, and long-range linkage informa-
tion are driving the adoption of highly accurate long-
read amplicon sequencing for the study of HIV [14, 32],
HLA/MHC [22, 34, 39], and oncogene diversity in solid
tumors [15].

Conclusion

Three aspects of microbial genomics will have significant
bearing on bringing about a future of precision micro-
biology: the (1) accuracy of reading microbial genomes,
the (2) discriminatory power of microbial sequencing
reads, largely determined by read lengths, and the (3)
quality of microbial sequence databases. Improvements
in accuracy and length will feed directly into building
better databases and generate a positive feedback loop
that will eventually trivialize microbial identification and
characterization. In this manuscript, we showed how
short-read sequencers can be used to generate microbial
DNA reads with a combination of length and accuracy
that matches and surpasses currently available methods.
This LoopSeq technology leverages already widely avail-
able short read sequencers and is commercially sup-
ported, a combination of attributes that could accelerate
the uptake of accurate long-read sequencing in general.
Amplicon sequencing that is an order-of-magnitude lon-
ger and an order-of-magnitude more accurate than the
[lumina short-read standard is available today. We look
forward to the ways this technology will be applied in
the future.

Methods

Samples and DNA extraction

Zymo mock community

The ZymoBIOMICS™ Microbial Community DNA
Standard (P/N: D6306, Lot ZRC190811) was obtained
from the manufacturer Zymo Research (Irvine, CA). The
Zymo mock community contains genomic DNA from
eight phylogenetically diverse bacteria, and two yeast
strains not amplified by our 16S rRNA gene amplicon
sequencing protocol. Note that five strains in ZymoBIO-
MICS™ standards were replaced with similar strains in
Lot ZRC190633. The sample analyzed here is from a
post-replacement lot.

Fungal isolates

Extracted and purified genomic DNA from the following
six fungal isolates were obtained from the ATCC: Sac-
charomyces cerevisiae Meyen ex E.C. Hansen (Catalog
Number ATCC 201389D-5), Aspergillus oryzae var. ory-
zae (Catalog Number ATCC 42149D-2), Candida albi-
cans (Robin) Berkhout (Catalog Number ATCC10231D-
5), Trichoderma reesei Simmons (Catalog Number
ATCC 13631D-2), Kluyveromyces lactis (Dombrowski)
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van der Walt (Catalog Number ATCC 8585D-5), and
Penicillium chrysogenum Thom (Catalog Number ATCC
10106D-2).

Bacterial isolates

Extracted and purified genomic DNA for the following
three bacterial isolates were obtained from the ATCC:
Nitrosomonas europaea (Catalog Number ATCC
19718D-5): https://www.ncbi.nlm.nih.gov/nuccore/
AL954747, Desulfovibrio desulfuricans (Catalog Number
ATCC 27774D-5): https://www.ncbi.nlm.nih.gov/
nuccore/CP001358, and Salinispora tropica (Catalog
Number ATCC CNB-440D-5): https://www.ncbi.nlm.
nih.gov/nuccore/CP000667.

Human fecal samples

Genomic DNA was obtained from three human fecal
samples previously analyzed in a publication on PacBio
long-read amplicon sequencing [12]. The aliquots of
DNA analyzed here were extracted as part of, and as de-
scribed in, that publication.

Retail meat rinse samples

Two hundred fifty milliliters buffered peptone water
(BPW) was added to > 50 g of retail meat (bone-in, skin
on chicken breast; ground turkey, ground beef < 85%
lean; or bone-in pork chop), and samples were shaken at
room temperature for 15 min at 250 rpm. Meat samples
were incubated 18 h in BPW at 37 °C. Two milliliters
rinsate was centrifuged at 1000xg for 5 min, and super-
natant was discarded. DNA was isolated from pellets
using Lucigen MasterPure™ Gram Positive DNA Purifi-
cation Kit according to manufacturer protocols. DNA
was quantified by Qubit dsDNA HS Assay Kit assessed
for purity using a Nanodrop 2000c (ThermoFisher
Scientific).

Sequencing library preparation

Sequencing libraries were prepared from extracted gen-
omic DNA with the commercially available LoopSeq kits
from Loop Genomics (protocols available at
loopgenomics.com). Synthetic long reads (SLRs) were
constructed from the short-read sequencing reads using
the standard Loop Genomics informatics pipeline. The
process involves attaching two DNA tags: one Unique
Molecular Identifier (UMI) to each unique “parent” mol-
ecule and one sample-specific tag (i.e., a sample index)
equally to all molecules in the same sample. Barcoded
molecules are amplified, multiplexed, and each UMI is
distributed intramolecularly to a random position within
each parent molecule. Molecules are then fragmented
into smaller units at the position of each UMI, creating
a library of UMlI-tagged fragments with an average
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length of 400 bp compatible with an Illumina sequen-
cing platform run in PE150 mode.

Full-length 16S sequencing

For each LoopSeq Microbiome 16S kit, up to 24 samples
were processed in multiplex and ~12,000 1.5 kb mole-
cules were sequenced per sample (~300 k molecules
from a complete kit run). 100-150M PE150 reads (50-
75M clusters passing filter) were used for each sequen-
cing run, yielding ~20 gigabases (Gb) of data. The
complete sample preparation and sequencing protocol
can be found in this link.

Full-length 18S-ITS sequencing

For each LoopSeq Mycobiome 18S-ITS kit, up to 24
samples were processed in multiplex and ~12,500~2.3
kb molecules were sequenced per sample (~300 k mole-
cules from a complete kit run). 175-250M PE150 reads
(87.5-125M clusters passing filter) were used for each se-
quencing run, yielding ~35 gigabases (Gb) of data. The
complete sample preparation and sequencing protocol
with sequencing instructions can be found in this link.

Bacterial whole genome sequencing

For each LoopSeq Bacterial Genome kit, up to 8 samples
were processed in multiplex and ~40,000~5 kb mole-
cules were sequenced per sample (~320 k molecules per
library). 320M PE150 reads (160M clusters passing filter)
were used for each sequencing run, yielding ~50 giga-
bases (Gb) of data. The complete sample preparation
and sequencing protocol with sequencing instructions
can be found in this link.

Short read coverage of LoopSeq synthetic long reads
(SLRs)

In general, greater short-read coverage of each SLR will
result in a higher fraction of complete SLRs (i.e., SLRs
that span the full targeted amplicon) and a lower error
rate. Here, we evaluated LoopSeq data with an average
of 300 150bp reads per full-length 16S read (30x cover-
age), which is the recommended short-read coverage in
the manufacturer protocols. The minimal number of
150bp short reads required to assemble a full-length 1.5
kb 16S rRNA gene using the LoopSeq SPADES work-
flow is 30 (3x coverage), but this would result in a sig-
nificantly higher per-base error rate. Correspondingly,
higher than 30x short-read coverage per SLR would be
expected to produce per-base error rates even lower
than those reported here.

Assembly of SLRs

Loop Genomics maintains a cloud-based platform for
processing raw short-reads prepared with a LoopSeq kit
into assembled SLR contigs. Within this pipeline, short-
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reads are trimmed using Trimmomatic [7] to remove
adapter sequences before they are de-multiplexed based
on their Loop Sample Index, which groups them by the
sample from which they originated. Within a grouped
sample, short-reads are next binned by UMI such that
those with the same UMI are processed collectively
through SPADES [4]. Reads sharing the same UMI are
derived from the same original molecule, with each read
covering a different region of the sequence. With
enough short-read data to cover the full length of a long
DNA molecule, it is possible to assemble the original
long DNA molecule by linking overlapping short-reads
through their shared sequence, and then arranging the
reads in the correct order to rebuild the original 16S/
18S-ITS/Genomic molecule sequence. Assembly at-
tempts with fewer reads result in shorter SLRs with
lower accuracy.

Amplicon bioinformatics

The raw LoopSeq synthetic long reads (SLRs) were sub-
jected to further quality filtering, denoising, and chimera
removal using the dada2 R package, largely following the
long-read workflow previously established for PacBio
long-read amplicon sequencing [12]. Briefly, SLRs were
screened for the presence of both forward and reverse
primers of the full length 16S gene, and truncated to the
region between those primers. Primer-free sequences
were filtered based on the total expected errors (Flvyberg
and [18]). The relationship between the quality scores
and the error rates was learned from the data, and the
denoised amplicon sequence variants (ASVs) were in-
ferred using the DADA?2 algorithm [10].

Standard data processing used the default parameters
for long-reads described in [12]. High-sensitivity param-
eters appropriate for LoopSeq data were also developed
and used in several analyses. The key differences be-
tween the high-sensitivity and default parameters were
that the probability threshold for detecting new ASVs
was made less stringent (OMEGA_A=1e-10), and the
option to directly detect singleton sequences was en-
abled (DETECT_SINGLETONS=TRUE).

Characterizing synthetic long-reads by error type

After screening for and removing primers, a sliding win-
dow comparison was made between every synthetic
long-read (SLR) present in the Zymo mock community
data and the 27 “reference” sequences corresponding to
the unique full-length 16S rRNA gene alleles present in
each mock community strain. For each window of 50
nts (step size of 10 nts), the most similar reference se-
quence(s) were recorded, and a strain-level assignment
for that SLR-window was made if all of the most similar
reference sequences belonged to the same strain.
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Otherwise, no strain-level assignment was made for that
window.

Two types of structural errors — chimeras and intro-
gressions — were assigned based on the results of the
sliding window comparison. A chimera assignment was
made if the best match to the left-hand side and the
right-hand side of the SLR were from different strains.
An introgression assignment was made if an internal
segment was assigned to a different strain than the rest
of the SLR. Windows in which no strain assignment was
made were ignored. More complex patterns (e.g., SLRs
that contained windows assigned to three or more differ-
ent strains) were designated as complex errors. Finally,
SLRs that had a consistent strain-level assignment
throughout, but that had up to three mismatches with
the closest reference sequence, were assigned as point
errors.

Comparing LoopSeq and PacBio 16S sequences

The currently recommended 16S primer sets used in the
LoopSeq and PacBio sequencing reported here are
nearly identical. The PacBio forward primer was
“AGRGTTYGATYMTGGCTCAG” and the PacBio re-
verse primer was “RGYTACCTTGTTACGACTT.” The
LoopSeq  forward  primer was  “AGAGTTT-
GATCMTGGC” and the reverse primer was
“TACCTTGTTACGACTT.” These primer sets amplify
nearly identical amplicons, up to a 4 nucleotide differ-
ence between the extent of the PacBio and LoopSeq for-
ward primer sequences. As a result, we were able to
directly merge the sequences generated by these two dif-
ferent technologies after trimming 4 base pairs off the
start of the LoopSeq reads.

Assessing conserved/variable status of substitutions

The DADA2 algorithm provides a complete descrip-
tion of the nucleotides differences that distinguish
each ASV from the “sibling” ASV from which it was
divided. The ssu-align method (http://eddylab.org/
software/ssu-align/) was used to align each “sibling”
ASV to a model for the bacterial 16S rRNA gene,
and thereby to classify each nucleotide in the “sibling”
ASV as either conserved or variable. Together, these
two sources of information allowed the distinguishing
substitutions for each ASV identified by DADA2 to
be classified as occurring in conserved or variable po-
sitions. The null expectation of the ratio of conserved
to variable positions was determined by randomizing
the positions of distinguishing substitutions.

Species assignment for potential foodborne pathogens

Six meat samples were non-randomly chosen to ensure
multiple foodborne pathogen species were present from
a broader library of foodborne pathogen surveillance
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samples collected as part of the NARMS Retail Meat
project. Species-level assignments were made by taking a
consensus of BLAST results for each ASV. That is, se-
quences were BLAST-ed against nt, excluding uncul-
tured/environmental accessions. The species
designations of all BLAST hits sharing the top score
were collated. If all top-hit species designations agreed, a
species assignment was made. Accessions with no spe-
cies designation were ignored.

Code availability and reproducible analysis

Rmarkdown code to reproduce the results described in
this paper is available at https://github.com/benjjneb/
LoopManuscript
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Additional file 1: Figure S1. The abundances of all ASVs identified by
LoopSeq and default DADA2 in the Zymo mock community. All
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