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Metagenomic analysis reveals the shared
and distinct features of the soil resistome
across tundra, temperate prairie, and
tropical ecosystems
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Abstract

Background: Soil is an important reservoir of antibiotic resistance genes (ARGs), but their potential risk in different
ecosystems as well as response to anthropogenic land use change is unknown. We used a metagenomic approach
and datasets with well-characterized metadata to investigate ARG types and amounts in soil DNA of three native
ecosystems: Alaskan tundra, US Midwestern prairie, and Amazon rainforest, as well as the effect of conversion of the
latter two to agriculture and pasture, respectively.

Results: High diversity (242 ARG subtypes) and abundance (0.184–0.242 ARG copies per 16S rRNA gene copy) were
observed irrespective of ecosystem, with multidrug resistance and efflux pump the dominant class and mechanism.
Ten regulatory genes were identified and they accounted for 13–35% of resistome abundances in soils, among
them arlR, cpxR, ompR, vanR, and vanS were dominant and observed in all studied soils. We identified 55 non-
regulatory ARGs shared by all 26 soil metagenomes of the three ecosystems, which accounted for more than 81%
of non-regulatory resistome abundance. Proteobacteria, Firmicutes, and Actinobacteria were primary ARG hosts, 7 of
10 most abundant ARGs were found in all of them. No significant differences in both ARG diversity and abundance
were observed between native prairie soil and adjacent long-term cultivated agriculture soil. We chose 12 clinically
important ARGs to evaluate at the sequence level and found them to be distinct from those in human pathogens,
and when assembled they were even more dissimilar. Significant correlation was found between bacterial
community structure and resistome profile, suggesting that variance in resistome profile was mainly driven by the
bacterial community composition.

Conclusions: Our results identify candidate background ARGs (shared in all 26 soils), classify ARG hosts, quantify
resistance classes, and provide quantitative and sequence information suggestive of very low risk but also revealing
resistance gene variants that might emerge in the future.
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Background
Antibiotic resistance is a global threat to public health,
to which an estimated 700,000 yearly deaths are attrib-
uted and is predicted to cause 10 million deaths by 2050
if unchecked [1]. Soils are likely the most significant
antibiotic resistance gene (ARG) reservoirs, and large
amounts and diversities of ARGs have been found in
soils throughout the world [2–4], including some in
Antarctic surface soils [5]. Many clinically relevant ARGs
originated from the soil resistome via horizontal gene
transfer [6, 7]. Further studies demonstrate that some
anthropogenic activities significantly enrich the abun-
dance of indigenous ARGs in soils [8–10]. Understand-
ing soil resistomes at a broad geographic scale and
across major ecosystems, especially in native soils which
have not been exposed to anthropogenic activities, can
help better define the background levels and types of
ARGs, which is essential for assessing the potential risk
of new human activities.
Different land use practices can significantly alter the

soil physicochemical as well as biological properties.
Conversion of native soil to crop cultivation has been
one of the most common anthropogenic land use
changes. For example, 100 years of continuous cultiva-
tion significantly changed microbial diversity and struc-
ture in a consistent though not major way in North
American Midwest prairie soils [11]. Further, the con-
version of Amazon rainforest to cattle pasture is another
land use change that has expanded in the tropics [12],
and has led to homogenization of microbial communi-
ties [13]. Since land use change has been and continues
to be the most extensive alteration of the terrestrial en-
vironment, its impact on the soil resistome is important
to understand.
Most of our knowledge of ARGs in soils has come

from targeting those genes by real-time quantitative
PCR (RT-qPCR) including highly parallel qPCR plat-
forms [14–16]. While qPCR is more sensitive, it is lim-
ited to the known genes and the specificities imposed by
primers. Metagenomics (shotgun sequencing) is now af-
fordable and provides a more comprehensive overview
of environmental resistomes [17, 18]. Furthermore, new
ARG bioinformatic analysis tools are available to effi-
ciently analyze this large amount of data [19, 20]. Since
different ARGs have different levels of risk [21], it is ne-
cessary to categorize ARGs by their functional roles, the
necessary components for their resistance function, and
assess their potential risk separately rather than merely
the abundance of total ARGs.
With the increasing availablity of metagenomic data in

public databases, a few studies have used that data to
provide a global view of the soil resistome [4, 22–25].
While these studies provide a useful overview, they lose
resolution on the effect of different ecologies, which is

important to understand soil community assemblies and
their relatiohships to its resistome. Here, by using a hier-
archical structured (ARGs type-subtype-reference se-
quence) database and ARGs-OAP pipeline [26, 27], we
investigated impacts of land use change on the soil resis-
tome with soils matched for edaphic traits and land form
for two major ecosystem types, i.e., U.S. Midwest prairie
and Amazon rainforest. We also compared the resistome
of these two major ecosystem types with that of an un-
disturbed Arctic tundra to provide a tropic to polar lati-
tudinal gradient, and all with well-characterized
metadata.
We addressed the following objectives: (i) what are the

types and quantities of ARGs in soils of three climate re-
gions (tundra, temperate, and tropical), (ii) what are the
impacts of major land use changes on the ARG profiles,
and (iii) define which ARGs are common, perhaps uni-
versal background, and within the ARGs, which are most
frequent, do they commonly co-occur and their rele-
vance to risk. The results of this study should improve
our understanding of the background level and classes
of soil ARGs and allow for better evaluation of the pub-
lic health risk of ARGs in the environment.

Materials and methods
Experimental design and site description
The metagenomic sequence data used herein were from
our previous studies, and used to assess the impact of
land use change [13, 28] and global warming [29, 30] on
soil microbial communities. The sample site locations of
the 26 soil metagenomes used in this study are depicted
in Additional file 1: Fig. S1. The Alaskan soils were sam-
pled at 15–25 cm depth (active layer; above permafrost
boundary) at a moist acidic tundra area in Interior Al-
aska near Denali National Park (63° 52′ 59″ N, 149° 13′
32″ W) in May 2010. The Oklahoma soils were col-
lected by soil core 0–15 cm deep from a tallgrass prairie
located at the Great Plain Apiaries in McClain County,
Oklahoma, United States (34° 59′ N, 97° 31′ W) in
2011, 2012, and 2013. The site was abandoned from field
cropping 40 years ago with light grazing until 2008.
Three additional tallgrass prairie ecosystem sites were
sampled in the summer of 2009 in the US Midwest from
a 750 km transect from Kansas through Iowa to Wiscon-
sin. At each site soil was sampled from a native (never
tilled) prairie and an adjacent cultivated (> 100 years)
soil matched for soil edaphic traits and landform. The
native prairie soils had been grazed by cattle. All culti-
vated soils had received manure application. The Ama-
zon soils were sampled at the Amazon Rainforest
Microbial Observatory site (10° 10′ 05″ S and 62° 49′
27″ W) in April 2009. Five soil cores of 0–10 cm deep
were collected from a primary rainforest and an adjacent
38-year-old converted pasture. The Amazon rainforest
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soils were never grazed, while the pasture had been con-
tinuously used for beef cattle grazing since conversion.
Detailed information about the climate, vegetation, soil
type, and chemistry at each sampling site were described
previously [11, 28, 30, 31].

Shotgun sequencing
Sequencing of Alaska, Oklahoma, and Amazon soils was
performed on the Illumina HiSeq 2000 platform with
150-bp paired-end strategy by the Joint Genome Insti-
tute (JGI). Illumina GAIIx paired-end sequencing aug-
mented with some 454 GS FLX sequencing for the Iowa,
Kansas, and Wisconsin soils. The Alaskan soils were also
sequenced by Illumina using paired ends but by Los Ala-
mos National Laboratory.

Identification of ARGs in shotgun data
Adapter reads in the sequence data were removed, the
remaining reads were filtered to discard bases with a
quality score < 20 and length < 50 base pair (bp) by
SolexaQA v.3.1.7.1 [32]. To eliminate the differences
caused by variations in the sequencing depth among sam-
ples, 200 million reads were randomly picked from each
sample. The retrieved sequences were then used to search
for ARGs following ARGs-OAP v2.0 pipeline as described
by Yin et al. [27]. The SARG database identifies ARG
types (antibiotic class) and within that class subtypes (e.g.,
a subtype having > 80% identical aligned bases based on
HMM model). Diversity data are derived from the number
of subtypes. The parameters used for ARG identification
were alignment length cut-off of 75 nucleotides, alignment
e value cut-off of 10−7, and alignment identity of 80%. The
abundances of ARGs were normalized by 16S rRNA gene

expressed as: Abundance =
Pn

1
NARG−like sequence�Lreads=LARG reference

N16S sequence�Lreads=L16S sequence [26]. Analysis of meta-

genome data of the Earth Microbiome Project shows that
the 16S rRNA gene copy number of all soils is very nar-
row, with a mean of 2.2 16S rRNA copies per cell [33].

Classification of ARG hosts in de novo assembly
De novo assembly was done with MEGAHIT and default
parameters. The statistics of assemblies is in Additional
file 1: Table S1. ARG-carrying contigs were identified
with SARG database and the cutoffs in ARGs-OAP pipe-
line. The ARG-carrying reads were then classified taxo-
nomically using a contig classification tool, CAT [34].

Identification of clinical ARGs
We define clinical ARGs as those found in human path-
ogens. Protein sequences of human disease associated
bacterial genomes were collected from the Pathosystems
Resource Integration Center (PATRIC) [35]. The

collected protein sequences were searched against SARG
database, hits with identity ≥ 80%, and alignment cover-
age (alignment length/reference ARG length) ≥ 80% were
kept as clinical ARGs. Reads annotated as ARGs by
SARG database were extracted from metagenomes of
Amazon rainforest and pasture soils, and they were eval-
uated by BLAST against the protein sequences of clinical
ARGs. The hits with identity ≥ 80%, alignment length ≥
75 bp nucleotides, and e value ≤ 10−7 were regarded as
clinical ARGs. The abundance of a clinical ARG was cal-
culated with the same formula to calculate ARG abun-
dance in ARGs-OAP v2.0 pipeline.
To comprehensively understand the homology be-

tween ARGs in soil and ARGs found in clinical settings,
12 ARGs in Amazon data sets were assembled with Xan-
der, a target gene assembler [36, 37]. The 12 ARGs were
chosen because (1) they were found in human pathogens
in PATRIC database; (2) they were detected in Amazon
pasture and rainforest soils at sufficient abundance so
that assembly of intact/near-intact genes was possible;
and (3) hidden Markov models (HMMs) are available.
The seed sequences and HMMs were obtained from
SARG database [27]. Assembled protein contigs of ≥ 100
amino acids were kept to evaluate sequence similarity
with clinical ARG subtypes by BLASTP.

Soil bacterial community
Bacterial taxonomic classification and abundance quanti-
fication were analyzed following the SSUsearch pipeline
[38]. Briefly, a 16S rRNA gene HMM was used to search
against metagenomic data and the hits were annotated
with SILVA database. The sequences aligned to a part of
16S V4 variable region (577–657) and with lengths
greater than 70 bp were extracted. The extracted 16S
rRNA gene sequences were then clustered to estimate
OTU number at 95% identity.

Statistical analyses
Only ARGs detected with more than two reads across all
samples were retained for further analyses. Bray-Curtis
distance-based principal coordinates analysis (PCoA)
was performed to estimate the variance of resistome
profiles. Procrustes analysis was used to assess the rela-
tionship between resistome profile and bacterial commu-
nity structure, 9999 permutations were used to test the
significance. ARGs detected in at least five samples with
a maximum read number > 5 in at least one sample were
kept for ANOVA and network analyses. The differences
in ARG abundances across three soils were tested by
ANOVA analysis (least significant difference, p < 0.05).
Spearman’s correlation coefficients were calculated
based on the read number among soils. Network analysis
was performed in Cytoscape to identify ARG clusters;
only ARGs with significant (least significant difference, p
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< 0.01) and strong Spearman coefficients (> 0.9) were
used. The ANOVA and Spearman correlation analyses
were conducted using SPSS 23.0. PCoA, Adonis and
Procrustes analysis were done with R3.5.1.

Results
Detected ARGs and regulatory genes
A total of 268 ARG subtypes potentially conferring re-
sistance to 21 classes of antibiotics were detected in the
soils, with most of them belonging to antibiotic deactiva-
tion (106 ARGs) and efflux pump (93 ARGs) mecha-
nisms (Fig. 1). More than 58% of the resistome
abundance was contributed by efflux pump genes, while
only 16% was from the deactivation and cellular protec-
tion classes. Ten regulatory genes (mtrR, gadX, tetR,
mexT, cAMP-regulatory protein, arlR, ompR, vanS, cpxR,
vanR) were detected and they accounted for 13 to 35%

of resistome abundances in the studied soils. Five regula-
tory genes were dominant totaling 0.014–0.141 copies
per 16S rRNA gene copy and were observed in all 26
soils (Additional file 1: Fig. S2). Since regulatory genes
do not directly confer resistance and they inflate the
quantitation, they are not included in most of the fol-
lowing analyses.
Multidrug resistance genes were most abundant

(57.1% of non-regulatory resistome abundance) with 67
subtypes observed, followed by macrolides-lincosamides-
streptogramines (MLS) resistance genes, with 28 sub-
types that comprised 11.2% of non-regulatory resistome
abundance (Fig. 1b). There were 71 beta-lactam, 24
tetracycline, and 20 aminoglycoside resistance gene sub-
types detected in these soils, but they on average only
accounted for 2.6%, 3.0%, and 1.6% of non-regulatory
resistome abundances, respectively.

Fig. 1 Composition of ARGs and regulator genes in 26 soil metagenomes. a Resistance mechanism. b Antibiotic classes
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Non-regulatory ARGs shared by all soils
Fifty-five non-regulatory ARGs were shared by all 26
soils (Fig. 2a). These commonly shared ARGs accounted
for 81.5 to 98.6% of non-regulatory resistome abundance
across all soils, regardless of native or anthropogenic.
The shared ARGs consist of nine classes of antibiotic re-
sistances, but most of them are multidrug resistance
genes (31 subtypes, 1.7 × 10−2–6.7 × 10−1 copies per 16S
rRNA gene copy). There were six tetracycline resistance
genes and five vancomycin resistance genes shared by all
soils, and they comprised 1.0 × 10−3–1.2 × 10−2 of resis-
tome abundance. Only two beta-lactam resistance genes
were found in all soils, with abundance of 4.6 × 10−4–3.8
× 10−3 copies per 16S rRNA gene copy. The concentra-
tions of shared aminoglycoside and trimethoprim

resistance genes differed considerably across the three
ecosystems, ranging from 9.4 × 10−5 to 2.0 × 10−3 copies
per 16S rRNA gene copy. Efflux pump was the dominant
mechanism of these 55 shared ARGs, contributing 80.6%
of the total shared ARG abundance.

ARGs in native soils
A total of 242 ARG subtypes were observed in the native
soils, covering all detected classes of antibiotic resistance
(Fig. 2b). There were 144, 191, and 215 ARG subtypes
with resistome abundances of 0.195, 0.201, and 0.243
copies per 16S rRNA gene detected in Alaskan tundra
soil, Midwestern US native prairie soils and Amazon
rainforest soils, respectively. There were no significant
differences (p > 0.05) in ARG diversity nor resistome

Fig. 2 Diversity and abundance and of ARGs among soils of three ecosystems. a Heatmap showing abundances of 55 background ARGs in 26
soil metagenomes. b diversity and abundance of ARGs by different mechanisms. c ARG abundance of different antibiotic classes.
MLS: macrolides-lincosamides-streptogramines
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abundance between native and anthropogenic soils. Much
of the resistome abundance was contributed by gene com-
ponents of efflux pump complexes, such as mdtABC-tolC,
acrAB, mexEF-oprN, and rosAB (Fig. 3a). Thirteen sub-
types of vancomycin resistance genes were detected in na-
tive soils, and no significant difference was observed (p =
0.07) between native and anthropogenic soils (Fig. 3b).

Soil resistome at different geographical locations
PCoA analysis clearly demonstrates that soil resistome
profiles grouped by geographic location (Fig. 4a). ARG di-
versity in the tundra was significantly lower (p < 0.01) than
that of temperate and tropical areas (Fig. 2b), while no sig-
nificant difference (p = 0.91) was found between temper-
ate and tropical areas. All ARGs detected in Alaskan soils
were found in Midwest America and Amazon soils (Add-
itional file 1: Fig. S3). One-hundred and forty ARGs were
observed in both temperate and tropical soils, but not in
tundra. The temperate and tropical soils shared 87.6% of
ARGs, while 27 ARGs were only found in one or the

other. The tropical soils had the highest resistome abun-
dance, but no statistical difference (p > 0.05) was found
among the three areas (Fig. 2c). Procrustes analysis
showed that the ARG profile was significantly correlated
with the bacterial community structure (sum of squares
M2 = 0.183, r = 0.904, p < 0.01) (Fig. 4b).

Effect of cultivated agriculture on soil resistome
There were no observed significant differences (p > 0.05) in ei-
ther diversity or total ARG abundance between the US Mid-
west native and the long-term cultivated soils (Fig. 2b). The
resistome profiles were very similar in the cultivated soils from
the three sampling sites (Fig. 4a). The vancomycin resistance
genes in native soils were higher than in cultivated soils, but
the difference was not significant (p = 0.56) (Fig. 3b).

Changes of soil resistome during conversion of the
Amazon rainforest to pasture
Conversion of Amazon rainforest to pasture significantly
(Adonis test, R = 0.148, p < 0.05) altered the soil

Fig. 3 Abundance of selected ARGs among soils of the three ecosystems. a Efflux pump complex. b vancomycin resistance genes
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resistome profile (Fig. 4). The conversion to pasture led to
an increase of 23 ARG subtypes in pasture soils (Additional
file 1: Fig. S4). All exclusive ARGs (in rainforest or pasture
soils), except dfrB2, had a relatively low abundance, ranging
from 1.8 × 10−5–3.1 × 10−4 copies per 16S rRNA gene. The
non-regulatory resistome abundance in Amazon pasture soil
was 11.8% lower than that in the native rainforest soil, al-
though it was not statistically different (p = 0.06).

Identification of ARG hosts in de novo assemblies
We identified 77–208 ARG-containing contigs in de
novo assemblies of studied soils, with N50 lengths
from 414 to 14,414 bp (Additional file 1: Table S1).
Approximately 81.5% of contigs had ARG coverage
less than 30%, only four contigs contained intact
ARGs (one catB, one dfrB2 and three cAMP-
regulatory proteins) (Additional file 1: Fig. S5). Hosts
of 59 ARG subtypes were classified to phylum, among
them 20 were multidrug resistance genes, 7 were
vancomycin resistance genes, 6 were beta-lactam re-
sistance genes, and 5 were tetracycline resistance
genes (Fig. 5). Proteobacteria, Actinobacteria, Firmi-
cutes, and Acidobacteria were primary ARG hosts,
they carried 28, 21, 11, and 9 ARGs respectively.
bacA, mdtB, mdtC, and multidrug_transporter gene
had most wide host phyla (≥ 4). Regulatory genes
vanR and vanS were classified to Proteobacteria, Fir-
micutes and Actinobacteria.

Detection of clinical ARGs in soil resistome
Since most of the above assembled ARGs are multidrug
and regulatory genes and are not recognized in the

PATRIC database, we targeted the 12 that were detected
and clinically important to evaluate at the sequence
level. These include two beta-lactam (ampC and FEZ-1),
one quinolone (mfpA), three aminoglycoside (aac(2’)-I,
aac(6’)-I, and aph(6’)-I), and six tetracycline resistance
genes in Amazon rainforest and pasture soils (Fig. 6).
Clinical-similar reads were detected in all 12 ARGs ex-
cept mfpA at amino acid identity cut-off of 80%. Among
them, more than 74% of FEZ-1, aac(2’)-I, tetC, tetO, and
tetV reads had this level of amino acid identity to their
clinical types. Only six ARGs were recovered with 90%
sequence similarity. Highly similar (97% identity) clinical
ARG reads were detected for FEZ-1, tetC, and tetX, but
they only account for 0.9–4.4% of their environmental
(clinical and non-clinical) abundance and none had se-
quences identical to those ARGs in clinical pathogens.
tetV was the most abundant clinical ARG, with abun-
dance of 4.1 × 10−4 and 2.4 × 10−4 copies per 16S rRNA
gene in Amazon rainforest and pasture soils, respect-
ively. No statistically significant difference (p > 0.05) was
found in abundance of clinical ARGs at all chosen iden-
tity levels between Amazon rainforest and pasture soils.
Clinical-similar ampC was only detected in Amazon pas-
ture soil at identity level ≥ 90% but its abundance was as
low as 5.3 × 10−7 copies per 16S rRNA gene.
Only three of the 12 selected ARGs could be assem-

bled using the more sensitive target gene assembler,
namely ampC, tetM, and tetO. Assembled ampC was
only found in Amazon forest soils, and it shared 46–56%
of amino acid similarity with clinical ampC. Assembled
tetM and tetO shared 62–71% and 69–74% of similarity
to their clinical types found in human pathogens.

Fig. 4 Soil resistome profiles. a PCoA analysis showing profiles of soil resistomes in three ecosystems. Circles represent native soils, and triangles
represent anthropogenic soils. b Procrustes analysis of bacterial community and resistome profile. Data point shows the position of a soil sample
in the ordination based on resistome profile, and arrow points to its position in the transformed ordination based on bacterial
community structure
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Consistent to the results by SARG pipeline, no signifi-
cant differences were found in assembled tetM and tetO
abundances between Amazon forest and pasture soils.

Identification of ARG clusters in soils
Network analysis was performed to identify ARG clus-
ters present in all soils (Additional file 1: Fig. S6). We
found wide co-occurrence of multiple genes despite their
distant geographic locations, various ecosystems, and
with or without anthropogenic activities. A total of eight
types of ARG clusters were observed, comprised of 67
ARG subtypes for 12 classes of antibiotics. Most of the
co-occurred ARGs are multidrug resistance genes (27
subtypes), followed by tetracycline resistance genes (9
subtypes) and beta-lactamase resistance genes (8 sub-
types). Four aminoglycoside resistance genes were found
in ARG clusters and they had the highest average linkage
with 4.8 to other ARGs. The largest ARG cluster was
comprised of 25 ARGs, where ThinB and aac(3)-IV were
the hub genes connecting 10 and 9 other ARGs,
respectively.

Discussion
The high diversity and abundance of the soil resistome
in Alaskan tundra, temperate prairie, and tropical eco-
systems support the view that ARGs are naturally ubi-
quitous, and in widely different terrestrial ecosystems.

The ARGs detected in native soils include those that
can potentially confer resistance to all major antibi-
otics used to treat humans and animals, such as beta-
lactams (LRA, PER, TEM, and OXA genes), macrolides
and lincosamides (erm genes), quinolones (qepA),
aminoglycosides (aac and aph genes), and tetracy-
clines (tet genes). It is not surprising that ARGs nat-
urally exist in native soils [3] because many
antibiotics are produced by soil microorganisms, and
indeed were the original source of pharmaceutical
products [39]. In accord with our observation, previ-
ous studies also identified divergent beta-lactamase
resistance genes and a novel chloramphenicol resist-
ance gene from undisturbed Alaskan soil [40, 41].
Vancomycin is regarded as the last line of defense
against MRSA strains, but thirteen subtypes of vanco-
mycin resistance genes were detected in these native
soils, including vanH, vanA, and vanX which are
found in clinical pathogens Staphylococcus aureus and
vancomycin-resistant enterococci [42]. Similarly,
D’Costa et al. detected the three vancomycin genes in
30,000-year-old permafrost sediments, and further
analyses confirmed the similarity in structure and
function between the ancient vanA and their modern
variants [43]. Our ARG host analysis showed that
vanH, vanA, and vanX were harbored by Actinobac-
teria which are vancomycin producing bacteria [44].

Fig. 5 Network showing identified hosts of ARGs at phylum level. Different colors represent different classes of ARGs

Qian et al. Microbiome           (2021) 9:108 Page 8 of 13



We identified 55 structural ARGs and 5 regulatory
ARGs that were shared by all soils regardless of ecosys-
tem type and geography, and hence are candidate com-
mon or “background” soil ARGs. These ARGs were also
found across various terrestrial ecosystems in previous
studies. Thirty of our background ARGs were detected
in paddy soils [4]; ten were found in dryland (peanut)
soils [9]; at least sixteen were observed in greenhouse
soils [45] and ten were found in Antarctic soils [5]. Most
of the shared ARGs are multidrug resistance genes with
efflux pump as the dominant mechanism. For example,
11 of the background ARGs are involved in Mex-Opr ef-
flux pump systems, and they are known to play a prom-
inent role in the multidrug resistance of gram-negative
bacteria [46, 47]. The AcrAB efflux pump plays a physio-
logic role of pumping out bile acids, fatty acids, and vari-
ous toxic compounds [48, 49]. Thus, we argue that these
commonly shared ARGs should be considered as a sep-
arate category, generally of low risk, when evaluating

ARG risk in soil environments. However, this does not
mean that background ARGs are risk free, since some of
them have been found in plasmids and can be enriched
with anthropogenic activity. For example, macB can be
easily acquired by mobile elements, and thus spread
macrolide resistance [50]. Background ARGs acrA,
vanC, and mexF were found significantly enriched by
the application of sewage sludge and chicken manure to
soil [51]. These results imply that compared to the abun-
dance of ARGs, assessment of ARG mobility may be
more important for ARG risk evaluation since ARG
transfer into pathogens is a primary risk factor.
The soil resistome profile had a significant geographic

pattern, which was greater than land use change. The
significant correlation (p < 0.01, R2 = 0.795) between
ARG diversity and bacterial diversity (Additional file 1:
Fig. S7A) suggests that the lower bacterial diversity may
explain the lower ARG diversity in tundra. Similar to
our findings, Wang et al. [5] detected a positive

Fig. 6 Abundance of 12 clinical ARGs in Amazon rainforest and pasture soils. The blue column represents the ARG abundance quantified with
SARG database. The yellow and red columns are abundances of clinical ARGs at 80%, 90%, 95%, and 97% amino acid identities. Bars are
standard errors
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correlation (R2 = 0.39, p = 0.0001) between bacterial
Shannon index and Shannon index of ARGs in Antarctic
soils. In contrast, no significant correlation (R2 = 0.152)
was observed between ARG abundance and bacterial di-
versity (Additional file 1: Fig. S7b), which is inconsistent
with Bahram et al. [23] who investigated the microbiome
of global topsoil samples (189 sites, 7560 subsamples, 12
ecosystems) and found significant negative correlation
between ARG abundance and bacterial diversity. The in-
consistency could be due to the difference in soil ed-
aphic traits, vegetation, land use history, and which
genes are included. For example, Bahram et al.’s study
used ARDB for ARG annotation and included regulatory
genes such as vanR and vanS in analyses while all regu-
latory genes were excluded from our analyses. Significant
correlation between the resistome profile and microbial
community structure was observed, indicating that the
differences in ARG profile is primarily driven by bacter-
ial composition. This is consistent with previous studies
which also found strong correlation between ARG pro-
file and bacterial community structure in various envi-
ronments [52–54]. Thus, the variation of soil resistomes
at different geographical locations was probably related
to the differing vegetation, climate, and edaphic factors
such as pH and soil organic matter [55–57] which will
select different populations (and hence the ARGs they
carry) or some ARGs by their alternative function(s).
It is well known that the introduction of selective or

co-selective pressure by human activities is primarily re-
sponsible for the enrichment of ARGs in soils. For ex-
ample, irrigation with reclaimed water led to enrichment
of 60 ARGs [8]. Long-term application of pig manure
significantly enhanced the abundance of tetL, tetB(P),
tetO, tetW, sul1, ermB, and ermF as compared with inor-
ganic fertilizers [58]. However, it is not clear whether
the normal agricultural activities such as crop produc-
tion affect the soil resistome. In this study, no significant
change was observed in either ARG diversity or resis-
tome abundance after long-term continuous cultivation.
However, the cultivated soils from the three Midwest
sites tend to have similar resistome profiles which may
be due to selection for similar adaptations of the bacter-
ial community to agronomic production. Cropping sys-
tem type, fertilization, and other soil management
practices are thought to be factors that can influence the
soil resistome [9]. In these study sites, antibiotics and
heavy metals were not used so external factors would
not have provided for selection. Overall, our results sug-
gest that standard cultivation and fertilization practices
of US Midwest (primarily moldboard plow, inorganic
N.P.K, and low levels of manure, e.g., cattle grazing) did
not increase the public health risk of ARGs in soil.
Twenty-three new ARGs emerged and both enrichment
and attenuation of ARGs were observed after conversion

of Amazon forest to pasture. We speculate that the grass
vegetation (Urochloa brizantha, Urochloa decumbens,
Panicum maximum) and/or cattle grazing, which in-
cludes their manures, may be responsible for the
changes in ARGs by selecting different microbial popula-
tions and/or increasing their diversity [13].
Growing evidence has shown that some ARGs in path-

ogens are acquired from environmental bacteria through
horizontal gene transfer. For example, the CTX-M ex-
tended spectrum beta-lactamase originated from
chromosomal genes of an environmental genus, Kluy-
vera [59], and the clinical vanA has been found in envir-
onmental Bacilli [60]. Thus, we selected 12 ARGs which
are clinically important and could transfer between bac-
teria [61] and assessed their sequence similarity to clin-
ical ARGs in human pathogens. The ARGs we detected
in Amazon soils are distinct from those found in human
pathogens, implying that most ARGs in the natural soil
resistome are not demonstrated as problematic or at
least not yet entered the clinical realm. Only a few
clinical-similar reads (> 90% amino acid identity) of our
tested ARGs were observed, but further evaluation of
target gene assemblies confirmed that most of them
were aligned to conserved regions of these genes. For ex-
ample, ampC codes clinically important cephalospori-
nases which confers resistance to cephalothin, cefazolin,
cefoxitin, and most penicillins, but the assembled ampC
in Amazon soils shared less than 54% of similarity with
those found in human pathogens. It is noteworthy that
most researchers used short-read based BLAST for ARG
search, which provides a sensitive detection but will also
recover non-functional pseudo genes or conserved do-
mains. By contrast, ARG evaluation with assembled
genes will miss some low abundance ARGs but should
better reflect the presence, abundance and sequence
similarity of potentially functional ARGs.
There are approximately one ARG in 10 cells in our

soils (assuming 2.2 copies of 16S rRNA genes per cell
for soil bacteria [33]). Despite of the high resistome
abundance, most of ARGs cannot be well assembled by
de novo assembly. This is because 80% of soil resistome
abundance was contributed by 9–17 ARGs (Additional
file 1: Fig. S8). About 50–69% of ARG subtypes were less
abundant than 1 in 10,000 cells. We estimated the aver-
age coverage of our soil sequence data with NonPareil
[62] which showed that approximately 1.6∼11.4 terabytes
of sequence data are required for 95% abundance-
weighted average coverage of the temperate and tropical
soil communities (Additional file 1: Fig. S9). These re-
sults show the genetic complexity of the soil microbiome
and hence the difficulty of assembling more than the
dominant ARGs using Illumina short reads with today’s
resources. As one example, we checked the coverage of
vanS regulatory genes and found an uneven distribution
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by position (Additional file 1: Fig. S10). A further
BLASTX of reads annotated as vanS against nr database
demonstrated that most of the reads are HAMP domain
(present in Histidine kinases, Adenylate cyclases, Methyl
accepting proteins, and Phosphatases). HAMP domain is
approximately 50 amino acids long and is commonly
found in integral membrane proteins and two-
component regulatory systems [63]. It indicates that at
least part of resistome abundance from the short-read
alignments may include conserved protein domains,
which would lead to overestimates of ARGs.
It is noteworthy that some regulatory genes are included

in the SARG database as well as the widely used CARD
database [64]. It is problematic as to whether regulatory
genes should be counted as ARGs since they only control
expression, and not only of ARGs. For example, vanR and
vanS cannot confer resistance to vancomycin, but vanR
can promote co-transcription of vanA, vanH, and vanX
when activated by vanS [65]. A high abundance of regula-
tory genes was detected and they differed in soils from the
several ecosystems (Fig. 2b, c). We removed regulatory
genes from our further analyses since the potential risk of
ARGs is largely from the horizontal transfer of structural
genes which code for functional proteins. In addition to
the regulatory genes, some ARGs are components of a
functional complex, for which an individual ARG cannot
code antibiotic resistance without others. For example,
many ARGs detected in our study are components of
mdtABC-tolC, acrAB-tolC, and mexEF-oprN efflux com-
plexes. Thus, the addition of ARGs belonging to a com-
plex can inflate the total resistome abundance.
Granted, soil is an important reservoir of ARGs; it har-

bors background ARGs that may or may not become
problematic, probably harbors ARGs not yet emerged,
and can harbor clinical ARGs, most likely to have en-
tered soil from human or animal waste disposal. We rec-
ommend that more attention be paid to ARG genes or
gene sets necessary for resistance function, for their sta-
tus relative to common ARG backgrounds, for linkage to
mobile genetic elements, and their correspondence or
linkage to host populations. Sequence similarity may or
may not be indicative of potential ARG function but it is
a strong indicator of whether the ARG source was from
a known clinical resistance and detectable by methods
targeting the clinical gene variant.

Conclusions
Soil harbors ARGs that may or may not become prob-
lematic, and some that are yet to emerge. We show that
the ARG reservoir in soil is global, huge, and exhibits
significant geographic patterns. We identified 55 struc-
tural and 5 regulatory ARGs as common in all samples
of these diverse ecosystems and suggest that these candi-
date background ARGs be considered as a separate

category for health risk evaluation. Further, soil ARGs
shared low sequence similarities with those commonly
found in human pathogens. We recommend that more
attention be paid to ARG genes or gene sets necessary
for resistance function, for their status relative to com-
mon ARG backgrounds, for linkage to mobile genetic el-
ements and their correspondence or linkage to host
populations to evaluate risk.
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